
The Calvin cycle is the primary pathway for carbon
fixation and this cycle has 13 reaction steps catalyzed by
11 enzymes in the chloroplasts of C3 plants. It is
considered to have three stages, the first of these being
carboxylation of the CO2 accepter molecule, ribulose-
1,5-bisphosphate (RuBP), by the enzyme ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco), resulting
in the formation of 3-phosphoglycerate (PGA). The
second stage is the reduction phase, which produces the
triose phosphate by consuming ATP and NADPH. The
final stage of the cycle is the regenerative phase, in
which triose phosphates are used to produce RuBP. In the
cycle, the triose phosphates are key intermediates, and
they are also available for allocation to either the starch
or sucrose biosynthetic pathway (Woodrow and Berry
1988; Geiger and Servaites 1994; Quick and Neuhaus
1997). It is extremely important to maintain a balance
between export and regeneration in order that the cycle
does not become depleted of intermediates. To achieve
this balance, the catalytic activities of certain enzymes
within the cycle are highly regulated (Fridlyand et al.
1999; Raines et al. 1999). In particular, the activities 
of certain enzymes, including sedoheptulose-
1,7-bisphosphatase (SBPase) and fructose-1,6-
bisphosphatase (FBPase), are regulated by the redox
potential via the ferredoxin/thioredoxin system, which
modulates the enzyme activities in response to light/dark

conditions (Scheibe 1990; Buchanan 1991). The product
of the reaction catalyzed by FBPase, i.e. fructose 6-
phosophate, is the branch point for metabolites leaving
the Calvin cycle and moving into starch biosynthesis.
Generally, the flux-limiting step is the first step of a
pathway branching from another pathway or the virtually
irreversible step with a large free-energy change. The
levels of FBPase and SBPase in the chloroplasts are
extremely low compared to those of the other enzymes in
the Calvin cycle (Woodrow and Mott 1993). In addition,
study of the computer simulation of the Calvin cycle
reactions indicated that the flux control coefficient (CJ

E)
of SBPase was high compared with those of other
enzymes in the Calvin cycle (Poolman et al. 2001). From
these facts, it seems likely that FBPase and SBPase in
the Calvin cycle are important strategic positions to
determine the partitioning of carbon to end products.

Antisense inhibition of endogenous Calvin
cycle genes

In order to determine the limiting steps of the Calvin
cycle and factors that influence the carbon allocation, 
a considerable number of studies have been undertaken
on the regulation of carbohydrate metabolism in 
the photosynthetic CO2 fixation in plant leaves 
(Table 1). Transgenic plants with reduced levels of
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
phosphoribulokinase (PRK), Rubisco and aldolase
showed little effects on photosynthesis (Price et al. 1995;
Paul et al. 1995; Hudson et al. 1992; Haake et al. 1998).
These data indicated that a number of enzymes involved
in the Calvin cycle are present at protein levels well in
excess of that required to sustain a continued rate of CO2

fixation.
In contrast, especially in the antisense plants of

chloroplastic FBPase or SBPase, the rate of
photosynthesis was significantly diminished in
proportion to the decrease in the respective enzyme
activity due to the decrease in the RuBP regeneration
capacity in the Calvin cycle. Antisense potato plants that
displayed 36% of the wild-type level of FBPase activity
showed photosynthetic activity similar to the wild-type
plants, whereas the photosynthesis and growth rate were
drastically inhibited when the FBPase activity was
decreased to below 14% of the wild-type level
(Koßmann et al. 1994). The antisense inhibition of
SBPase activity had a stronger effect on photosynthesis
(Harrison et al. 1998, 2001; Ölçer et al. 2001). In the
SBPase antisense plants that retained 71% of the wild-
type level of SBPase activity, the light-saturated
photosynthetic activity was reduced by 36%. These
reports indicate that the photosynthesis, carbon
partitioning, carbon flow of the Calvin cycle and plant
growth are remarkably sensitive to small decreases of
SBPase activity.

