Molecular Characterization of the Gene for Dihydroflavonol 4-Reductase of *Japonica* Rice Varieties

Kiyoshi NAKAI*, Yoshishige INAGAKI**, Hisanori NAGATA*, Chikara MIYKZAKI*,*** and Shigeru IIDA*,**+

Received 24 February 1998; accepted 12 June 1998

Anthocyanins are the most important pigments in higher plants. Genes for anthocyanin biosynthesis can be classified into two groups; structural genes encoding enzymes in the biosynthesis pathway and regulatory genes acting on the structural genes [1-3]. The DFR gene encodes the enzyme, dihydroflavonol 4 -reductase, which catalyses the stereospecific reduction of dihydroflavonols to the respective leucoanthocvanidines. The DFR genes of dicotyledonous plants consist of six exons and five introns whereas those of monocotyledonous plants barley and maize are comprised of four exons and three introns (Fig. 1). Recently, the DFR gene of a *indica* variety of rice was reported to consist of three exons and two introns [4]. Interestingly, the positions of the introns and exons are well conserved in these plants.

Although most of *japonica* and *indica* rice varieties bear green leaves and stems, there are varieties with purple leaves and stems due to anthocyanin pigmentation [5]. As an initial step to characterize genes for anthocyanin biosynthesis in rice, we have characterized the *DFR* gene of a *japonica* variety *Murasaki-ine* (purple rice) and shown that it carries a single copy of the *DFR* gene consisting of three exons and two

Fig. 1 Organization of the DFR genes.

The hatched boxes and the horizontal bars represent exons and introns, respectively. Only four genomic sequences of the *DFR* genes, arabidopsis, barley, maize and *indica* rice have been reported [8, 16, 17]. The *DFR* genes of petunia and snapdragon are reported to consist of six exons and five introns, although their intron sequences were not published [18]. introns. We also found that an *indica* variety *Kuro*gome (black rice) with purple leaves and stems and two *japonica* cultivars, *Toride 1* and *Koshihikari*, with green leaves and stems carry a single copy of the *DFR* gene. Clear RFLPs were detected at the flanking regions of the *DFR* genes in these four varieties.

The japonica varieties, Murasaki-ine, Toride 1 and Koshihikari, were obtained from Plantech Research Institute, Yokohama, and the indica variety Kurogome was from Soumaya Co., Iwaki. The plants were grown in a greenhouse. To isolate mRNA, germinated seedlings of Murasaki-ine were grown in a growth chamber for three weeks. Total RNA was extracted from UV-induced young leaves of the seedlings [6], and $poly(A)^+$ mRNA was prepared and used for construction of a cDNA library [7]. The cDNA library was prepared by the cDNA Synthesis Kit (Stratagene). To isolate the rice DFR cDNA, about 100,000 recombinant clones in a cDNA library from Murasaki-ine seedlings were screened with the maize al cDNA probe [8]. Out of 17 clones isolated, six were chosen to characterize further. The longest clone contains a 1,465 bp sequence carrying an 1,119 bp open reading frame (Fig. 2), and it agrees in size with the DFR cDNA since mRNA of about 1.4 kb was detected by RNA gel blot analysis (Fig. 3). Recently, the DFR cDNA sequence from the indica rice Purpleputtu and the genomic DFR sequence from the indica variety Teqing have been deposited in the nucleotide sequence databases (accession numbers Y07956 and U70541). When the cDNAs from the japonica and indica varieties were compared, only four nucleotide alterations were detected apart from the 5' and 3' ends. Only one of these affects the predicted amino acid sequences of the DFR enzymes at the position 101 (Val in japonica and Ile in indica varieties).

