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Abstract Five distinct genomic DNA fragments (EcPTI, EcPT2, EcPT3, EcPT4 and EcPT5) encoding phosphate
transporters were isolated from Eucalyptus camaldulensis. EcPT2 and EcPT3 were exclusively expressed in the root, but
were not enhanced by phosphate deprivation. The transcript level of EcPT2 was much higher than that of EcPT3. The
EcPT?2 is present as a single copy gene in Eucalyptus genome, and phylogenetic analysis and deduced amino acid sequence
revealed that EcPT2 can be classified into the Phtl family, a high-affinity phosphate transporter. These results suggest that
EcPT?2 functions in phosphate transport in root tissues not only under low-phosphate conditions as with typical Phtl family

members, but also under high-phosphate conditions.
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Phosphorus (P) is one of the most important nutrients for
plant growth and, since it is deficient in most soils, limits
plant growth in most natural ecosystems (Bieleski 1973).
In agricultural systems, a large input of phosphate
fertilizer is required since P is acquired by plants in the
form of inorganic phosphate (Pi). Plants use a series of
strategies to enhance Pi acquisition from soils, including
secretion of several molecules (protons, organic acids,
phosphatases and nucleases), changes in root
morphology and up-regulation of Pi transporters (Poirier
and Bucher 2002; Rausch and Bucher 2002). Of these
strategies, it is likely that Pi transporters in roots play a
major role in Pi uptake from the soil. Understanding the
molecular mechanisms of Pi uptake is thought to be an
important step in gene manipulation of high-yield plants
in Pi-deficient soils.

Although Pi transport has been extensively
investigated in various plants, including agriculturally
important crops, little is known with regard to
industrially important wood species. Recently, with the
increasing demand for renewable energy, the importance
of fiber and chemical materials from wood has been
growing rapidly. Breeding of trees that can grow in
nutrionally poor soil will expand the plantation area,
increase wood production and reduce pressure of
exploitation of native forests.

Eucalyptus is important as a raw material for

Eucalyptus, phosphate transporter, Phtl family.

industrial pulp and paper making. In this study, as a first
step in understanding the molecular mechanism of Pi
uptake in Eucalyptus, we focused on the Pi transporter
genes of this species.

Pi transporter genes were screened from the E.
camaldulensis genomic library. A cDNA fragment
encoding a putative Pi transporter derived from the
Eucalyptus EST database constructed by Oji Paper
Co. Ltd. (Japan) was used as a probe for plaque
hybridization. Five partial genomic DNA sequences with
high homology to the Pi transporter gene were isolated.
These genes were designated EcPT! (identical to the
EST sequence used as probe), EcPT2, EcPT3, EcPT4
and EcPT5. Gene accession numbers are AB242816,
AB242817, AB242818, AB242819 and AB242820,
respectively. Each of these partial DNA sequences shares
around 80% homology.

Expression of these five genes was analyzed by
northern blot analysis. EcPT2 and EcPT3 mRNA were
expressed in a root-specific manner and were not induced
by Pi-deficiency (Figure 1). Moreover, EcPT2 mRNA
accumulation was much higher than that of EcPT73.
Expression of EcPTI, EcPT4 and EcPT5 was not
observed in the current experiment. Further, although
EcPTI was observed in the EST database, the transcript
of EcPT1 was not detected. This might have been due to
the low expression of EcPT! in the experimental

Abbreviations: MES, 2-(N-Morpholino) ethanesulfonic; P, phosphorus; Pi, inorganic phosphate; PT, phosphate translocator; TM, transmembrane.

This article can be found at http://www.jspcmb.jp/
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Figure 1. Expression analysis of the EcPT genes in E. camaldulensis.
Eucalyptus plants with the same genetic background were used
throughout this study. Plantlets were grown in 1/4 strength Gamborg’s
BS5 medium solution supplemented with 0.5g1™! 2-(NV-Morpholino)
ethanesulfonic (MES) (pH 5.6) for about 1 month in a greenhouse. To
confirm the response to Pi deficiency, medium containing 250 uM
NaH,PO, was replaced with Pi-deficient medium containing 250 uM
NaCl Oh, 8h, 24h and 72 h before sampling. Total RNA was isolated
from the leaves, stems and roots as described by Suzuki et al. (2003).
Aliquots of 15ug of RNA were electrophoretically separated on
formaldehyde agarose gel and blotted onto a nylon membrane.
Hybridization was carried out according to a standard procedure.
Details of the sequence information of the probes and primers used for
amplification are available from the authors on request.

conditions used in this study.

