
Insect pests pose serious problems to the cultivation of
agricultural crops. In modern agriculture, the extensive
use of chemical insecticides has contributed to stable
crop yields. However, the use of insecticides has resulted
in the emergence of insect populations resistant to them.
Insecticides also have environmental consequences and
risks to human health. The breeding of crops resistant 
to insects is an effective pesticide-free option for
controlling insect pests. Genetic engineering is expected
to provide powerful tools for producing insect-resistant
crops.

In the breeding of rice plants, several genes involved
in resistance to hemipteran insects such as leafhoppers
have been identified (Athal et al. 1971;
Lakshminarayama et al. 1977; Siwi et al. 1977; Sidhu et
al. 1979; Rezaul et al. 1982; Ghani et al. 1988; Kabir et
al. 1988). However, the rice genes involved in resistance

to lepidopteran pests have not been identified.
Enhancin is a protein isolated from the occlusion

bodies (OBs) of the Trichoplusia ni granulovirus (TnGV)
that enhances infection of the nucleopolyhedrovirus in T.
ni larvae (Derksen et al. 1988; Gallo et al. 1991; Wang et
al. 1994; Lepore et al. 1996). The TnGV enhancin gene
has been isolated from the TnGV genome and sequenced
(Hashimoto et al. 1991). Enhancin is a metalloprotease
that degrades mucin, a major constituent of the
peritrophic membrane in the larval midgut. It causes 
an increase in the permeability of the peritrophic
membrane, which allows virus particles to infect
epithelial midgut tissues (Wang and Granados 1997;
Peng et al. 1999).

The TnGV enhancin gene has been utilized in the
production of transgenic plants resistant to lepidopteran
insects. Transgenic tobacco plants supplemented with the
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Abstract Transgenic plants that produce anti-insect substances are vital in improving crop yields and in reducing the
environmental risks of chemical insecticides. Enhancin is a metalloprotease produced in occlusion bodies of the
Trichoplusia ni granulovirus (TnGV). It is a key substance that enhances infection of the nucleopolyhedrovirus in
lepidopteran insects. Rice (Oryza sativa L. cv. Nipponbare) protoplasts were cotransformed with pREXFVEF and pLTHyg,
which respectively bear the chimeric enhancin gene and the hygromycin-resistance gene. Hygromycin-resistant regeneration
plants were examined by genomic polymerase chain reaction and genomic Southern and northern blotting analyses to
confirm the presence and expression of the enhancin gene. Fourteen transgenic plant lines harboring the enhancin gene were
obtained, and stable inheritance and expression of the enhancin gene were confirmed in the second, third, and fourth plant
generations. Feeding Spodoptera exigua larvae leaves of enhancin-expressing rice plants in the presence of S. exigua
nucleopolyhedrovirus occlusion bodies enhanced infection of the virus. Further, the development of Pseudaletia separata,
S. exigua, and S. litura, none of which are host insects of TnGV, was inhibited when these larvae were fed enhancin-
expressing rice leaves. This indicates that expression of the enhancin gene confers resistance to lepidopteran insect pests in
rice.
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TnGV enhancin gene enhanced infection of the
Spodoptera exigua nucleopolyhedrovirus (SeNPV) in the
larvae of a lepidopteran insect, S. exigua, and inhibited
the growth of T. ni (Hayakawa et al. 2000; Cao et al.
2002). However, the effect of transgenically expressed
enhancin in other plants and to other lepidopteran insects
is unknown.

In this study, the TnGV enhancin gene was introduced
into rice plants to investigate the effect of enhancin on
monocot plants and to produce a novel breeding material
resistant to lepidopteran pests. The effect of the
transgene on three lepidopteran insects, including a rice
insect pest, was then examined. An insect bioassay
revealed that transgenic rice plants expressing the
enhancin gene inhibited the growth and development of
lepidopterous larvae in Pseudaletia separata, S. exigua,
and Spodoptera litura.

