
Alkaloids are low-molecular-weight nitrogen-containing
basic compounds. Currently more than 12,000 chemical
structures of alkaloids are known and constitute the
second most diversified compound family in plants, only
exceeded by terpenoids (Croteau et al. 2000). Many
alkaloids act on animal nervous systems, and are used in
prescriptions of modern medicine and as ingredients of
eastern folk medicine Kampo. We here review nicotine
biosynthesis and its molecular regulation.

Putrescine, a symmetrical diamine, is formed from
basic amino acids, ornithine and/or arginine, and is
metabolized to higher polyamines in all organisms 
and to particular alkaloids in restricted plant species
(Hashimoto and Yamada 1994). Putrescine is
metabolized to nicotine in tobacco and other Nicotiana
and related species, and to pharmacologically active
tropane alkaloids, such as hyoscyamine and
scopolamine, in some medical solanaceous plants
(Figure 1). Since nicotine and tropane alkaloids are
expected to share the same evolutionary origin during the
diversification of the Solanaceae, basic principles and
molecular components revealed in the nicotine regulation
may well be applied to tropane alkaloid biosynthesis.

Biosynthetic pathway and structural genes

Nicotine is composed of the pyrrolidine ring and the
pyridine ring. The pyrrolidine moiety is derived from N-
methylpyrrolinum cation, a spontaneous cyclization
product of the oxidative deamination reaction from N-
methylputrescine. Diamine oxidase (DAO) catalyzes the
deamination of N-methylputrescine, which is formed
from putrescine by putrescine N-methyltransferase
(PMT) (Hashimoto and Yamada 1994). The pyridine

moiety of nicotine is supplied from the NAD
biosynthesis pathway (Dawson et al. 1958; Dawson et al.
1956; Yang et al. 1956). Although labeled nicotinic acid
was incorporated into the pyridine ring of nicotine when
administered to tobacco (Leete 1983; Leete 1979; Leete
and Liu 1973), it is not known whether nicotinic acid
itself or a metabolite derived from it is the direct
precursor of nicotine.

The amino acid sequence of PMT is highly
homologous to the sequence of spermidine synthase
(SPDS), which transfers the amino-propyl moiety of
decarboxylated S-adenosylmethionine (dSAM) to
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Minireview

Figure 1. Biosynthetic pathway of nicotine. Nicotine is synthesized
by condensation of an intermediate in the NAD salvage pathway and
the methylpyrrolinium cation derived from ornithine via putrescine.
This cation is also used for biosynthesis of tropane alkaloids, such as
hyoscyamine and scopolamine. Enzymes involved in nicotine synthesis
are indicated: ODC; ornithine decarboxylase, PMT; putrescine N-
methyltransferase, DAO; diamine oxidase, AO; aspartate oxidase, QS;
quinolinate synthase, and QPT; quinolinate phospho-ribosyltransferase.
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putrescine (Hibi et al. 1994). PMT catalyzes a transfer of
the methyl moiety of S-adenosylmethionine (SAM) to
putrescine. It is proposed that PMT evolved from SPDS
after restricted alterations of critical dSAM binding
amino acid residues (Hashimoto et al. 1998b). Although
tobacco PMT differs from SPDS by the addition of
tandem repeats of eleven amino acid residues at the N-
terminus, the repeat element is not required for the
enzymatic activity. Five PMT genes of tobacco possess
variable repeat numbers, whereas the tandem repeats are
absent in PMTs from Solanaceae plants producing
tropane alkaloids (Hashimoto et al. 1998a).

Tobacco DAO may have been evolved from a DAO
widespread in nature by optimization of substrate
specificity. The DAOs involved in nicotine and tropane
alkaloid biosynthesis have higher affinity for N-
methylputrescine than for putresine and other
symmetrical diamines (Haslam and Young 1992;
Hashimoto et al. 1990; Walton and McLauchlan 1990).
In contrast, pea and pig DAOs bind N-methylputrescine
with low affinity.

