
With their sessile nature, plants must be well-adapted to
the environment to survive and to have progeny at the
place where each plant has initially developed from a
seed. Accordingly, both the primary condition of the
place where a plant has germinated and fluctuation 
in a variety of environmental factors, including light
intensity, temperature, nutrition and pathogen infection
seriously influence the growth and development of 
the plant. Indeed, environmental fluctuations function 
as signals and trigger numerous cellular responses,
including modification of gene expression patterns and
metabolic regulation, leading to acclimatization of plants
to a new condition and modulation of growth speed
(Casal et al. 2003; Forde 2002; Iba 2002; Paul and Pellny
2003; Simpson and Dean 2002; Stitt et al. 2002;
Thomashow 1999; Wang et al. 2003). Because some
environmental signals promote growth of plants, whereas
others repress it, plant growth must be determined on the
basis of the sum total of positive and negative regulation
by various environmental signals. Furthermore, because
the life cycle of each plant is fundamentally based 
on its internal developmental program in which
phytohormones play key roles (Bleecker and Kende
2000; Fleet and Sun 2005; Heyl and Schmülling 2003;
Johnson and Ecker 1998; Nemhauser and Chory 2004;
Woodward and Bartel 2005) and because some
environmental signals are mediated by phytohormones
(De Smet et al. 2003; Friml et al. 2002; Harper et al.
2000; Sakakibara 2003; Signora et al. 2001; Tatematsu et
al. 2004; Xiong and Zhu 2003; Zhu 2002), the system

governing growth and development must also involve 
the machinery for integration of hormone and other
signaling.

In past studies, it had been predicted that
environmental signals and phytohormones function
cooperatively, synergistically or antagonistically with one
another, on the basis of observations of physiological
responses of cells or of whole plant bodies (Addicott 
and Lyon 1969; Bao et al. 2004; Chory et al. 1994;
Lieberman 1979; Murashige and Skoog 1962; Sachs and
Thimann 1967). Precise evaluation of the intimate links
between certain signaling pathways has also been carried
out in molecular biological studies and studies using
mutant plants (Casal 2002; Gazzarrini and McCourt
2001; Gazzarrini and McCourt 2003; Kunkel and Brooks
2002; Léon and Sheen 2003; Nemhauser and Chory
2004; Swarup et al. 2002). Despite the many past reports
mentioning the presence of crosstalk between signaling
pathways, only recently the mechanisms for crosstalk
have been demonstrated. For example, a red light
receptor, phytochrome B, has been found to directly
interact with ARR4 protein, a component of the
cytokinin signaling system in Arabidopsis (Brandstatter
and Kieber 1998; Hwang and Sheen 2001; Sweere et al.
2001; To et al. 2004). Binding of ARR4 to phytochrome
B led to stabilization of the active form of phytochrome
B, offering the molecular basis of crosstalk between light
and cytokinin signaling for development (e.g. Chory et
al. 1994; Kusnetsov et al. 1999; Miller 1956; Sano and
Youssefian 1994). The mechanism for the cooperative
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action of two phytohormones, auxin and gibberellin, in
promoting root growth has also been shown (Fu and
Harberd 2003). Auxin transported from shoot to root
promoted the degradation of DELLA proteins, negative
regulators in the gibberellin signaling pathway,
enhancing responses to gibberellin. Although only a
limited number of studies to date have showed molecular
mechanisms for crosstalk between signaling pathways,
and each report has highlighted only pieces of the whole
system regulating plant growth (Cólon-Carmona et al.
2000; Hass et al. 2004; Li et al. 2004; Moore et al. 
2003; Spoel et al. 2003; Yanagisawa et al. 2003), it 
has become evident that the machinery integrating
signaling pathways is critical in controlling growth and
development in plants.

We introduce herein the molecular mechanisms for
crosstalk between ethylene and other signaling. Because
ethylene biosynthesis is activated by wounding, pathogen
infection, winds and other stress signals (Yang and
Hoffman 1984), ethylene is regarded as a stress hormone
in plants. The interaction between ethylene signaling and
sugar, light or auxin signaling provides us with an
opportunity to realize that plant growth is strictly
regulated under the operation of a highly sophisticated
system.

