
To elucidate metabolic networks of plants, metabolome
studies consisting of multitarget profiling is essential
(Fiehn et al. 2000). Nevertheless, a simultaneous
detection of a great number of intracellular metabolites 
is a bottleneck of such studies in terms of sensitivity 
and selectivity of metabolites. The high throughput
technology such as Fourier-transform ion cyclotron mass
spectrometry (FT-MS) technique has been developed to
detect a number of intracellular metabolites. FT-MS as
an ultra-high-resolution mass spectrometry is capable of
detecting complexes of oligosaccharides in Arabidopsis
(Penn et al. 1997) as well as thousands of metabolites in
strawberry (Aharoni et al. 2002). Hirai et al. (2004)
showed that several metabolic pathways in Arabidopsis
leaves and roots were altered by nutritional stress such as
a deficiency of sulfur or nitrogen. Furthermore, the
improved methods such as a nuclear magnetic resonance
(NMR) and gas chromatography mass spectrometry
(GC/MS) have been contributed to analyze plant
metabolism (Roessner et al. 2000; Sriram et al. 2004).
The enormous amounts of data from these powerful
analyzers enabled us to create the fingerprinting of plant
metabolites. Thus, information obtained is highly
effective in characterization of plant genes (Mele et al.
2003).

Recently, various proteome approaches such as high-
resolution two-dimensional gel electrophoresis (2-DE),
protein sequencing, and mass spectrometry have been

used for identifying the protein expression patterns. 
In the case of rice, Rakwal and Komatsu (2000) reported
the results of proteome analysis of jasmonate-treated
plants.

Here we performed metabolome analysis of transgenic
rice by FT-MS as well as proteome analysis by 2-DE. We
used transgenic rice plants and calli over-expressing
YK1gene, the homolog of maize HC-toxin reductase
(HCTR) in rice (Uchimiya et al. 2002).

Materials and methods

Plant materials and FT-MS analysis
Transgenic rice plants (Oryza sativa L. cv. Nipponbare)
harboring empty vector (C) or YK1 (L-1) were grown 
at 25°C in a green house. Leaf and panicle of 
two-month-old plants were collected and freeze-dried.
Suspension cultured cells were grown in MS medium
containing 3% sucrose, 1 mg/L 2,4-dichlorophenoxy-
acetic acid, B5 vitamin, and 50 mg/ml hygromycin at
27°C in dark. After 5 days, calli were washed twice with
40 ml of Milli-Q water and freeze-dried. Sample
preparation and FT-MS analysis were basically
performed according to Aharoni et al. (2002).

Proteome analysis
Protein extraction, 2-DE, and internal amino acid
sequence analysis were performed as described by
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Rakwal and Komatsu (2000). For measurements of
approximate volume of spots, coomassie brilliant blue
(CBB)-stained gels were scanned and the data were
analyzed by 2D-Elite (Amersham Bioscience). Collected
protein spots were subjected to amino acid sequencing
and the homology search was carried out using the Rice
BLAST database of National Institute of Agrobiological
Resources, Japan.

Western blot analysis was performed as described in
Uchimiya et al. (2002).

Results and discussion

Metabolome and proteome analyses were conducted to
elucidate the effects of over-expression of YK1gene on
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Figure 1. Comparison of metabolic fingerprinting in different organs

between control (denoted by C) and YK1 (L-1) rice. (A) Metabolites

(866) detected were compared in leaf, panicle, and callus, respectively.

Expression levels of metabolites were distinguished by seven different

colors correlating to each signal to noise (S/N) ratio. Molecular weight

range was approximately 1500 (high) to 120 (low). All data are average

from three independent replicates. ND, not detected. (B) and (C)

Comparison of organ-specific metabolites in control (B) and YK1 (C)

rice. Common means metabolites detected in all organs and tissues.

Leaf, Panicle, and Callus indicate organ-specific metabolites.