To characterize the genomic *DFR* sequences of the *japonica* variety *Murasaki-ine*, approximately 100 μ g of plant DNA prepared from leaves [9] was digested with *Eco*RI or *Bam*HI and the resulting fragments were cloned into the *Eco*RI site of [λ EMBL4] (Stratagene) or the *Bam*HI site of [λ GEM11] (Promega). General methods for genomic cloning

Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda 278-0022, Japan
 ** Division of Gene Expression and Regulation I, National Institute

for Basic Biology, Myodaiji, Okazaki 444-8585, Japan

 ^{***} Nagasaki Laboratory, Japan Science and Technology Cooperation, 2-1303 Ikeda, Ohmura 856-0026, Japan
 * To whom correspondence should be addressed.

National Institute for Basic Biology, Myodaiji, Okazaki 444 -8585, Japan

GTACCAAGA	ACAATCAATA	GAAATGGTGG	CCAGCCAGGC	AAGCAGCTGG	AGGAGOTACA	AGGAGAGGGG	TGGCGCCCAA	TGCGACTTTT	90
AAAACTATAA	AATTATAAAG	TTGGTAATGA	TAATGTTAAT	TTTAAAAAAT	ATCATGTGGA	AATGAGTTGA	CCTTTTACAA	ATTTTCAAGA	180
AAATAAAGGG	тааааатта	GATGATTTTA	TATCGGTGCT	AGATGTACAA	ATGCGTGGGC	CAACCTACTA	GTTTTTGGCT	GAATCTGAAC	270
AATTTTGAAC	GGTCCAAAAA	AACCGGTTCA	TTCTGTCTCC	TTTGCCTGTC	GTCACGCTO	CATCACGCTG	CGGATGCAGC	GTACTAAACG	360
CACCGGCCTT	TCAAACAAGA	ACCGGCCGGT	GTGCAGGTGC	ACGTAGCTCA	AACCTACCTA	TCAAAACGCT	GGTCATTCTG	TCTACTCOAT	450
CCGACOCCAA	AAAAAAAGAC	AAACECTQAT	TTECTOR) AACGTTTGAC	CGTCCGTCTT	ATTTAAGAAA	ATTATGAAAA	ааадТтаааа	540
AAACAAGTCA	САСАТААААТ	ATTAATCATG	TTTTATCATC	TAACAATAAT	GAAAATACGA	аттатааааа	AATTTCATAT	AAGACGGACA	630
GTCAAAGITG	GACACGGAAA	CCTAGAGTA	CTTGTTAGGC	AGTACAAGTG	tgtgtagcta	TACTCCCCCT	GTCCTGTACC	AGCTTATATA	720
TATAGGCGAG	CCAACGAGCG	AGAGCCATCA	CCAAGTGCAA	GGTAGCTATC	ATATATTOTG	CGAATCCAAC	ACAAGCACCG	CGGCGTAGTA	810
CTACTACTTG	CGCGCGCGTG	TTAGATTCGC	GTGCGAATCC	AACACAAGCA	GATCGATCAC	GCACGGTACG	CCATGGGCĜA	GGCGGTGAAG	900
GGGCCAGTGG	TGGTGACGGG	CGCGTCGGGC	TTCGTCGGCT	CATGGCTCGT	CATGAAGCTC	CTCCAGGCCG	GCTACACCGT	CCGCGCCACA	990
GTGCGCGACC	CCTGTGAGCT	CTCTCATCGT	GCACTCTAGC	TCTCTCCTCG	TAGTTTACTG	ACTCCAATTA	TATATGCCGC	TTGCTTGACT	1080
CTGACAAGTG	TACGTGTTGT	TGTTGTTGTT	TTCAGCTAAC	GTTGGGAAGA	CGAAGCCGTT	GCTGGAGCTG	GCGGGGTĈGA	AGGAGAGGCT	1170
GACGCTGTGG	AAGGCCGACC	TGGGCGAGGA	AGGCAGCTTC	GACGCGGCGA	TCAGGGGTTG	CACGGGCGTG	TTCCACGTCG	CGACGCCCAT	1260
GGACTTCGAG	TCCGAGGACC	CGGAGAACGA	GGTCGTCAAG	CCCACCGTGG	AAGGGATGCT	GAGCATCATG	CGGGCCTGCA	GGGACGCCGG	1350
CACCGTCAAG	CGCATCGTCT	TCACCTCCTC	CGCCGGGACC	GTCAACATCG	AGGAGCGGCA	GCGCCCCTCC	TACGACCACG	ACGACTGGAG	1440
CGACATCGAC	TTCTCCCCCCC	GCGTCAAGAT	GACCGGATGG	G TAT GTATCG	AAAATGTTGT	CGTGGGTTAG	GAACAACGAT	CCTCCACGTA	1530