Mechanism connecting ethylene and
glucose signaling

Because both the ethylene signaling and glucose
signaling pathways are complex due to many
components involved, we will at first summarize the
pathways in brief and then describe the mechanism for
crosstalk between these pathways.

Ethylene signaling pathway
Gaseous hormone ethylene plays a variety of roles in
plant growth and development, acting in stress response,
in fruit ripening and in senescence as well as in seedling
development (Lieberman 1979; Pratt and Goeschl 1969).
Several components of the ethylene signaling pathway
have been identified by molecular genetics approaches
with Arabidopsis. A model for the ethylene signaling
pathway, which is currently accepted in general, has been
well-documented in Wang et al. (2002). In this model,
ethylene is perceived by a family of ethylene receptors,
ETR1/2, EIN4 and ERS1/2, which negatively regulate 
a Raf-like protein kinase, CTR1. CTR1 negatively
regulates the action of a key transcription factor,
ETHYLENE INSENSITIVE3 (EIN3) and its related
proteins (EILs), which directly activate a part of
ethylene-responsive gene expression. EIN3 and EILs
also appear to directly activate expression of a
downstream transcription factor, ERF1, because EIN3
binds the promoter of the ERF1 gene (Solano et al.

1998). ERF1 binds to a cis-element called GCC-box and
activates transcription from several ethylene-responsive
gene promoters (Solano et al. 1998). Despite many
intensive studies, the pathway between CTR1 and EIN3
is largely unknown (Ecker 2004; Guo and Ecker 2004).

Glucose signaling pathway
Sugar is a carbon and energy source in all living
organisms. In plants, sugar is synthesized endogenously
by photosynthesis in source organs (mature leaves) and
transported to sink organs. It is known that sugar acts 
as a signaling molecule in plants as well as in yeast, 
and in mammals (Rolland et al. 2002). In general, sugar
reduces source function and elevates sink function. The
role of glucose as a signaling molecule is separable 
from its role as metabolizable carbon source because
nonmetabolizable glucose analogs as well as glucose 
can also trigger the suppression of expression of
photosynthetic genes (Jang and Sheen 1994). Using
Arabidopsis mutants, a key component in glucose
signaling has been identified. A highly concentrated
glucose causes inhibition of seedling development in
wild-type Arabidopsis. However, an Arabidopsis line
having a mutation in a hexokinase gene, AtHXK1/GIN2,
did not showed glucose-induced arrest of seedling
development, suggesting that the gin2 mutant is
hyposensitive to glucose. Based on this result and further
characterization of AtHXK1, AtHXK1 is proposed to be
a glucose sensor responsible for glucose signaling in
Arabidopsis (Jang et al. 1997; Moore et al. 2003). The
HXK-dependent glucose signaling pathway appears to be
a major route for sugar-signaling, but other routes have
also been suggested (Gibson 2000; Gibson 2005; Sheen
et al. 1999; Smeekens 2000).

Crosstalk between sugar and hormone signaling
The crosstalk between sugar and hormone signaling has
been suggested based on the use of Arabidopsis mutants.
Because the mutations in abscisic acid (ABA)
biosynthesis or signaling genes caused defects in glucose
response, the ABA pathway could be an important
constituent of glucose signaling (Léon and Sheen 2003).
In addition, another phytohormone, ethylene, has also
been implicated in glucose signaling (Gazzarrini and
McCourt 2001; Gibson et al. 2001; Léon and Sheen
2003; Zhou et al. 1998). The addition of ethylene
alleviated the glucose-induced inhibition of seedling
development. Ethylene-insensitive mutants showed a
more severe phenotype of glucose-induced growth arrest,
whereas a constitutive ethylene response mutant, ctr1,
and ethylene-overproducing mutants were insensitive 
to glucose. Conversely, glucose-insensitive mutants
exhibited in part, phenotypes similar to that of the ctr1
mutant, such as darker green leaves. Therefore, sugar
indicating the internal nutrition condition appears to
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cooperatively regulate growth and development together
with phytohormones.