Figure 2. Metabolic alteration in YK1 transgenic rice. (A) Principal

component analysis in different organs of control (C) and YK1 (L-1)

rice. (B) Comparison of altered metabolite levels in individual tissues

between the control and L-1 line. Number and percentage of

metabolites were denoted. Up (red box) indicates up to 2-fold-

increased metabolites against control and down (blue box) represents

metabolites decreased by less than half level of control.



numerous metabolites and polypeptides. In respective
organs, 866 metabolites were determined by FT-MS. The
metabolic fingerprintings in callus, leaf, and panicle 
were significantly different from one another. Highly-
expressed metabolites (S/N�100) were also apparent in
several organs. However, the difference between control
and the YK1 rice was not distinct (Figure 1A). The
compositions of organ-specific metabolites in YK1 line
were similar to the control (Figures 1B, C).

Figure 2A shows the differences of main metabolites
between control and YK1 rice by a principal component
analysis. The metabolic differences between control and
YK1 line were three-dimensionally visualized (Hirai 
et al. 2004). Principal components were slightly different
between control and YK1 callus, but those in leaf and
panicle were nearly identical. Up-regulated metabolites
were 5.9%, 3.7%, and 3.9% in callus, leaf, and panicle,
respectively. On the other hand, down-regulated
metabolites were 7.0%, 3.7%, and 5.2% in callus, leaf,
and panicle, respectively (Figure 2B).

These results suggested that the compositions of
metabolites were obviously different, but the over-
expression of YK1 had little effect on plant metabolism.
However, since YK1 rice conferred several stress
tolerances (Uchimiya et al. 2002), there was a possibility
that less than 10% of the metabolic alterations
contributed to stress tolerances.

We also carried out proteomic analysis on cultured
cells of YK1 rice. Total polypeptides (668 spots) were
detected on the gel (pH 3–10) and stained by coomasic
brilliant blue. The images of the immobilized pH
gradient (IPG, pH 6–10) gels are shown in Figure 3. Five
spots in L-1 cells (a–e) were up-regulated relative to the
control. Each spot was then subjected to amino acid
sequence analysis. These spots coincided with the 40 s
ribosomal protein S1 (a), the osmotin-like protein 
(b and d), the osr40c1 (c), and fructose-bisphosphate
aldolase (e), respectively.

The cDNA clone osr40c1, encoding ABA-responsive
protein associated with salt tolerance was isolated from
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Figure 3. Proteome analysis of polypeptides differentially expressed in cultured cells of rice. (A) 2-DE images of L-1 sample separated by IPG gel

(pH 6–10). (B) Upregulated (a–e) protein spots in L-1 cells (YK1 line) over the control (5-day-old). The 40 s ribosomal protein S1 (a), osmotin-like

protein (b and d), the osr40c1 (c) and fructose bisphosphate aldolase (e) were identified by amino acid sequences and rice BLAST database. (C)

Immunological detection of YK1 protein of control and L-1 callus.



roots of rice seedlings. Exogenously applied ABA and
salt induced a marked increase of the osr40c1 transcript
level in roots, whereas constant osr40c1 mRNA levels
were found in the shoots (Moons et al. 1997).
Furthermore, osmotin is a member of pathogen-related
(PR) protein and known to be involved in plant defense
responses. It has been reported that genes encoding
osmotin-like proteins were induced by abiotic stresses
including ABA and NaCl in potato (Zhu et al. 1995).
Several stresses such as UV-irradiation and heavy metal
also induced osmotin-like protein in rice (Rakwal et al.
1999). In YK1 line, a clear appearance of osr40c1 and
osmotin-like protein though neither the salt nor the
osmotic pressure were enforced was confirmed.

As a conclusion, our present results suggested that
ectopic over-expression of a single gene (YK1) in rice
cells might affect the expression of unrelated proteins
and metabolites. This evidence may be important to
extend our knowledge to the genetic engineering of
plants with a novel foreign gene transfer.
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