Site of nicotine formation and transport
PMT and A622 oxidoreductase genes are specifically
expressed in the root of tobacco plants (Hibi et al. 1994).
The A622 gene is coordinately regulated with the PMT
gene, and thus is postulated to encode an enzyme in
nicotine pathway. Analysis by immunohistochemistry
and promoter::GUS fusion reporters showed that both
enzymes are localized in the same cell types in the root
(Shoji et al. 2000; Shoji et al. 2002). High expression
was observed at epidermis and cortex cells in the root
tips, whereas in the differentiated region of the root, the
outermost layer of the cortex and parenchyma cells
surrounding xylem in vascular bundle were stained.

The cortex cells of the root tip have not differentiated
the Casparian band and the apoplastic flow of
metabolites from the cortex to the stele is presumably 
not restricted. Nicotine transported to the xylem is
subsequently translocated to the aerial parts. In the root
differentiation zone, the suberin layer in the Casparian
band prevents free apoplastic flow. In this region,
nicotine synthesis in the parenchyma cells surrounding
the xylem may facilitate nicotine loading into the xylem
for translocation.

Nicotine translocated to the leaf and other aerial
tissues finally accumulates in the vacuole. It is not known
whether a specific transporter is required to unload
nicotine from the xylem and take it up to the vacuole
from the cytoplasm. Nicotine might pass through
tonoplast membrane spontaneously and might be trapped
inside the vacuole after forming ion-pairs with organic
acids.

Transcriptional control

Some plant alkaloids can function as direct chemical
defenses against herbivores. Tobacco plants that have
much reduced nicotine contents, either by the nic
mutations or by transgenic suppression of the PMT
genes, are much more susceptible to insect herbivory
than control plants with wild-type nicotine contents
(Steppuhn et al. 2004; Legg et al. 1970). Herbivore
damage induces jasmonic acid formation and activates
wound signaling pathway (Halitschke and Baldwin
2003.). The CORONATINE INSENSITIVE 1 (COI1) gene
was initially identified in a genetic screen of Arabidopsis
jasmonate-insensitive mutants (Devoto et al. 2005), and
is now believed to play a central role in jasmonate
signaling in other plant species, including tobacco (Liu
et al. 2004). Wound signal generated in the leaf spreads
systematically and also travels down to the root where
root-specific genes, such as those involved in nicotine
accumulation, are activated. The signal that transmits
from the leaf to the root is not established but may be
jasmonic acid itself (Li et al. 2002). PMT and other
genes involved in nicotine formation show basal low
expression in the root of undamaged tobacco plants, but
wounding and jasmonate treatment to the leaf increase
the gene expression levels 3–4 folds (Shoji et al. 2000;
Sinclair et al. 2000). Functional analysis of the tobacco
PMT promoter revealed that jasmonate-induced
expression requires G-box and GCC-motif elements in
the proximal region of the PMT promoter, which are
often found in jasmonate-responsive promoters (Oki and
Hashimoto 2004; Xu and Timko 2004). Ethylene
supplied simultaneously with jasmonic acid effectively
abrogated jasmonate activation of the PMT and A622
promoters. In nicotine biosynthesis, ethylene signals can
antagonize jasmonate signals.

Genetic loci affecting nicotine contents have been
utilized to reduce nicotine contents in the present
tobacco varieties. The original mutant was discovered in
a Cuban cigar variety in the early 1930s in Germany and
the low-nicotine genes were subsequently incorporated
into cigarette varieties through a series of backcrosses to
meet the expected demand for low-nicotine cigarettes in
the United States (Valleau 1949). Thorough genetic
studies demonstrated that the low-nicotine phenotype is
caused by synergistic effects of two non-linked loci,
which we named nic1 and nic2. The nic1nic2 double
mutant has highly reduced nicotine content (about 5% of
wild type) but is otherwise not different from parental
lines. Molecular studies revealed that expression levels
of nicotine-biosynthetic genes are remarkably decreased
in the mutant roots (Hibi et al. 1994; Cane et al. 
2005), and PMT and A622 oxidoreductase promoters 
are specifically down-regulated in the nic mutant
background (Shoji et al., unpublished). Thus, NIC loci
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specifically regulate expression of nicotine-biosynthetic
genes.