Materials and methods

Plasmids
Plasmids pREXFGUS and pLTRHyg (Figure 1) were
gifts from Dr. H. Hirochika, National Institute of
Agrobiological Sciences Japan. The plasmid
pREXFGUS was a derivative of pE7133-GUS
(Mitsuhara et al. 1996), and contains a modified
cauliflower mosaic virus (CaMV) 35S promoter
consisting of seven tandem repeats of enhancer-like
elements and the 35S core promoter (E7 and P35S,
respectively, in Figure 1), the 90 bp leader sequence of
the rice stripe virus coat protein gene (F , in Figure 1;
Hayano et al. 1990), the first intron of a gene for
phaseolin (In, in Figure 1), and the polyadenylation
signal of the gene for nopaline synthase (Tnos, in Figure
1). The plasmid pLTRHyg contains a hygromycin-
resistance gene (hph, in Figure 1) under the control of
the tobacco retrotransposon Tto1 promoter (PLTR, in
Figure 1; Hirochika 1993) and Tnos.

Plasmid pREXFVEF was constructed as follows. The
plasmid pREXFGUS was digested with BamHI, blunted,
and ligated with an XbaI linker to obtain pREXFGUS-
XbaI. An XbaI-FbaI (blunted) fragment of pBI-Enh21
(VEF, in Figure 1; Hashimoto et al. 1991) encoding
TnGV enhancin was cloned between the XbaI and SacI
(blunted) sites of pREXFGUS-XbaI to create
pREXFVEF.

Plant materials and transformation
Protoplasts were prepared from rice (Oryza sativa L.

cv. Nipponbare) suspension culture as previously
described (Kyozuka et al. 1987). The protoplasts 
were cotransformed with plasmids pREXFVEF and
pLTRHyg using a polyethylene glycol (PEG)-mediated
method (Hayashimoto et al. 1990) to produce Enh plants.
Similarly, the protoplasts were transformed with only

pLTRHyg to produce Hyg plants, which were used as a
control. Plasmid pREXFVEF (40 mg), 20 mg of plasmid
pLTRHyg, and 20 million rice protoplasts in 1 ml 
MaMg solution were used for cotransformation. The
transformed protoplasts were cultured on an agarose
bead (Shillito et al. 1983) with nurse cells (Kyozuka et
al. 1987) for 10 days. They were then selected for
hygromycin resistance on agar medium supplemented
with 50 mg l�1 hygromycin B for three to four weeks.
Hygromycin-resistant callus were transferred to a
regeneration medium (N6 basal medium [Chu et al.
1975], 6% (w/v) sucrose, 1% (w/v) agarose [Type I,
Sigma], pH 5.8) supplemented with 50 mg l�1

hygromycin B. Regenerated plants were transplanted into
six-inch pots (Fujiwara Sci. Co.) and cultivated in a
greenhouse under conditions of natural day length (30°C
for 16 h during the day and 25°C for 8 h during the
night).

DNA analyses
Rice plant genomic DNA and callus tissues 

were isolated using a CTAB method (Murray 
and Thompson 1980). The enhancin gene in the 
genomic DNA was detected with polymerase chain
reaction (PCR) using primers Enh-up-fwd (5�-
TCAGAGTCGGTGAGAATTGG-3�) and Enh-up-rv 
(5�-TTCGAATCGACAGTGTCTGC-3�), and primers
Enh-dwn-fwd (5�-GAATAGGACATTGGCACGAC-3�)
and Enh-dwn-rv (5�-CGACAGTCGATAACTGACTG-
3�). These primers were expected to amplify the 
543 bp and 690 bp regions of the DNA fragments
corresponding to the upstream and downstream 
junction regions of the enhancin gene and vector,
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Figure 1. Schematic representation of plasmids used to produce
transgenic rice plants. E7: Seven tandem repeats of enhancer-like
elements of the CaMV 35S promoter. P35S: The CaMV 35S core
promoter. F : Leader sequence of the ripe stripe virus coat protein gene.
In: The first intron of a gene for phaseolin. GUS: b-Glucuronidase.
Tnos: Polyadenylation signal of the nopaline synthase gene. VEF:
TnGV enhancin gene. PLTR: Promoter of tobacco retrotransposon
Tto1. hph: Hygromycin-resistance gene. Xb: XbaI. Bm: BamHI. Sl:
SalI. Sc: SacI.