CATAAAACGA	AACGATAAGT	TAACATGAGC	ATGAT TA ATA	TTAGTATG GT	ATAATTGATA	TITGTTIAAA	AATCTAAAAA	ATATTAATAT	1620
GATTTTTAAA	TAACTATTTT	ATAGAATTTT	TTTTATGAAA	ACACAAGGAA	ACAGAAATTG	AGAAATAGTA	CGTTCAAACT	CACCCTTAAG	1710
CAACTGAAAC	TAGCTTAGCA	CGTGAATTTG	GCCGTCTEAG	TCATATGATA	TGAAGGTCGG	GGATGTTTT	TTTTTTTTG	CGGGGATGTA	1800
АТТААСТААТ	TATGTAAACC	ATTTCTATTG	TCTAAAAGAA	GTTAGCAAGT	GATAATTGTG	GTGGCAGATG	TACTTCGTGT	CCAAGTCATT	1890
GGCGGAGAAG	GCCGCCATGG	AATACGCGAG	GGAGCACGGG	CTGGACCTCA	TCAGCGTCAT	CCCCACGCTC	GTCGTCGGGC	CCTTCATCAG	1980
CAACGGGATG	CCGCCGAGCC	ACGTCACCGC	GCTGGCGCTG	CTCACGGGGA	ACGAGGCCCA	CTACTCGATC	CTGAAGCAGG	TGCAGTTCGT	2070
CCACCTCGAC	GACCTCTGCG	ACCCCGAGAT	CTTCCTCTTC	GAGAGCCCCG	AGGCGCGCGG	CCGCTACGTC	TGCTCCTCCC	ACGACGCCAC	2160
CATCCACGGC	CTCGCGACGA	TGCTCGCGGA	CATGTTCCCG	GAGTACGACG	TGCCGCGGAG	CTTTCCCGGG	ATCGACGCCG	ACCACCTCCA	2250
GCCGGTGCAC	TICTCGTCGT	GGAAGCTCCT	CGCCCACGGG	TTCAGGTTCA	GGTACACGCT	GGAGGACATG	TTCGAGGCCG	CCGTCCGGAC	2340
GTGCAGGGAG	AAGGGGCTTC	TCCCGCCGCT	GCCGCCACCG	CCGACGACGG	CCGTGGCCGG	AGGAGACGGC	TCGGCGGGTG	TGGCCGGCGA	2430
GAAGGAACCG	ATACTGGGGA	GGGGGACCGG	GACGGCGGTT	GGTGCTGAAA	CAGAAGCGTT	GGTCAAATGA	GTGTTGACTA	GTGAGTCCAG	2520
AGAACGGTAT	TGAAATTGAT	CGTGTTTCGC	TGCTCCTTGC	CTCGTTGGCT	TCGTCTATTT	CACAATGCGA	GATTTGGAAT	AAATCAGAGC	2610
GGTTAATCCT	GTAAGTTCAT	ATGTAACGTA	CCCATTTGAT	TTTTTATTGG	TTACATATGG	TEACTCCCTC	CGGTTTCATT	TTAATTGACA	2700
CTTTGAACAA	TAATACGTTT	TACAAGATAT	ACCTTTGACT	TTATTTTTCT	ATTATAATAT	ATACAATAAA	TAAATGCATG	T TTATTACAG	2790
TGTTTTGAAA	GACAAATCTA	TATATTTTT	TAGTITITI	AAACTAAATA	TTTTTAAAGT	TATTGTIGGT	CAAAGTTATA	аалаттааст	2880
TCAATCTTGT	CCAAAACATC	ааттаатата	GAACTTGAGG	AGTACATTTT	TACCACCTTA	AAATATCTTA	CCTTTACACG	TGCTCCTAGA	2970
GAGCTCCCAT	адададааат	TTTGAAGCAG	CAAAGCAAGA	GAGAGAGAAA	GGATTCAAGT	GAGTCGTTTT	CACGAATAGC	CTTAGGCCAT	3060
TCGTAGTACA	GGTTTTATAA	GAGTTTCAAT	CTTATCAAAT	AAGGTATGAT	AATGTCATGA	AATTTATTAA	GAGAGAAAGA	ATAAGTTTTA	3150
TTTAAATGAA	AATTGGTTTA	CATACTTACC	татсасттаа	ACAGAATGAA	ACCCCCATTA	TAGGACCGAA	TCATITCATC	CCATGCCTTG	3240
GAATTGAAAA	TGAAACCTCA	TTGTGATCAA	ATAGTTTTGT	AACACCATTA	атааттааат	GTTACGGACA	GCATATAAAA	тсасаааата	3330
AAACTATACT	TTTCACTTGA	ACCTGAAACC	аасаааааа	AATTTCTCAT	GATAGCAACA	TTGATGTAAC	GCTCCGCTTC	TCG TGAGAC G	3420
ттаааааста	ATTCGGTAAA	ATCCTAATTG	CGAAAATTTT	GTTCTTTGTG	TGCGATTCTA	AGTCGTGCCA	TGGATCTCAA	TTCAAATCCC	3510
GTTGTTCCCT	CTCATCGAAA	TCGAAATCCT	CCACCTCAAA	TTTCCAATCC	CGATTCAAGT	CACCGAGATC	AAATTCCGAA	ATTCAATTCG	3600
TCTCTTTGAA	TTC								3613
EC	UKI								