We generated partially normalized complementary
DNA (cDNA) libraries from a diploid tobacco N.
sylvestris, and prepared cDNA micro-array sets for
comparative transcriptome analysis between wild-type
tobacco and the nic mutants (Katoh et al. 2003).
Extensive micro-array analysis (Katoh et al.,
unpublished) as well as careful differential display
analysis (Inai et al., unpublished) showed that although
wounding and jasmonic acid induce hundreds of tobacco
genes, including PROTEINASE INHIBITOR-II (PI-II;
Choi et al. 2000), only about a dozen of the wound- 
and jasmonate-inducible genes are controlled by NIC
regulatory loci. Two simple regulatory models are
possible. In one model, the general jasmonate signaling
pathway branches off, possibly at or after the tobacco
COI1, to a nicotine-specific pathway, in which NIC
genes function (Figure 2). Alternatively, the jasmonate
signaling pathway and the independent NIC signaling
pathway converge at the nicotine biosynthetic genes, and
simultaneous signaling inputs from the two pathways are
required to activate target nicotine genes, possibly by
activating specific transcriptional factors. To distinguish
these two models, we need to molecularly clone the NIC
genes and to study the biochemical functions of NIC
proteins.

Metabolic engineering of nicotine
biosynthesis

Previously, overexpression of yeast ornithine
decarboxylase gene was shown to moderately increase

leaf nicotine levels in tobacco (Hamill et al. 1990). We
overexpressed PMT under the control of constitutive
CaMV35S promoter in tobacco plants. The transgenic
tobacco lines accumulated N-methyl putrescine, the
direct product of the PMT reaction, in whole plants,
whereas accumulation of nicotine increased by 40%
compared to wild-type plants (Sato et al. 2001). This
moderate increase of the final metabolite indicates that
overexpression of one enzyme in the pathway made
subsequent reactions more rate-limiting. To achieve
further increase of nicotine accumulation, multiple steps
in the pathway should be fortified.

A co-suppression line, in which PMT expression 
level was decreased to 16% of the wild-type level,
accumulated nicotine at the level only 2% of wild type.
The low-nicotine line accumulated high amounts of
putrescine and spermidine, indicating that the efficient
inhibition of PMT activity shifted the nitrogen flow 
from nicotine synthesis to polyamine formation. The 
co-suppression line also showed several distinct
morphological phenotypes: neighboring leaves were
fused at their bases, forming a continuous spiral sheet
along the stem, inflorescent stems often were branched,
and self-pollinated flower produced only a small seed set
(less than 10% of wild type). These abnormalities may
be caused by increased accumulation of polyamines,
which possess hormonal functions for plant development
(Galston and Kaur-Sawhney 1995).

Conclusion

Biosynthesis of many alkaloids may have evolved as
chemical defense systems against insect pest, and is
often induced or further activated after insect hervibory
by signal transduction pathways involving jasmonic acid.
It is interesting to know how distinct regulation of genus-
specific alkaloid metabolism has evolved from general
jasmonate signaling pathways. The nic regulatory
mutants of nicotine biosynthesis should be important as a
model system to study evolution of regulatory aspects of
secondary products. Molecular studies of NIC genes may
reveal specificity and generality of alkaloid regulation.
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hervibory and wounding on the leaf generate systemic signal(s) that
moves to the root where it activates a signaling cascade of jsamonic
acid (JA). The JA pathway induces expression of general defense
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of enzyme genes for nicotine biosynthesis and putative nicotine
transporters, which requires the regulatory locus NIC. Nicotine
produced in the root is transported to the aerial parts where it functions
as a chemical defense compound against insects.
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