Mechanism underlying crosstalk between
ethylene and glucose signaling
A clue to reveal the mechanism of crosstalk between
ethylene and glucose signaling was provided through
functional analysis of EIN3 with protoplasts (Yanagisawa
et al. 2003). The EIN3-dependent activation of
transcription was suppressed by application of glucose 
to protoplasts. Subsequently, it was shown that this
phenomenon reflected enhancement of EIN3 degradation
by glucose. In addition, co-expression of AtHXK1 led 
to suppression of the EIN3-dependent transcriptional
activation in the presence of a lower concentration of
glucose, while co-expression of yeast hexokinase did 
not, suggesting that the AtHXK1-dependent pathway is
involved in the regulation of EIN3 activity. Because
AtHXK1 but not yeast hexokinase was associated with
nuclei in plant cells and the AtHXK1 lacking its
enzymatic activity could also promote degradation of
EIN3, the glucose sensor activity but not metabolic
enzyme activity of AtHXK1 is essential in mediating
glucose signal into nuclei and triggering nuclear events
including the promotion of EIN3 degradation. On the
other hand, application of 1-aminocyclopropane-1-
carboxylic acid (ACC), a biosynthetic precursor of
ethylene, conferred an opposite effect, the stabilization
of EIN3 protein. These results suggested that glucose
and ethylene signaling differently regulate degradation 
of the EIN3 transcription factor, thereby producing
antagonistic effects (Figure 1; Yanagisawa et al. 2003).

The linkage between the accumulation of EIN3
protein and the sensitivities of plants to glucose and
ethylene was also investigated. The transgenic
Arabidopsis overexpressing EIN3 was hyposensitive to
glucose but hypersensitive to ethylene while the ein3
mutant was hypersensitive to glucose but insensitive 
to ethylene, indicating that the differential regulation 
of EIN3 stability by glucose and ethylene are
physiologically relevant in planta.

Ubiquitin-dependent degradation of EIN3
There are several systems for protein degradation in
eukaryotic cells. Because inhibitors of 26S proteasome
repressed the degradation of EIN3 protein both in vitro
and in planta, the 26S proteasome system was suggested
to have major responsibility for degradation of EIN3
protein (Yanagisawa et al. 2003).

In eukaryotic cells, 26S proteasome degrades
polyubiquitined proteins. Ubiquitin is covalently attached
to substrate protein by sequential reactions of E1
ubiquitin-activating enzyme, E2 ubiquitin-conjugating
enzyme and E3 ubiquitin ligase. E3 ubiquitin ligases,
which recognize substrate and recruit E2, are classified

into several types. SCF complex is a type of E3 and
consists of Skp1, CULLIN1, RING domain protein Rbx1
and an F-box protein. F-box protein determines the
substrate specificity of each SCF complex (Deshaies
1999; Hochstrasser 1996; Smalle and Vierstra 2004).
Arabidopsis is proposed to have approximately seven
hundred F-box proteins, based on Arabidopsis genome
data, and several Arabidopsis F-box proteins including
TIR1 and COI1 are known to be involved in
phytohormone signaling (Gagne et al. 2002; Smalle and
Vierstra 2004).

The implication that degradation of EIN3 might 
be mediated by 26S proteasome was verified by
identification of Arabidopsis F-box proteins that could
bind EIN3 (Gagne et al. 2004; Guo and Ecker 2003;
Potuschak et al. 2003). The two related F-box proteins,
EBF1 and EBF2, interacted with EIN3 and EIL1 through
their leucine-rich repeat domain and also associated 
with E3 components, CUL1 and ASK1 (an Arabidopsis
Skp1 homologue). In double mutants of the two F-box
genes, EIN3 protein accumulated at a high level that 
was comparable to that in the ctr1 mutant, and the 
double mutant showed constitutive ethylene-response
phenotype. On the other hand, overexpression of the F-
box proteins in transgenic Arabidopsis resulted in a
reduction in EIN3 protein level and these plants
exhibited ethylene-insensitive phenotype (Gagne et al.
2004; Guo and Ecker 2003; Potuschak et al. 2003). The
results indicated that these F-box proteins are involved in
the degradation of EIN3.