Fig. 2 Nucleotide sequences of the DFR gene region in Murasaki-ine.

The exon sequences are enclosed in the opened boxes. The ATG initiation codon at the position 883 and the termination codon TGA at the position 2498 are indicated by the underlines. Putative CAAT-box and TATA-box in the promoter region and a possible polyadenylation signal within exon 3 are indicated by the double underlines. The upward filled arrowheads indicate the 3' ends of the cDNA clones determined. At the position 1286 indicated by the open downward arrowhead, about 0.1 kb introns were found in barley and maize (see **Fig. 1**). Single base-pair substitutions and insertions found by comparison with the sequence of the *indica* rice *Teqing* are enclosed in circles and brackets, respectively. The sequence alterations leading to the stop codons found in *Koshihikari* and *Toride 1* are indicated by the asterisks. The nucleotide sequences reported here have been deposited to DDBJ under the accession numbers AB003495 (genomic sequence) and AB003496 (cDNA sequence).

КрпІ

Fig. 3 RNA gel blot analysis.

Total RNAs (10 μg) from young leaves of the seedlings were hybridized with the *DFR* cDNA from *Murasaki-ine* as described before [6,7]. The cDNA of acyl carrier protein [19] was used as a probe for an internal control, indicated by cont. Lane 1, *Kuro-gome*; lane 2, *Murasaki-ine*; lane 3, *Koshihikari*; lane 4, *Toride 1*.

and DNA gel blot analysis were performed as described before [7, 10]. Using the rice *DFR* cDNA as a probe, we cloned a *Bam*HI-*Bam*HI fragment of about 15 kb genomic DNA into the *Bam*HI site of λ GEM11 (**Fig. 4-A**), and the fragments obtained were subcloned into pHSG398 (Takara) or pBluescriptII SK⁻ (Stratagene) for further analysis. The 3.6 kb *Kpn*I -*Eco*RI fragment containing the *DFR* gene was sequenced by the chain termination method [7], and the result was shown in **Fig. 2**. By comparing the *DFR* cDNA sequence, we have ascertained that the *DFR* gene of the *japonica* rice *Murasaki-ine* is comprised of three exons and two introns (**Fig. 1**).