respectively. The hph gene in the genomic DNA was
detected by PCR using the primers hp-fwd (5�-
ATGAAAAAGCCTGAACTCACCG-3�) and hp-rv (5�-
GCATCTACTCTATTCCTTTGCC-3�), which were
expected to amplify a 1.0 kbp region of the DNA
fragment. Conditions for the PCR reaction consisted of
annealing for 4 min at 94°C, followed by 35 cycles of 1
min at 94°C, 2 min at 55°C, and 3 min at 72°C.

Southern blot analyses were carried out as described
by Sambrook et al. (1989). A DIG-labeled probe used to
detect the enhancin gene was prepared as follows. A
BamHI-SalI fragment of pREXFVEF, which contains a
1.1 kbp fragment of the enhancin gene, was cloned
between the BamHI and SalI sites of pBluescript KS�

(Stratagene) to create pBluescriptVEF. A DIG-labeled
probe was transcribed from pBluescriptVEF using T7
RNA polymerase with the DIG RNA Labeling Kit
(Roche). The enhancin gene was detected using the DIG
Luminescent Detection Kit (Roche).

RNA analyses
Total RNA was extracted from rice plant leaves as
follows. Leaves were homogenized in a buffer containing
100 mM glycine, pH 9.5, 100 mM sodium chloride,
10 mM Na2EDTA, 1% sodium dodecyl sulfate, and
0.06% (w/v) bentonite. They were then extracted with
phenol–chloroform, followed by ethanol precipitation.
Northern blotting analyses were carried out as described
by Mori et al. (2001). A DIG-labeled probe used to
detect enhancin mRNA was prepared as described in the
procedures of the Southern blot analyses.

Insect bioassay of nuclear polyhedrosis virus
infection enhancement
Second stadium larvae of S. exigua and SeNPV strain #1
(Kondo et al. 1994) were used in this study. SeNPV OBs
were prepared from S. exigua larvae infected with the
virus as described by Hayakawa et al. (2000).

Rice plant leaves were lyophilized, powdered, and
mixed with an artificial diet (Insecta LF, Nihon-Nosan-
Kogyo) at a rate of 3% (w/w). The diet was made rod
shaped by pushing it through a 1 ml disposable syringe.
Rod-shaped artificial diet (5 mm) mixed with lyophilized
leaves was fed to each larva. When SeNPV was fed to
the larvae, 1 m l of suspension supplemented with 101,
102, 103, 104, 105, or 106 OBs was added to diet pellets
placed in a 12-well plate. Second stadium larvae were
individually placed in the plate wells. Sixty larvae were
used for each bioassay with the respective OB doses.
After 24 h, the larvae were transferred onto a new plate
filled with fresh diet pellets and reared at 25°C in 
the dark. The LD50 of OB numbers per S. exigua larva
was then calculated (Finney 1964). To evaluate the
enhancement of baculovirus infection, the enhancement
index log10 was calculated according to Hukuhara et al.

(1987).

Insect toxicity bioassay using the artificial diet
supplemented with enhancin-expressing rice
leaves
The neonate larvae of P. separata, S. exigua, and S. litura
were used to investigate the toxicity of rice plants. Rice
plant leaves were lyophilized, powdered, and mixed with
an artificial diet (Insecta LF, Nihon-Nosan-Kogyo). The
mixed diet contained lyophilized leaves at 5% (w/w) for
S. exigua and S. litura, and 20% (w/w) for S. separata.
One larva was placed in each well of a 12-well plate with
the diet pellets and reared at 25°C in the dark. Body
weight, pupation rate, and emergence rate were
monitored until the larvae fed with the control diet either
emerged or died.

