
Currently, under strong anthropogenic impact including
habitat destruction, excessive exploitation, and 
biological invasion (McNeely et al. 1990; Primack
2000), biodiversity is declining on global, regional 
and local scales. Global climate change presumed to
have started already is another major threat to
biodiversity (Buse et al. 1999; Inouye et al. 2000;
Schlaepfer et al. 2002; Thomas et al. 2004). With the
rapid globalization of the world, the problems of
biological invasion will become even more critical
(Washitani et al. 2005).

In the context of this crisis caused by multiple
interacting anthropogenic factors, the monitoring and
assessing of population trends in relation to
environmental changes in order to evaluate the ecological
and/or genetic processes that underlie observed patterns
are indispensable for effective conservation practices
(Christensen et al. 1996; Yoccoz et al. 2001). The
immediate strategic monitoring or assessment of plant
populations should focus on the state of sexual
reproduction, especially gene flow processes. Sexual
reproduction creating diverse combinations of genes
plays an important role in adaptation to a changing
environment and in the acquisition of resistance to pests
or pathogens (Maynard Smith 1998). Moreover, it is only
in this stage of the life history that genes or individuals
of plants as sessile organisms can move in space
substantial distances. In addition, dormant seeds
persistent in soil can assume temporal escape from
various environmental risks (Harper 1977).

Generally, extinction is the consequence of a mutually
accelerating demographic and genetic decline of a
population (Frankham and Ralls 1998; Saccheri et al.

1998; Lennartsson 2002). Thus, understanding or
evaluating gene flow mediated by pollen or seed
movement is essential for the comprehension of the
processes related to the extinction risks in plants.
Moreover, gene flow from genetically modified crops
into populations of wild or domesticated relatives has
newly entered the research arena since late 1980’s when
social concern over the bio-security and risk assessment
of genetically modified crops began to grow. Therefore,
the current prediction of gene flow, especially over
generations in wild plant populations, is an important
issue in the study of biodiversity conservation and bio-
security. However, it is never an easy task since the
movements of pollen and genes are influenced by
species-specific life history strategies such as the
breeding system and the spatial structure of the
population, as well as by a vast number of external
factors including numerous stochastic ones that mutually
interact.

For a comprehensive understanding of gene flow and
its consequences such as the vices cycle of plant
population extinction, one promising approach is the
integration of ecological and genetic studies with a
model plant species or related species group to
disentangle complicated interactions of the ecological
and genetic processes (Washitani et al. 2005). In the
present paper, we present a brief summary of a part of
such research aiming to disentangle the factors affecting
gene flow in wild populations of Japanese Primula
species as a model of bumblebee-pollinated clonal herbs.
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Primula sieboldii and Primula modesta as
models

Most Primula species are herbaceous perennials clonally
growing in mountainous to alpine habitats, and have a
distylous breeding system, i.e., heterostyly with two
opposite morphs compatible each other (Richards 1986).
P. sieboldii belonging to the section cortusoides and P.
modesta of the section aleuritia are two representative
Japanese Primula species (Richards 2003).

P. seiboldii was once common in various moist
habitats on volcanic soils throughout the Japanese
Archipelago, but in recent years has declined and 
is now listed as vulnerable on the national red list
(Environment Agency of Japan 2000). Most remaining
populations of the species are more or less isolated due
to habitat fragmentation (Environment Agency of Japan
2000), but variously sized populations differing greatly
with regarding to extinction probability and genetic
diversity still remain. A relatively sufficient amount of
data on the demographic, eco-physiological, and genetic
traits of the species is available, most of which has been
obtained from wild populations in Southern Hokkaido or
central Honshu (Washitani et al. 1991, 1994a, 1994b,
1996; Kakishima et al. 1995; Washitani 1996; Nishihiro
et al. 2000; Matsumura and Washitani 2000, 2002;
Okayama et al. 2003; Ishihama et al. 2003, 2005;
Watanabe et al. 2003; Noda et al. 2004; Honjo et al.
2004; Kitamoto et al. 2005).