Transgenic tobacco plants expressing
FBPase and/or SBPase in chloroplasts

To clarify the contribution of the levels of FBPase and/or

SBPase to the photosynthesis rate and the carbon flow in
source and sink organs, we generated transgenic tobacco
plants with enhanced activities of FBPase and/or SBPase
in the chloroplasts.

We have previously isolated and characterized 
two FBPase isozymes, designated fructose-1,6-
/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) and
FBPase-II from cyanobacterium Synechococcus
PCC7942 (S. 7942). FBP/SBPase can hydrolyze both
FBP and SBP with almost equal specific activities
(Tamoi et al. 1996, 1998). The deduced amino acid
sequence of the FBPase-II gene has been found to be
considerably similar to those of the cytosolic and
chloroplastic forms from eukaryotic cells. The enzymatic
properties of FBPase-II were more similar to those of
chloroplastic FBPase than to the cytosolic form of
FBPase in higher plants; AMP and fructose 2,6-
bisphosphate had no effect on the FBPase-II activity.
Furthermore, we have also isolated and characterized
SBPase from halotolerant Chlamydomonas W80 (Tamoi
et al. 2001).

We generated transgenic tobacco plants expressing
cyanobacterial FBP/SBPase (TpFS), FBPase-II (TpF), 
or Chlamydomonas SBPase (TpS) in chloroplasts
(Miyagawa et al. 2001; Tamoi et al. unpublished data). In
TpFS-6 and TpFS-3, the total FBPase and SBPase
activities derived from endogenoues plastidic enzymes
and cyanobacterial FBP/SBPase was 1.7�0.1- and
2.3�0.4-fold higher than those in the wild-type plants,
respectively. TpF-9 and TpF-11 showed 1.7- or 2.3-fold
higher FBPase activities compared with those in the
wild-type plants, respectively. In TpS-2, TpS-11 and
TpS-10, SBPase activity was 1.3-, 1.6- and 4.3-fold
higher than that in the wild-type plants.
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Table 1. Transgenic plants with altered enzyme activities involved in the photosynthetic carbon
metabolism

Enzyme
Host plant Activity

Primary references
(localization) (% of WT)

Antisense
GAPDH tobacco (Chl) 100–36 Price et al. 1995
PRK tobacco (Chl) 95–5 Paul et al. 1995
Rubisco tobacco (Chl) 76–41 Hudson et al. 1992
FBPase potato (Chl) 36–14 Koßmann et al. 1994
SBPase tobacco (Chl) 71–15 Harrison et al. 1998
aldolase potato (Pt) 65–22 Haake et al. 1998
transketolase tobacco (Pt) 60–40 Hankes et al. 2001
FBPase potato (Cyt) 55–9 Zrenner et al. 1996

Sense
FBP/SBPase tobacco (Chl) 170–230 Miyagawa et al. 2001
SBPase tobacco (Chl) 130–160 Lefebvre et al. 2005
FBPase potato (Cyt) 1000–2000 Thorbjornsen et al. 2002
invertase tobacco (Cyt, Apo, Vac) Bussis et al. 1997
SPS tomato (Cyt) 200–300 Galtier et al. 1993
hexokinase tomato (Cyt) 600–700 Dai et al. 1999
AGPase (mutant) potato (Pt) Stark et al. 1992

rice (Es) 270 Smidansky et al. 2003

Chl, chloroplast; Pt, plastid; Cyt, cytosol; Apo, apoplast;Vac, vacuole; Es, endosperm



The transgenic plants having more than 2.3-fold
higher FBPase activity and/or 1.6-fold SBPase activity
(TpFS-6, TpFS-3, TpF-11, TpS-11, and TpS-10) showed
significantly larger body sizes (height and dry weight)
and faster growth rates compared with wild-type plants
grown hydroponically under atmospheric conditions 
(360 ppm CO2, 400 mmol photons m�2 s�1). Similar
differences were also observed between transgenic plants
and wild-type plants that were cultivated in soil. It is
worth noting that the leaf size, stem thickness and root
size of transformants were larger than those of the wild-
type plants. In particular, the fresh weight of roots in the
transformants was approximately 3-fold larger that that
in wild-type plants. However, thickening of the leaf, size
of cell, and structural changes of the chloroplast in 
the transgenic plants were not observed by either
photomicroscopy or electron microscopy, respectively.
These data indicated that the increased plant size (leaf
area and root number) resulted from increased cell
number of the transformants.