We also compared the genomic sequences of the 2, 790 bp region between the *japonica* variety *Murasaki-ine* and the *indica* rice *Teqing*, since the 3' end of the published sequence of *Teqing* corresponds to the position 2, 790 in **Fig. 2** [4]. The sequences of these varieties showed 98.3% identity, and only 18 single base-pair substitutions and 3 tiny insertions (1 bp, 11 bp and 17 bp) were detected in the 2, 790 bp region of *Murasaki-ine*. Interestingly, 11 out of 18 base-pair substitutions were localized at the 300 bp segment flanked by the two insertions (11 bp and 17 bp) in the promoter region.

We have also cloned around 10 kb EcoRI-EcoRIfragments containing the *DFR* gene regions from the genomes of *Toride 1*, *Koshihikari* and *Kuro-gome*, and constructed the restriction cleavage maps of these fragments (**Fig. 4-A**). The restriction map of the *indica* variety *Kuro-gome* is identical to that deduced from the genomic sequence of the *indica* variety *Teqing* [4]. Clear RFLPs were detected in the cloned *DFR* gene regions among these four rice varieties. Some of these RFLPs appear to be due to presence or absence of small insertions. RFLPs due to such insertions were also detected at the *DFR* gene regions in different lines of the common morning glory [11]. Since small insertions are often due to the presence of interspersed repetitive sequences [12], we analyzed whether the regions containing RFLPs due to presence of small insertions carry repetitive DNA elements. As **Fig. 4-B** shows, sequences detected by the probe B are unique in the genomes of *Kuro -gome*, *Murasaki-ine* and *Koshihikari* whereas those by the probe A are present in multiple copies in these genomes. The same conclusions were also drawn from DNA gel blot analysis using several other restriction enzymes (data not shown). **Fig. 4-B** also indicated that the *DFR* regions detected by the probe C are unique in the genomes of *Kuro-gome*, *Murasaki -ine*, *Koshihikari*, and *Toride 1*.

We have also sequenced an approximately 1.2 kb region containing exon 1, intron 1 and 5' part of exon 2 in *Koshihikari* (accession number AB010744) and *Toride 1* (accession number AB010745). In these cultivars with green leaves and stems, either the sequences GAG at the exon 1 in *Koshihikari* or TCG at the exon 2 in *Toride 1* has changed into the stop codon TGA (**Fig. 2**). We do not know whether these mutations of the two varieties are solely responsible for deficiency in anthocyanin pigmentation. However, it is clear that the *DFR* mRNA was produced in these cultivars with green leaves and stems as well as the *indica* cultivar, *Kuro-gome*, with pigmented stems and leaves (**Fig. 3**).

The A1 gene encoding the DFR enzyme has been mapped at 198 cM (the near the terminus of the long arm) on the maize chromosome III in 1997 [13]. Comparative linkage maps of the rice and maize indicated that the 140-170 cM region on the maize chromosome III corresponds to the 80-170 cM area of the rice chromosome I [14]. Among the several loci affecting anthocyanin pigmentation and mapped on the rice chromosomes, the A locus of rice is assigned at approximately 93 cM on the rice chromosome I [15]. Whether the A locus has any association with the *DFR* gene described here remains to be investigated.

Acknowledgments

We thank Udo Wienand for providing the maize *a1* cDNA, Takuji Sasaki, Masahiro Yano, Ayahiko Shomura, Kiichi Fukui, Nobuko Ohmido and Fumiyoshi Myouga for valuable discussions and sharing unpublished data, Tomoko Endo for helping to prepare cDNA library partly, and Rie Terada for reading the manuscript. This work was supported in part by grants from the Ministry of Education, Science, and Culture of Japan.