Insect toxicity bioassay using whole plants
Second stadium larvae of P. separata were used for
whole plant bioassays. Rice plants were individually
transplanted into six-inch pots (Fujiwara Sci. Co.). Five
larvae were placed on each plant at the maximum
branching stage, covered with a net, and reared in a
greenhouse. Larvae bodyweights were measured 4 and 8
days after release.

Results

Production of transgenic rice plants expressing
enhancin
Rice (Oryza sativa L. cv. Nipponbare) protoplasts were
cotransformed with plasmids pREXFVEF and
pLTRHyg (Figure 1), which respectively bear the
enhancin and hph genes, using the PEG method. They
were then cultured and selected for hygromycin
resistance. Twelve hygromycin-resistant callus lines were
obtained, among which five lines showed enhancin- and
hph-specific bands following PCR analyses of the
genomic DNA (data not shown). Transgenic plants
regenerated from a transgenic callus were considered to
belong to a transgenic plant line. Two such lines,
designated Enh1 and Enh2, were obtained. They
consisted of five (Enh1-1 to 1-5) and 10 (Enh2-1 to 2-10)
sublines, respectively. Genomic PCR analyses revealed
that all Enh plants other than Enh1-5 possessed the
recombinant enhancin gene (data not shown). Genomic
Southern analyses of Enh1 and Enh2 sublines other than
Enh2-10 (T1 generation) showed that the pattern of
hybridization bands was very similar among the Enh1
sublines Enh1-1 to 1-4 and the Enh 2 sublines Enh2-1 to
2-9, respectively (Figure 2).

The expression of enhancin in the Enh plants was
examined by northern blotting analyses of T1 plants.
Enh2-3, Enh2-9, and Enh2-10 plants showed signals
corresponding to enhancin mRNA (Figure 3). However,
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enhancin mRNA was not detected in the remaining Enh
lines.

Morphological fertility and inheritance of
enhancin-expressing transgenic rice
Morphology and fertility was observed in the Enh2-3
progenies that harbored the enhancin gene. Average culm
lengths in T2, T3, and T4 generations of Enh2-3 plants
were 49.8�0.8, 49.1�0.9, and 47.2�1.0 cm (mean�

S.E., n�16), respectively, whereas the culm length for
nontransformed plants was 53.9�1.2 cm (mean�SE,
n�16). This indicates that the culm length of transgenic
plants is slightly shorter than that of nontransformed
plants. Panicle lengths of T2, T3, and T4 generations 
of Enh2-3 plants were 17.5�0.4, 17.4�0.4, and
18.3�0.3 cm (mean�S.E., n�16), respectively, and that
of nontransformed plants was 17.9�0.3 cm (mean�S.E.,
n�16). Panicle numbers of T2, T3, and T4 generations
of Enh2-3 plants were 11.4�0.3, 10.8�0.5, and

10.7�0.5 (mean�S.E., n�16), respectively, and that of
nontransformed plants was 9.5�0.4 (mean�S.E.,
n�16). Progeny fertility was not significantly different
between the transgenic and nontransformed plants (data
not shown).

Inheritance of the enhancin gene was confirmed by
genomic PCR and northern blotting analyses of Enh2-3
progenies. The enhancin-specific genomic PCR band
was detected in 43 of the 64 plants in the second
generation (T2) of Enh2-3. Enhancin mRNA was
detected in 26 of the T2 plants. Inheritance of the
enhancin gene was also confirmed in T3 and T4 plants
(data not shown).

Following insect bioassay experiments, we chose
Enh2-3, in which strong enhancin expression was
observed, and Enh1-2, in which detectable enhancin
mRNA was not observed, but the enhancin transgene was
present. T2 progenies of Enh1-2 and Enh2-3 with the
enhancin gene were selected according to genomic PCR
analyses, and used for the experiments.

