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Abstract

Occurrence of endopolyploid cells in somatic tissues of spinach (Spinacea oleracea L.) was
investigated by flow cytometry. Endopolyploidy was not present in embryos during imbibition of seeds.

Rapid endopolyploidization occurred in seedlings during germination. Spinach appears to become
endopolyploid by repeated rounds of replication of its entire genome. Spinach contained cells with six

ploidy levels that correspond to 2C, 4C, 8C, 16C, 32C and 64C, where C is the haploid nuclear genome
complement. The endopolyploid nuclei fall into clear ploidy series (2C, 4C, 8C, 16C.

. .

). Therefore, the

process of endopolyploidy corresponds to endoreduplication.The patterns of endopolyploidy was
characteristic of tissue type and developmental stage. However, endopolyploidy was not observed in
apical meristematic tissues. Endopolyploidization may give rise to genetic plasticity in spinach.
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Abbreviations

DAPI: 4', 6- diamidino 2 phenylindole ' FCM: Flow
cytometry.

Endopolyploidy occurs in a wide variety of
multicellular organisms including plants (Brodsky

and Uryvaeva, 1977; Barlow, 1978; Traas et al.,

1998), Although the biological significance of endo-

polyploidy is not yet clear in plants. Recent flow

cytometric data revealed that endopolyplcidy is

commonly found in economically important plant
speices belonging to different genera, such as
Brassica oleracea (Kudo and Kimura, 200la, b), B.

rapa (Kudo and Kimura, 200la), Raphanus sativus

(Kudo and Kimura, 2002a). Lycopersicon escu-
lentum (Smulders et al., 1994), Cucumis sativus
(Gilissen et al., 1993), and Allium fistulosum (Kudo

et al., 2003).

Spinach (Spinacia oleracea L. )is an important
vegetabe crop belonging to the family Chenopo-
diaceae. So far, none of previous investigations

quantified nuclear DNA content in relation to devel-
opment of spinach plants. Therefore, ploidy profiles

was determined by flow cytometry during the

different stages of development.

In vitro plants of Spinacia oleracea cv. A- Pa- Re
were grown from seeds and used for the present
study. Seeds were surfacesterilized for 20 min in

1% sodium hypochlorite solution and washed three
times with sterile distilled water. Two seeds were
plated on half strength MS medium (Murashige
and Skoog, 1962) containing 20 gl~ sucrose, soli-
dified with 2.5 gl1 Gelrite in a 500ml glass jar:
pH of the medium was adjusted to 5.8 before
autoclaving at 12l~C for 20 min. Plants were grown
at 25~C under cool white fluorescent lights (50 f~mol
m~2 s1) with a 16hour day light/8hour dark
photoperiod.

DNA content of nuclei from plants was deter-
mined by flow cytometry (FCM). For the FCM
analysis, tissue samples were harvested from the
plants at the different developmental stages (Stage O
Stage 3) as shown in Fig. 1, ranging from an
embryo excised from a seed after 16 hours of
imbibition (Stage O), to the seedlings at each devel-

opmental stages (Stage I Satge 3). Each seedling
was dissected into several parts, i. e. Ieaves, coty-
ledon, hypocotyl, and roots. Leaves were numbered
from old to young, with the oldest outer leaf as
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Fig. I Four developmental stages from seed imbi-
bition to seedling establishment of Spinacia

oleracea under in vitro conditions. Stage O:

embryo 16 h after imbibition with no sign for
germination; Stage 1: genninated seedling, out-

growth of the radicle; Stage 2: 2d old seedling,
upward elongation of cotyledon; Stage 3: 40 d-
old plant, development of leaf 5 to leaf 8,
expansion of leaf Ito leaf 4; Co = cotyledon, L1
= Ieaf 1.

number one.
Nuclei were extracted and stained using a high
resolution kit (PARTEC CyStain UV Plant DNA
Analysis Kit Precise P, Partec GmbH, Mtinster,
Germany). The samples were ehopped with a razor
blade in a 0.4ml of nuclei extraction buffer (nuclei
extraction solution of the kit). A I-2 ml of staining
solution containing the dye 4', 6diamidin0-2
phenylindole (DAPI, stain solution of the kit) was
added and the sample was passed through a 100-

flm Cell Trics filter (PARTEC). The analyses were
performed with a PAS flow cytometer (PARTEC)
equipped with an HBO 100 mercury arc lamp. The
signals of nuclei within each peak were determined

by FlowMax software (PARTEC). Measurements of
nuclear DNA content were carried out with at least
4 rcplications. At a single analysis, a minimum of
3,000 nuclei were counted for each sample. To
determine the standard peak position of 2C nuclei,
the 2C peak from nuclei of in vitro young leaves

was analyzed twice on each measurement. The data

were plotted on a semi-logarithmic scale, so that

the histograms from 2C to 64C were evenly distrib-
uted along the abscissa. The data were presented as
percentage of the totoal amount of nuclei in all

peaks of the histogram.

Because spinach is a diploid species, the 2C DNA
level corresponds to cells in G1. The 4C population

encompasses normal cells in G2 and cells that have

gone through a single round of endopoly-
ploidization. Therefore, the presence of 8C popula-
tion is an indicator of cells that must have all

undergone endopolyploidization events.