Primula modesta Bisset et Moore is a common
perennial herb that grows in a range of montane to 
alpine habitats throughout Japan from Hokkaido to
Kyushu. Demographic and genetic data have obtained
from the subalpine zone of Mt. Asama (36°24�12�N,
138°31�34�E, 2568 m a.s.l.) in Nagano Prefecture, central
Japan (Shimono and Washitani 2004), where P. modesta
is distributed in fenland, grassland, and rocky tracts at
elevations from 1900 to 2300 m a.s.l.

Pollen flow measurements in experimental
populations with different spatial structures

Merit of using an experimental population under a
natural pollination service 
Generally, since plants are sessile, the spatial structure is
one of the major factors governing gene flow in the
population. In some natural populations of P. sieboldii, 
a strong effect of opposite-morph density within a 
5 m radius on the seed set was found (Nishihiro et al.
2000; Watanabe et al. 2003), implicating relatively short
pollen-dispersal distance and the possible importance of
the local arrangement of genetically compatible mates
for successful seed reproduction.

Since the components of spatial structure and
environmental factors often covary in a natural

population, detection of independent effect(s) of spatial
components in measurements is usually difficult
(Rathcke 1983; Aizen 1997; Kunin 1997). The use of 
an experimental population set under natural conditions
of pollination would be an effective approach to
circumventing such drawbacks. In an experimental
population, parameters of spatial structure such as 
the local and/or global density of plants or flowers 
of a compatible morph can be intentionally manipulated.
The combined use of an experimental population 
with highly polymorphic molecular markers such as
microsatellites is a highly effective means of evaluating
the influences of spatial structures on plant gene flow
(Smithson and Macnair 2003). Another advantage to
using an experimental population is the feasibility of
choosing parental genotypes that enable unambiguous
determination of maternal and paternal individuals
through paternal analysis (Karron et al. 1995; Richards
et al. 1999).

The following are the major findings on pollen
dispersal and seed set in two experimental populations of
P. sieboldii differing in plant arrangement and density: a
patchy population of low density at the whole-population
level (global scale) (Figure 1A) and a high-density
population with a regular linear arrangement of genets
(Figure 1B).

Pollen flow in a population with a patchy structure
having high local and low global densities
Using seven microsatellite markers (Ueno et al. 2003),
the paternity of 94.9% of the seeds analyzed in the low-
density patchy population (Figure 1A) was determined.
Even though seed set was significantly affected by the
presence-absence of opposite-morph plants within the
same patch, considerable pollen flow was ascertained to
occur between the patches, and the mean pollen dispersal
distance within the experimental population was 7.32 m.
Pollen flow between the patches separated by more than
30 m accounted for 43.2% of between-patch pollen flow.
Such a distant pollen flow can be explained by the long
carryover of pollen by Bombus diversus, the major
pollinator of P. sieboldii (Matsumura and Washitani
2002), the small size of the patches (Ellstrand et al.
1989), and the absence of the compatible opposite morph
for a large proportion of individuals in the same patch.

Pollen flow in a high-density experimental population
The high-density experimental population consisted of
regularly arranged small patches of plants with a
flowering ramet density about 15 times that of the low-
density population, and the density of opposite morph
differed greatly between the ends and the middle of the
linear population (Figure 1B).

Seed set was significantly correlated with the number
of opposite-morph flowers within a 2–3 m radius. Of 
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336 seedlings obtained from the seeds, the paternity 
of 95.2% was successfully assigned. Of the assigned
fathers, 68.4% were found within the experimental
population. In the middle part of the experimental
population, where the local opposite-morph density was
high, irrespective of the morph, a large proportion of the
seeds was sired by the opposite-morph genet within a
5 m radius. However, near the ends of the experimental
population, where the opposite-morph density is low,
most seeds born on the short-styled genets were sired by
pollen from outside the experimental population. The
mean pollen dispersal distance was 4.4 m, significantly
shorter than that obtained for the low-density population
(7.3 m). However, the distance is much longer than the
expected value based on the reciprocal of the density
(7.3/15�0.49 m), which can be expected for a linear
population with the assumption of sequential visitation

of the pollinator. The major mechanisms responsible for
this deviation are mentioned in the next section.