Enhancement of SeNPV infection in S. exigua
larvae fed enhancin-expressing rice leaves
Various amounts of SeNPV OBs were added to the diet
supplemented with rice leaves and fed to S. exigua larvae
for 24 h to infect them with the virus. The larvae were
subsequently reared with the diet supplemented with rice
leaves, and the number of larvae that died before
pupation was counted to calculate the LD50 of the OBs.
Larvae fed with Enh2-3 plants were killed by SeNPV
infection with significantly lower amounts of SeNPV
OBs than larvae fed with nontransformed plants or Hyg
plants (vector control), which showed no detectable
enhancin DNA, but possessed the transgene. The LD50 of
OBs was 7.25�105 in larvae fed the diet supplemented
with nontransformed plants, 2.40�105 in those fed the
diet with Hyg plants, and 1.82�104 in those fed the diet
with Enh2-3 plants. The enhancement index calculated
from the above result was 0.48 for Hyg plants and 1.60
for Enh2-3 plants. This indicates that enhancin-
expressing transgenic rice leaves enhanced the infection
of SeNPV in the larvae.

Transgenic rice plants expressing enhancin
inhibited the development of P. separata, S.
exigua, and S. litura
Larvae of P. separata, S. exigua, and S. litura were reared
on an artificial diet supplemented with transgenic rice
plant leaf powders. Feeding a diet supplemented with
transgenic rice plants harboring hph, which was used as a
vector control, did not affect larval bodyweight,
pupation, and emergence rates in any of the insect
species examined (Table 1). P. separata larvae fed 
the diet supplemented with Enh2-3, which strongly
expressed enhancin, had significantly lower bodyweights
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Figure 2. Southern blotting analyses of transgenic (T1 generation)
and nontransformed rice plants. Genomic DNA (5 mg) was digested
with XbaI, separated in 0.7% agarose gel, and subjected to Southern
hybridization. A DIG-labeled RNA probe specific to the enhancin gene
was transcribed from pBluescriptVEF using T7 RNA polymerase. N:
Nontransformed plants.

Figure 3. Northern blot analyses of total RNA extracted from
transgenic rice plants (T1 generation). RNA (12 mg) was separated in
0.7% agarose gel in each lane and subjected to northern hybridization.
A DIG-labeled RNA probe specific to enhancin mRNA was prepared
as described in the legend of Figure 2. N: Nontransformed plants.



than larvae fed the diet supplemented with
nontransformed and Hyg plants (Table 1). The growth of
larvae fed the diet supplemented with Enh1-2, in which
detectable enhancin mRNAs were not observed, was
slightly lower than that of the control (Table 1).

The metamorphic development of insects fed the diet
supplemented with Enh1-2 or Enh2-3 leaves was
investigated. Three independent experiments produced
similar results, and typical results are shown in Figure 4.
Compared with the controls, P. separata larvae fed the
diet supplemented with Enh1-2 or Enh2-3 had delayed
pupation and significantly lower emergence rates (Figure
4A). Similar results were obtained in the larvae of S.
litura (Table 1, Figure 4B). S. exigua larvae fed diets
supplemented with Enh1-2 or Enh2-3 plants had delayed
pupation and emergence, but their bodyweight was not
affected, (Table 1, Figure 4C). These results suggest that
biologically active enhancin was expressed in both Enh1-
2 and Enh2-3 plants.

Insect toxicity of whole rice plants
To investigate whether enhancin in living tissues affects
the growth of lepidopteran insect pests, P. separata
larvae were reared on whole plants of Enh2-3 that
expressed enhancin from 4 to 8 days. The average
bodyweight of larvae fed Enh2-3 plants was 19.6% to
23.1% lower than that of larvae fed nontransformed
plants. Values were 148�17 and 340�36 mg (mean�

S.E., n�30) for larvae fed transgenic rice plants for 4
and 8 days, respectively, and 184�17 and 442�26 mg
(mean�S.E., n�30) for larvae fed nontransformed
plants. The pupation of larvae fed Enh2-3 plants was
significantly delayed compared with the control (data not
shown). These results indicate that transgenic enhancin-
expression confers the ability to inhibit the development
of P. separata larvae in rice.