As summarized here, recent data suggest that binding
of ethylene to its receptors negatively regulates a Raf-
like kinase, CTR1, which positively regulates EBF-
mediated degradation of the EIN3 transcription factor
(Figure 1). The question remains, however, as to which
step in the degradation of EIN3 proteins is regulated by
ethylene. Similarly, how glucose signal regulates the
degradation of EIN3 has not yet been determined. It is
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Figure 1. Model for the regulation of EIN3 stability by glucose and
ethylene. The EIN3 protein is ubiquitinated by SCFEBF E3 ligase and
then degraded by 26S proteasome. Glucose signaling via HXK
promotes the degradation. In the absence of ethylene, CTR1 promotes
the degradation of EIN3. Ethylene gas is perceived by a family of
ethylene receptors (ETR1/2, EIN4 and ERS1/2), which negatively
regulate CTR1 activity.



even unknown whether ethylene and glucose signaling
regulate the same step in EIN3 degradation. There are
several possible processes that the signaling pathways
could regulate, as it is already known that modification
of target proteins for the recognition by SCF complex
(Deshaies 1999), enhancement of SCF assembly (Li and
Johnston 1997; Tao et al. 2005) and modulation of 
E3 activity through neddylation/deneddylation of the
CULLIN subunit (Serino and Deng 2003; Wee et al.
2005; Wei and Deng 2003) are involved in the regulation
in some 26S proteasome-mediated protein degradation.
In addition, it has recently been reported that auxin
enhances the interaction between an F-box protein,
TIR1, and its substrate, IAA7, probably by direct binding
of auxin to TIR1 (Dharmasiri et al. 2005; Kepinski and
Leyser 2005), suggesting that small signaling molecules
could directly modulate the association of F-box protein
with substrate protein. The question as to which 
process glucose and ethylene signaling regulate in the
degradation of EIN3 will be answered by future analyses.
The structural similarity between EBFs and Grr1, a yeast
F-box protein involved in yeast glucose signaling (Xiao
and Jang 2000; Potuschak et al. 2003; Gagne et al. 
2004) might provide a cue because glucose promoted
association of Skp1 and Grr1 in vivo (Li and Johnston
1997).

Mechanism of crosstalk among ethylene,
auxin and light signaling

Roles of ethylene, auxin and light in apical hook
maintenance
Dark-grown seedlings form an apical hook, a bending of
hypocotyls below the cotyledons (see Figure 2). This
structure protects the apical meristem of seedlings during
their penetration through the soil. Differential cell
growth on the inner and outer sides of the hook region is
responsible for the hook maintenance (Silk and Erickson
1978). Two phytohormones, ethylene and auxin are 
likely implicated in this process, because application 
of ethylene to dark-grown seedling exaggerates the
curvature of the apical hook (Figure 2; Guzmán and
Ecker 1990) and disturbance of auxin polar transport or
over-accumulation of auxin in the seedling abolishes 
the apical hook structure (Boerjan et al. 1995; King 
et al. 1995; Lehman et al. 1996; Zhao et al. 2001).
Furthermore, when dark-grown seedlings are exposed to
light, the apical hook opens. Therefore, apical hook
maintenance is differently regulated by distinct signaling
pathways mediating ethylene, auxin or light.

HOOKLESS1 regulation of ARF2
HOOKLESS1 (HLS1) is a protein required for apical
hook maintenance because hls1 mutants do not form an
apical hook in the dark (Guzmán and Ecker 1990;

Lehman et al. 1996). Several observations have
suggested that HLS1 might be a key component of
crosstalk between ethylene and auxin signaling: (1) hls1
mutants are insensitive to ethylene with regard to apical
hook maintenance; (2) the steady-state level of HLS1
transcript increased upon ethylene treatment; (3) the
expression of primary auxin-responsive genes was
altered in the hls1 mutants (Lehman et al. 1996; Figure
3).