There were remarkable differences between the
morphs in the pollen donating and receiving patterns.
The most conspicuous was greater self- and intra-morph
fertilization in the long-styled morph. This tendency has
been suggested by artificial pollination experiments and
seed set patterns under pollinator limitation in some
natural populations (Washitani et al. 1994b; Washitani
1996).

Major factors responsible for the difference in patterns
between the experimental populations
The pollen dispersal distance of animal-pollinated plants
largely depends on plant density. At a lower density, a
longer flight distance of the pollinators can be expected
(Fenster 1991; Morris 1993), and a longer pollen
dispersal distance as well (Karron et al. 1995).

However, pollen dispersal was comparably restricted
in the low-density population. The mean distance to the
nearest potential mate in the lower-density experimental
population, i.e., the distance from a short-styled flower to
the nearest long-styled flower, was 10.9 m. Opposite-
morph density at a very local scale (1–3 m) was shown to
have the predominant effect on seed reproduction in both
experimental populations.

The restricted dispersal distance in the low-density
population is probably due to the complicated responses
of pollinator behavior to population density. Visitation
frequency per plant tends to be low in such a low density
population (Kunin 1993,1997).

To further clarify the mechanisms of the effect of the
demographic components, pollinator behavior in relation
to the size and spacing of plant patches was investigated.
Visitation frequency per patch was shown to be highly
dependent on the average flower number per patch.
Moreover, pollinators tend to visit more flowers per patch
at larger patches, and a larger proportion of flowers per
patch with longer spacing. This suggests a predominance
of geitonogamous self-pollination in large patches
consisting of the same genet, and less frequent pollen
flow between patches with longer spacings. The tendency
for a pollinator moving between nearby patches, which
was demonstrated here, well explained the pollen flow
pattern revealed by the paternity analysis, i.e. the
predominance of pollen flow among nearby patches.

These results and observations are consistent with
previous studies on pollinator behavior (Morris 1993;
Cresswell 1997; Ohashi and Yahara 1998), and strongly
indicate the particular importance of the proximity of
compatible mates for successful reproduction by seeds at
least to the stage of seed set. Generally, the effective
population size may be much smaller than the actual
population size due to restricted pollen dispersal in a
plant population.
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Figure 1. Experimental populations for the measurements of pollen
flow in P. sieboldii. A: In the low density population, 11 patches were
arranged along a stream, which is indicated as a curving line. Each
patch was composed of one common short-styled clone and zero, one,
or two long-styled clones, so that opposite-morph density differs
among patches. (Modified from Figure 1 in Ishihama et al. 2003) B:
The high-density experimental population was composed of 32 small
patches arranged in a line with spacing of about 1.5 m. Each patch
consists of a single clone differing among patches. The population was
designed so that opposite-morph density is highest in the center of the
population and lowest at both ends. The number of flowering ramets
per patch was varied randomly.



Seed flow and spatiotemporal dynamics of
soil seed banks

Attempts to measure spatial and temporal patterns of
seeds and seedlings
A conspicuous feature of seed flow is its extended scale
of time. Seed flow is determined by not only the spatial
dispersal, but also mortality, dormancy, and germination
processes of the seeds, as well as by seedling
performances that can be strongly influenced by micro-
site environmental conditions and the genetic quality of
the seeds, such as inbreeding depression. These phases
and processes of spatial and temporal dispersal are
inevitably subjected to various stochastic events. We can
deduce the seed flow patterns from the patterns of spatial
and temporal distribution of seeds or seedlings in these
phases. However, sufficient attention should be focused
on the highly stochastic processes.