Discussion

Feeding S. exigua larvae transgenic rice plants
expressing enhancin facilitated infection of the nuclear
polyhedrosis virus. This indicates that the enhancin
produced in transgenic rice plants enhances infection of

the virus. Other than a slightly shorter plant length,
which is often observed in rice plants regenerated from
protoplasts (Ogura et al. 1987; Abdullah et al. 1989;
Kawata et al. 1992), the morphological characters of the
transgenic plants were not significantly different from
those of nontransformed plants. Moreover, the enhancin
gene was inherited in the progenies to at least the fourth
generation. These results suggest that enhancin
expression does not affect the growth and fertility of rice
plants.

When fed artificial diets supplemented with the
enhancin-expressing rice plants Enh2-3, the growth,
pupation, and emergence of P. separata, S. exigua, and S.
litura were inhibited. Growth inhibition was also
observed in P. separata, an insect pest of rice plants,
when fed whole plants of enhancin-expressing rice.
These results suggest that enhancin-expressing rice
plants inhibit the growth of various species of
lepidopteran insect pests. Although detectable enhancin
mRNA was not observed in Enh1-2, these plants
significantly affected the emergence rates of P. separata.
This suggests that the metamorphic development of P.
separata is sensitive to extremely low amounts of
enhancin.

It has been reported that transgenic tobacco plants
expressing TnGV enhancin inhibited the development of
T. ni, a TnGV host insect (Cao et al. 2002). However, we
found that the development of P. separata, S. exigua, and
S. litura was inhibited by TnGV enhancin expressed in
transgenic rice plants, even though these insects are not
TnGV hosts. These results indicate that the enhancin
derived from TnGV had an effect in suppressing the
growth of lepidopteran insects regardless of viral host
specificity. TnGV enhancin can possibly degrade mucin
in the larval midgut of these insects to inhibit their
growth. The TnGV enhancin gene could be used to
provide resistance against lepidopteran insects in various
plant species other than rice, both in monocots and
dicots.

Transgenic rice plants that expressed enhancin
significantly delayed and inhibited the development of
lepidopteran insect pests. Although this inhibition effect
was not very severe, it might significantly affect the
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Table 1. Growth of lepidopteran larvae fed an artificial diet supplemented with leaves of high enhancin-expressing (Enh2-3), low or no enhancin-
expressing (Enh1-2), vector control (Hyg), and nontransformed rice plants.

Insects Days after feeding
Mean body weight per larva (mg)�SE

Nontransformed Hyg plant Enh1-2 Enh2-3

P. separata (n�30) 8 41�1 38�1 38�2 28�2
12 401�24 357�24 358�28 247�21
16 759�31 764�33 687�50 627�38

S. litura (n�20) 12 165�19 161�32 134�27 126�17
S. exigua (n�48) 6 NTa 18�1 13�1 13�1

10 NT 157�7 147�9 144�11

a Not tested.



population of insect pests under field conditions by
decreasing their fitness or making their life cycles longer.
Combinations of enhancin genes with other insect-
resistance genes might provide crops with more efficient
resistance against insect pests. The efficiency of
insecticides supplemented with the Bacillus
thuringiensis (Bt) toxin might be increased in enhancin-
expressing crops because purified enhancin significantly
increases the toxicity of Bt formulations to six species of
lepidopteran insects (Granados et al. 2001). Enhancin-
expressing rice plants may also facilitate an effect 
of bioinsecticides supplemented with a modified
polyhedrosis virus. Therefore, enhancin-expressing rice

plants, which have no deleterious characters, should have
excellent potential as a novel breeding material.
Transgenic rice plants expressing enhancin could destroy
insect pests without the extensive use of chemical
insecticides and contribute to stable yields.
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