These transformants showed enhanced
phothosynthetic activity (1.20- and 1.24-fold) under
saturated light conditions. The in vivo activation state of
Rubisco in the transformants was approximately 1.1–1.2-
fold higher than that in wild-type plants. However, there
were no differences in the total activities of Rubisco
between wild-type and transgenic plants. The content of
RuBP in transformants was 1.4–1.8-fold larger than that
in the wild-type plants, respectively. These findings
clearly indicated that the enhancement of either more
than a 2.3-fold increase of FBPase and 1.6-fold increase
of SBPase in the chloroplasts had a marked positive
effect on the process of RuBP regeneration, resulting in
an enhancement of the level of RuBP, an increase in the
initial activity of Rubisco and thus an increase of the
photosynthetic rate in the chloroplasts of the transgenic
plants. On the other hand, no differences were observed

in the photosynthetic activities among TpF-9, TpS-2 and
wild-type plants. Enhancement of the 1.7-fold FBPase
activity or 1.3-fold SBPase activity has no effect on
RuBP regeneration and thus on the photosynthetic
activity. In these transformants, the carbon flow of the
Calvin cycle may be controlled by another limiting
factor.

The data from metabolite analysis of transformants
suggests that an increase in the chloroplastic FBPase or
SBPase level correlates with an increase of the RuBP
level through the regeneration of RuBP, and thus affects
the photosynthetic capacity and the growth in transgenic
plants, while a slight increase in the FBPase activity
seems to contribute to starch synthesis rather than to
RuBP regeneration in chloroplasts (Figure 1).

Raines (2003) and Lefebvre et al. (2005) have 
reported that in the Arabidopsis SBPase overexpressing
tobacco plants with 10–65% increased activity, the
photosynthetic rate in the young expanding leaves was
12% higher than that in the equivalent leaves on the
wild-type plants, and shoot biomass was increased by
40% compared with the wild-type. Judging from our
data, together with the findings reported so far, it seems
likely that in the chloroplasts of higher plants, SBPase is
the most important factor for RuBP regeneration in the
Calvin cycle and the level of chloroplastic FBPase
strictly controls the regeneration of RuBP in the Calvin
cycle and the starch synthesis.

Effect of overexpression of cytosolic
FBPase on photosynthetic carbon
metabolisms

In order to clarify the effect of increased cytosolic
FBPase activity on photosynthetic carbon metabolism,
we have generated transgenic plants expressing
cyanobacterial FBP/SBPase driven by the CaMV35S
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Figure 1. Carbon metabolism of source and sink organs in the wild-type and transgenic tobacco plants. The gray arrows indicated carbon flow
enhanced by the introductions of FBPase-II, SBPase, and FBP/SBPase in the chloroplast.



promoter. Increased FBPase activity in the cytosol led to
an increase in the levels of sucrose in the leaves, stems
and roots during the light period, whereas the levels of
starch were decreased in the leaves of transgenic plants.
These effects were correlated with the increased levels of
FBPase in cytosol. Consequently, the transgenic plants
showed high sucrose/starch ratios compared to the wild-
type plants. However, there were no differences in plant
growth, dry weight and photosynthetic activity between
the transgenic and wild-type plants. These results
indicated that the FBPase in cytosol has a large degree
on the sucrose biosynthesis pathway in higher plants.
The key regulatory steps of sucrose biosynthesis are
thought to be the interconversion of fructose 1,6-
bisphosphate (FBP) and fructose 6-phosphtate (F6P) and
the formation of sucrose-6-phosphate from UDP-glucose
and F6P (Daie 1993; Huber et al. 1985; Stitt and Quick
1989). It has been reported that the overexpression of
sucrose-phosphate synthase (SPS), which catalyzes 
the formation of sucrose-6-phosphate, caused an
accumulation of sucrose and a decrease in the starch
content in leaves. The overexpression of SPS in tomatoes
resulted in 2- to 3-fold higher levels of sucrose in the
leaves and a decrease in the starch content (Galtier et al.
1993, 1995). Similar studies with Arabidopsis plants
showed that increasing SPS activity changes the ratio of
sucrose/starch in leaves and prevents starch accumulation
in leaves that had been grown with CO2 enrichment (700
ppm) throughout their lives (Signora et al. 1998).