Temporal dispersal patterns of seeds can be predicted
from the seed physiology of dormancy and germination.
The seed physiology of P. sieboldii (Washitani and
Kabaya 1988) and P. modesta (Shimono and Washitani
2004) indicates the formation of persistent seed banks
under ordinary habitat conditions. Physiological traits
also suggest that seeds persistent in soil will be released
from the dormancy when exposed to high light or large
diurnal alternations of temperature that are
environmental features of a denuded surface soil.
Therefore, natural or artificial disturbances have a
considerable influence on temporal seed flows.

Estimation in the natural habitat of P. sieboldii
Direct measurement of the seed dispersal of P. sieboldii
using seed traps (Figure 2) revealed the dispersal pattern,
which can be approximated by a log-normal curve. More
than 85% of seeds were dispersed within 15 cm of the
mother plant, and the mean distance of seed dispersal
was 9.2 cm in the field experiment.

Safe-site availability is shown to strongly influence the

spatial pattern of seedling emergence. Therefore, the
spatial pattern of emerged seedlings, which is the
immediate consequence of seed flow, can be predicted
from the seed dispersal pattern and the distribution of
safe sites for seedling emergence, which was
characterized by the field experiments and observation of
actual seedling emergence. In the natural habitat, the
emergence of P. sieboldii seedlings was confined to a
certain type of microsite that is characterized by denuded
soil without litter accumulation.

Estimation with the experimental population of P.
sieboldii
The relatively short seed flow suggested by the
prediction mentioned above was ascertained in the
experimental population. In the experimental population
with a patchy structure and high local/low global
densities, some seedlings were found to be clumped in a
patch. The genotype of the seedlings found in the patch
strongly suggested that all seeds were derived from the
nearest long-styled genet, and the mean dispersal
distance was estimated to be very short (10.4 cm) and
well corresponded to the predicted seed flow mentioned
above.

Population genetic structure

Factors potentially strengthening the genetic structure
Poor dispersal ability of pollen and seeds may inevitably
lead to the formation of a marked genetic structure
(Vekemans and Hardy 2004). Generally, seeds are more
immobile than pollen as shown in the measurement of
pollen and seed flow in the experimental population of P.
sieboldii described above.

However, certain factors obscure the genetic structure.
Inbreeding depression tends to negate the mating
between closely located individuals resulting from short
pollen flow, although spatial genetic structure within a
population is expected to be rather obscure in
preferentially outcrossing species compared to selfing
species (Ennos 2001; Vekemans and Hardy 2004). In
studies of outcrossing species, more significant genetic
structure has tended to be detected in maternally
inherited markers than in nuclear and paternally inherited
markers (McCauley et al. 1996; Tarayre et al. 1997; Levy
and Neal 1999; Caron et al. 2000). These results imply
that seed dispersal is generally more limited than pollen
transfer, and thus can result in a marked spatial structure.

The long persistency of seeds in soil seed banks is
another important factor also lessening structuring. In
plant species with limited seed dispersal, transient seed
banks may develop a fine-scale spatial genetic structure
based on that of the aboveground plant population. On
the other hand, persistent seed bank may prevent the
build-up and retention of a significant genetic structure
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Figure 2. The seed trap for measuring primary seed dispersal
distances from a mother plant. The plastic partition separates
concentric circular zones (width, 5 cm) of sterilized sand with the
fruiting plant as the focus. The radius of the entire trap is 40 cm.



by pooling the reproductive output of many generations
and averaging out the effects of each generation’s
dispersal pattern. In addition, persistent seeds bank are
likely to have more opportunities for secondary dispersal
than transient seed banks, such as by water flow or soil
disturbance, which may weaken genetic structure.

Genetic structure and inbreeding depression
In a natural population of P. seiboldii, a marked
aggregation of closely related individuals within several
meters was found. The effect of inbreeding depression
on pollen dispersal was estimated by estimating kinship
structure. A considerable inbreeding depression was
suggested in mating within 5 m, according to predictions
assuming a linear relationship between the exponential
of the kinship coefficient and the magnitude of
inbreeding depression, and 80–95% reductions in fitness
of selfed progenies (Ishihama et al. 2005).