The open box represents the KpnI-EcoRI segment shown in **Fig. 2**. The thick horizontal arrow indicates the location and orientation of the *DFR* gene. Restriction sites present in all the cloned fragments are represented by the vertical lines above the thick horizontal lines and restriction sites unique to each fragment are below the thick lines. Restriction sites are: B, *Bam*HI; Bg, *Bgl*II; E, *Eco*RI; K, *KpnI*; P, *PstI*; S, *SalI*; Sc, *SacI*; X, *XbaI*. The segments used for probes in DNA gel blot analysis are indicated under the maps.

(B) DNA gel blot analysis.

Genomic DNAs $(10\mu g)$ from young leaves were digested with the restriction enzymes indicated and hybridized with the probes A, B and C indicated above [7, 10]. Lane 1, *Kuro* -gome; lane 2, *Murasaki-ine*; lane 3, *Koshihikari*; lane 4, *Toride 1*.

References

- Forkmann, G., 1993. In "The Flavonoids, Genetics of flavonoids", (ed. Harborne, J. B.), p. 536-564. Chapman & Hall, London.
- [2] Martin, C., Gerats, T, 1993. In "The molecular biology of flowering, The control of flower coloration.", (ed. by Jordan, B. R.), p. 219-255, CABI, Wallingford, UK.
- [3] Holton, T. A., Cornish, E. C., 1995. Plant Cell, 7: 1071-1083.

- [4] Chen, M., Bennetzen J. L., 1996. Plant Mol. Biol. 32: 999-1001.
- [5] Nagao, S., Takahashi, M., Kinoshita, T., 1962. J.
 Facul. Agr., Hokkaido Univ., Sapporo, 52: 20-50.
- [6] van Tunen, A. J., Koes, R. K., Spelt, C. E., van der Krol, A. R., Stuitje, A. R., Mol, J. N. M., 1988. EMBO J. 7, 1257-1263.
- [7] Sambrook, J., Fritsch, E. F., Maniatis, T., 1989.
 "Molecular Cloning: A Laboratory Manual, 2nd ed.", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

- [8] Schwarz-Sommer, Z., Shepherd, N., Tacke, E., Gierl, A., Rohde, W., Heclercq, L., Mattes, M., Berndtgen, R., Peterson, P. A., Saedler, H., 1987.
 EMBO J. 6: 287-294.
- [9] Murray, M.G., Thompson, W.F., 1980. Nucl. Acids Res., 8: 4321-4325.
- [10] Inagaki, Y., Hisatomi, Y., Suzuki, T., Kasahara, K., Iida, S., 1994. Plant Cell 6: 375-383.
- [11] Hisatomi, Y., Yoneda, Y., Kasahara, K., Inagaki,
 Y., Iida, S., 1997. Theor, Appl. Genet., 95: 509-515.
- [12] Weising, K., Nybom, H., Wolff, K., Meyer, W., 1995. "DNA Fingerprinting in Plants and Fungi", CRC Press, Boca Raton.
- [13] Neuffer, M. G., Coe, E. H., Wessler, S., 1997. In "Mutants of Maize", p. 38-39, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New

York.

- [14] Ahn, S., Tanksley, S. D., 1993. Proc. Natl. Acad. Sci. USA, 90: 7980-7984.
- [15] Kinoshita, T., 1995. Rice Genet. Newslett., 12: 9 -153.
- [16] Shirley, B. W., Hanley, S., Goodman, H. M., 1992.Plant Cell, 4: 333-347.
- [17] Kristiansen, K. N., Rohde, W., 1991. Mol. Gen. Genet., 230: 49–59.
- [18] Beld, M., Martin, C., Huits, H., Stuitje, A.S., Gerats, A. G. M., 1989. Plant Mol. Biol., 13: 491-502.
- [19] Uchimiya, H., Kidou, S., Shimazaki, T., Aotsuka, S., Takamatsu, S., Nishi, R., Hashimoto, H., Matsubayashi, Y., Kidou, N., Umeda, M., Kato, A., 1992. Plant J., 2: 1005-1009.