The impact of reduced cytosolic FBPase activity has
been studied in transgenic potato plants, which showed
starch accumulation in leaves during the day (Zrennner 
et al. 1996). A decreased expression of cytosolic 
FBPase in Arabidopsis plants led to the accumulation 
of phosphorylated intermediates, Pi-limitation of
photosynthesis and higher rates of starch synthesis
(Strand et al. 2000). From these facts, including those of
our study, it is conceivable that the flux direction of
carbon partitioning away from starch accumulation
towards sucrose is strongly regulated by the capacity of
sucrose biosynthesis in the cytosol.

Future directions

The data reported here, together with the findings
reported so far, suggest that the increase in respective
enzyme levels involved in the Calvin cycle and sucrose
biosynthetic pathway correlates with photosynthetic
capacity and carbon partitioning of source and sink
organs in higher plants. It is still unclear how the balance
of intermediate contents of carbon metabolisms
including the Calvin cycle is regulated in higher plants.
In order to answer this question, we have generated the
transgenic plants with significantly increased levels of
FBPase and SBPase in the Calvin cycle by a chloroplast

transformation technique. The transplastomic tobacco
plants with 20–30-fold higher FBPase and SBPase
activities in the chloroplasts showed enhanced
photosynthetic capacity and growth compared with the
wild-type (unpublished data). Now we are trying to
analyze the metabolic profiling of transgenic tobacco
plants having significantly enhanced activities of
enzymes involved in the Calvin cycle to discuss the
regulation of carbon flux among various metabolic
pathways, including the Calvin cycle.

The transgenic plants with improved photosynthetic
capacity and growth seem to be controlled by various
enzymes and metabolites involved in carbon metabolism.
Accordingly, in order to identify the kinds of genes 
that participate in increased Rubisco activation,
photosynthesis and growth of the transgenic plants, 
we generated FBP/SBPase-introduced transgenic
Arabidopsis, in which the complete genome sequence
has been analyzed and the microarray technology has
been established. We have found that FBP/SBPase-
introduced Arabidopsis plants showed enhanced
photosynthesis and growth, in agreement with those of
transgenic tobacco plants. Now, we are analyzing the
upregulated and downregulated genes in the transgenic
plants by comprehensive analysis of transcriptional
levels by DNA microarray analysis.

In the near future, we may be faced with a food
shortage as a result of the explosive increase in world
population and environmental deterioration. The findings
reported here suggest that it may be possible to use a
cyanobacterial gene to manipulate photosynthetic carbon
metabolism and improve the crop yield of various plant
species. Plant productivity is also limited by various
environmental stresses. Much of the injury to plants
imposed by environmental stresses is associated with
oxidative damage at the cellular level, including lipid
hydroperoxidation leading to membrane damage and
DNA damage (Shigeoka et al. 2002). Recently, we have
generated the transgenic plants expressing the
antioxidative enzymes, such as catalase, ascorbate
peroxidase or glutathione peroxidase (Miyagawa et al.
2000; Yabuta et al. 2002; Yoshimura et al. 2004). These
transgenic plants have an increased tolerance to
photooxidative stress imposed by various types of
environmental stress. Accordingly, it seems likely that
attempting multigene transfer for the simultaneous
increase in several components involved in the Calvin
cycle and the active oxygen species-scavenging systems
seems to be necessary to obtain a substantial increase in
plant productivity.
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