Recently, two suppressor loci of the hls1 mutation
(hss) have been identified by genetic screening (Li et al.
2004). One of them, HSS1, encodes ARF2, which is a
member of the auxin response factor family (ARFs). It is
known that ARFs bind auxin-response elements found 
in the promoters of primary auxin-response genes
(Ulmasov et al. 1999a) and that ARF2 and its closely
related protein, ARF1, act as repressors of auxin-
dependent transcription when they were transiently
expressed in carrot protoplasts (Tiwari et al. 2003;
Ulmasov et al. 1999b). In arf2 mutants, the expression of
auxin-responsive DR5-GUS reporter gene in the apical
hook region was stronger than that in wild-type
Arabidopsis when they were grown in the presence of
ACC in the dark (Li et al. 2004). In addition, the arf1
arf2 double mutants exhibited exaggerated apical hooks,
similar to the Arabidopsis plants overexpressing HLS1
(Li et al. 2004). These finding suggested that ARF2,
along with ARF1, is a repressor of auxin action in apical
hook maintenance (Li et al. 2004; Figure 3).

The level of ARF2 protein was higher in the hls1
mutant, but lower in the Arabidopsis overexpressing
HLS1, as compared with the level in wild-type
Arabidopsis. In contrast, the level and distribution of the
ARF2 transcript were similar in the hls1 mutant and in
wild-type Arabidopsis, indicating that HLS1 negatively
regulates accumulation of the ARF2 protein. As ethylene
elevated the levels of HLS1 transcript and the
corresponding protein, it decreased the amount of 
ARF2. Since application of 26S proteasome inhibitor

404 Signaling crosstalk between ethylene and other molecules

Figure 2. Apical hook of dark-grown Arabidopsis seedling. Dark-
grown seedlings form an apical hook. ACC, a precursor of ethylene,
treatment results in exaggerated curvature of the apical hook. From
Yanagisawa et al. (2003), by permission from Nature, copyright 2003,
Macmillan Publishers Ltd.



suppressed the ethylene-stimulated decrease of ARF2,
HLS1 has been suggested to be required for 26S
proteasome-dependent degradation of ARF2 protein (Li
et al. 2004; Figure 3).

Control of HLS1 abundance by light
When dark-grown seedlings were exposed to the light, a
decrease in HLS1 protein and an increase in ARF2
protein were observed in parallel with the opening of
apical hook (Li et al. 2004). It is currently obscure 
how light regulates the abundance of HLS1, although
regulation of transcription and/or modulation of protein
is possibly regulated by light. The suppression of
ethylene production by light (Goeschl et al. 1967; Kang
et al. 1967) is one explanation, but it does not completely
account for the observation that HLS1 overexpressed by
the use of the 35S promoter was also decreased by light,
and for the observation that application of ACC did not
alleviated the decrease of HLS1 caused by light (Li et al.
2004; Figure 3). There might be several steps at which
light exerts its control over HLS1. Although further
analysis is necessary for the conclusion, the HLS1
protein, whose function is regulated by ethylene and
light, is likely a key component in apical hook
maintenance and controls the degradation of ARF2
protein, altering the auxin response in the apical hook
(Figure 3).

Perspective

Several molecular mechanisms for crosstalk between
signaling pathways are emerging. As reviewed here, 
the mechanisms of crosstalk appear to be highly
sophisticated. Plants probably have needed to evolve
complex machinery integrating various signaling
pathways to optimize their responses to the environment.

Most of the previously suggested mechanisms for
crosstalk remain elusive. In addition, further
investigation would identify new examples of crosstalk.
In fact, two-component signaling network that integrates
both cytokinin and ethylene signals has recently been
reported (Hass et al. 2004). Elaborate analyses including
complete identification of components in each signaling
pathway and dissection of the processes in signaling
would be necessary. The analyses also need to include
spatial and temporal analyses of crosstalk, as it is
unlikely that every type of crosstalk occurs in all types of
cells and at all stages of the life cycle. Unraveling the
molecular basis for crosstalk between signaling pathways
will better our understandings of the complicated process
of growth regulation in plants.
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