These results indicate the importance of considering
not only the local opposite-morph density, but also
kinship structure and consequent inbreeding depression
in the conservation management of fragmented
populations of P. sieboldii.

Genetic structures in soil seeds and relation to the
above-ground population
The spatial genetic structure of the transient and
persistent components of soil seed banks and its relation
to that of aboveground plants was examined in an alpine
fen habitat of P. modesta, where the soil bank with
numerous seeds (1000–2700 seeds/m2) was shown to be
developed. A limited spatial dispersal of the seeds is
presumed, since the seeds with no special adaptations 
for dispersal are released from a height of 10–20 cm.
Stratified sampling from different soil depths allowed an
analysis of the spatial genetic structure of somewhat
different components of soil seeds, i.e., transient and
persistent components, based on the assumption that
most seeds that are even partially buried in the soil form
persistent seed banks owing to a strict light requirement
for germination (Shimono and Washitani 2004).

We analyzed the fine-scale spatial genetic
autocorrelation between flowering plants and soil seed
banks obtained by stratified sampling from different soil
depths, using kinship coefficients (Shimono et al. in
press). The spatial genetic association between the
surface seed bank (0–1 cm depth) and the flowering
genets was significantly positive over short distances. In
contrast, a weak spatial genetic association between the
deeper seed bank (1–5 cm depth) and flowering genets
was detected.

These results suggest that the surface seed bank
accounts for a large proportion of the previous season’s
seed dispersal, and the deeper seed bank pools the
reproductive output of multiple generations and averages

out the effects of each generation’s dispersal pattern. The
surface and deeper seed banks are likely to represent
transient and persistent seed banks (Thompson and
Grime 1979), respectively.

The directional kinship detected (Shimono et al. in
press) indicated that secondary dispersal by running
water modifies the spatial genetic structure and elongates
dispersal distance. The persistent seed bank may have
more opportunities for secondary dispersal than the
transient seed bank, which is one possible reason for the
absence of a spatial genetic structure in the deeper seed
bank.

The stratifying sampling of the soil seed bank is likely
to allow discrimination of the dynamics of transient from
persistent components of the soil seed bank under natural
conditions.

Toward modeling gene flow

Gene flow and its consequences in a plant population are
highly idiosyncratic (Ellstrand et al. 1989), and affected
or modified by a vast number of factors influencing
demographic and genetic processes, which mutually
interact. Thus, modeling gene flow requires a flexible
combination of sub-models describing individual
processes, some of which were considered in the present
paper.

Modeling pollination processes constituting a major
part of pollen flow requires a description of the pollinator
movement among flowers within and between flower
patches (Cresswell et al. 1995; Di Pasquale and Jacobi
1998; Cresswell et al. 2002) and the pollen carryover
pattern (Morris et al. 1994). Modeling seed flow is likely
to be a more difficult task, since the time span to be
taken into account is much longer, and more stochastic
events are involved. The modeling of the consequence of
pollen flow at the viable seed production requires a
comprehensive understanding of compatibility patterns
between the potential mates, which is rather easy in a
population of heterostylous plants.

Seed flow modeling should include both spatial and
temporal processes and their interaction, which might 
be more complicated compared to pollen flow. A
prerequisite for modeling temporal processes is an
understanding of seed eco-physiology (Washitani 1987)
based on the detailed germination/dormancy responses
of seeds determined in laboratory experiments, and seed
longevity or mortality patterns in the natural habitat, part
of which can be revealed by seed placement/retrieval
experiments. The immediate spatial pattern of the
primary spatial dispersal of seeds can be modeled
comparatively easily based on measurements with seed
traps. The empirical clarification of later spatial patterns
and their interaction with temporal patterns is not easy,
but modeling of the pattern of seedling emergence which
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is the final result of seed flow and was attempted in P.
sieboldii as described above would be rather promising.
In the near future, with a more intensive study of the
empirical modeling process, we should be able to predict
the demographic/genetic fate of a population of Primula
species with the integrated model approach.
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