FCM histograms from nuclei at stage O showed a
large 2C peak (63% of total nuclei counted) and a
second smaller peak (34%) with twice the amount
of fluorescence, corresponding to nuclei with repli-

cated 4C DNA content (Fig. 2A). Imbibition of the
seeds may trigger the progression of cell cycle
events, as shown in our previous study, in which
cell cycle activity arrested at G1 in most embryonic
cells of matured dry cabbage seeds initiated to shift

to G2 (4C) upon imbibition (Kudo and Kimura,
200lb).

Rapid endopolyploidization occurred in germi-

nating seedlings at stage I (Fig. 2B). The cells of
the germinating seedlings considerably increased

their Cvalues to four ploidy levels (2C 16C). Del
NeroBuffalino and Witkus (1984) also observed
endopolyploid 8C nuelei in root cells in germinated
seeds of Spinacia oleracea using Feulgen staining.

At stage 2, extensive endopolyploidization was
found in cells of all organs tested (Fig. 2CE).
Cotyledon (Fig. 2C) and hypocotyl (Fig. 2D) con-
tained cells with four ploidy levels (2C 16C). Cells
of radicle tissues went through up to four rounds of
endopolyploidization and reached a maximum of
32C Ievel (Fig. 2E).
Fig. 3 shows the patterns of endopolypoloidy in
plants of stage 3. The ploidy patterns of the stage 3
progressively increased in cotyledon (Fig. 3E), and

hypocotyl (Fig. 3F) compared with satge 2. The
signals of the 32C were detected in these organs.
Main root (Fig. 3G) contained cells of five ploidy
levels. Lateral root exhibited the four multiple peaks
(Fig. 3H). In fully expanded leaf 1, the distributions

of endopolyploid nuclei depended on tissue type
(Fig. 3BD). Nuclei from midrib (Fig. 3C) and
petiole (Fig. 3D) showed much higher levels of
endopolyploidy than those from leaf blade (Fig.

3B). The fifth round of DNA replication (64C) was
specific to the petiole tissues (Fig. 3D). Stability of

the diploid level was observed in the apical meris-
tematic tissues (Fig. 3A). Values for DNA contents
higher than 64C were never observed in any tissues
at this stage.

The results of flow cytometric analysis of the
ploidy level in Spinacia oleracea showed that this
species is polysomatic type of plants. Most somatic
cells of S. oleracea undergo several rounds of
endopolyploidization, resulting in the cells with

multiple polyploidy levels. Spinach plants contained

a mixture of cells with clear six ploidy series from
2C to 64C, which corresponds to nuclear DNA
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Fig. 2 Characteristic histograrns of nuclei distribution from Stage Oto Stage 2.
(A) Embryo at Stage O, (B) Whole seedling at Stage 1, (C) Cotyledon at Stage 2, (D)
Hypocotyl at Stage 2, (E) Radicle at Stage 2.

endoreduplication. 2003) undergo several rounds of endoreduplication.

The results indicated that distribution of
endopolyploid cells in spinach plants is tissuespe-
cific. The degree and extent of endopolyploidy
tend to increase with increasing age of plants.

Generally, older tissues exhibited higher levels of

endopolyploidy than younger tissues. However,
during the development of the plant, apical meris-

tematic tissues were maintained at normal diploid

(2C) Ievel, In cabbage plants, Kudo and Kimura
(200lb) also observed that apical meristematic tis-

sues were maintained at the diploid level. Endopo-
lyploidization of the cells may be repressed to

ensure the stability of the genetic line, because

meristem cells are functionally analogous to animal

stem cells (Fletcher, 2002). Our previous studies

showed that somatic cells in Brassica oleracea

(Kudo and Kimura, 200la), B. rapa (Kudo and
Kimura, 200lb), Raphanus sativus (Kudo and
Kimura, 2002a) and Allium fistulosum (Kudo et al.,

Systemic control of endopolyploidy has also been
described in several plant species such as Arabi-

dopsis thaliana (Galbraith et al., 1991), Cucumis
sativus (Gilissen et al., 1993), and Lycopersicon

esculentum (Smulders et al., 1994). Endopolyploidy

may be a common feature in many economically
important crops. These findings, together with our
data in spinach, indicate that nuclear DNA content
in plant cells is not static; rather than a great amount
of variation in the course of thier differentiation.

The growth of plant cells is linked to the increase
of their DNA content (Meralagno et al., 1993; Kudo
and Kimura, 2002b). Plant cell size is correlated

with nuclear size (Kondorosi et al., 2000). Endore-
duplication can augment further the growth capacity

and the extent of cell enlargement. The regulation
of endoreduplication may allow cells to reach ex-
traordinary sizes (Cebolla et al., 1999). This process
probably provide a means to manipulate cell size or
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Characteristic histograms of nuclei distribution from tissues at Stage 3.

(A) Apical meristem, (B) Leaf blade of leaf 1, (C) Midrib of leaf 1, (D) Petiole of leaf 1,

(E) Cotyledon, (F) Hypocotyl, (G) Main root, (H) Lateral root.

organ size in many agronomically important crops.
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