We therefore focused on EcPT2 since the expression
level of this gene in the roots was extremely high. EcPT2
has one intron within its coding region (Figure 2A). The
deduced amino acid sequence of EcPT2 consists of 535
amino acids with an apparent molecular mass of
58.4kDa. Genomic Southern blot analysis showed the
presence of a single EcPT2 gene in E. camaldulensis
(Figure 2B).

In vascular plants, genes encoding Pi transporters and
Pi translocators (PT) play a crucial role in Pi transport
systems. Recently, Pi transporters were functionally and
structurally classified into three families, namely, Phtl,
Pht2 and Pht3 (Rausch and Bucher 2002). Phylogenetic
analysis of EcPT2 with Arabidopsis Pi transporters/
translocators demonstrated a close relationship between
EcPT2 and the Phtl family (Figure 2C). Kinetic data for
Phtl members showed that they were high-affinity Pi
transporters and involved in acquisition of Pi by the roots
from low external concentrations in the soil (Daram et
al. 1998; Mitsukawa et al. 1997). The TMAP program

(http://bioinfo.limbo.ifm.liu.se/tmap/)  predicted the
presence of 12 transmembrane domains in EcPT2 and a
central hydrophilic domain separating six N-terminal
domains from six C-terminal domains (Figure 2D). This
domain structure is common among other high-affinity
Pi transporters of higher plants, yeast and fungi (Ming et
al. 2005; Harrison et al. 2002; Paszkowski et al. 2002;
Rausch et al. 2001; Muchhal et al. 1996; Harrison et al.
1995; Bun-Ya et al. 1991). The phosphorylation sites for
protein kinase C and casein kinase II and the site for
potential N-glycosylation are conserved in high-affinity
Pi transporters (Ming et al. 2005; Kai et al. 2002;
Muchhal et al. 1996) and are also present in EcPT2 at
positions 238-240 (T-A-R), 505-508 (S-L-E-E) and 419-
422 (N-A-T-T), respectively.

To date, many genes encoding a high-affinity Pi
transporter homologous to yeast PHOS84 have been
identified in plants, helping elucidate Pi uptake
mechanisms (Poirier and Bucher 2002; Rausch and
Bucher 2002). Most are expressed predominantly in root
tissues and are strongly induced by Pi deprivation. In
Arabidopsis, all Phtl genes, except Phtl; 6, are expressed
either exclusively or predominantly in the roots, and are
induced under conditions of Pi deprivation (Mudge et al.
2002). In rice, 10 of the 13 Pi transporters are expressed
in the roots (Paszkowski et al. 2002). Root-specificity
and Pi-deficiency inducible expression are typical
features of Phtl family genes across various plant
species (Ming et al. 2005; Schunmann et al. 2004; Chiou
et al. 2001; Daram et al. 1998).

In this study, five putative Pi transporter genes were
isolated from the genomic library of E. camaldulensis.
Of these, only two, designated EcPT2 and EcPT3, were
expressed constitutively in a root-specific and Pi-
independent manner in our experimental conditions.
Nucleotide sequencing of the EcPT2 implied that this
gene encodes a high-affinity Pi transporter, suggesting
that EcPT2 functions as a Pi transport both in low and
high Pi conditions. Isolation of a full set of Phtl/ genes
and detailed expression studies of EcPT2 are currently in
progress with the aim of further understanding the Pi
transport mechanism in Eucalyptus.

Figure 2. Properties of EcPT2. (A) Nucleic and deduced amino acid sequences of EcPT2. The deduced amino acid of the ORF is shown
under the nucleic acid sequence. An intron (underlined) was presumed using a splicing site prediction program (NetGene2 Server;
http:/www.cbs.dtu.dk/service/NetGene?2/). This splicing site was also confirmed by sequencing of EcPT2 cDNA amplified from Eucalyptus root RNA
by RT-PCR using gene-specific primers. (B) Southern blot analysis of EcPT2. Genomic DNA was extracted from Eucalyptus leaf as described by
Wagner et al. (1987) with minor modifications. Aliquots of 15 ug of genomic DNA were digested with the indicated restriction enzymes,
electrophoretically separated on agarose gel and blotted onto a nylon membrane. DIG-labeled (Roche, Germany) EcPT2 DNA (+1086 to +1609
relative to the translational start site with no restriction enzyme site used for the genomic DNA digestion) was used as a probe. Hybridization was
carried out according to a standard procedure. (C) The phylogenetic tree of EcPT2 and Arabidopsis Pi transporter/translocator proteins. Amino acid
sequences were aligned using ClustalW and the tree was constructed with TreeView software. (D) Amino acid sequences of EcPT2 and its related Pi
transporter proteins. The deduced amino acid sequence of proteins EcPT2, Phtl;1, Phtl;4 and Phtl;6 were aligned. The predicted transmembrane
(TM) domains of EcPT2 are indicated by a dotted line. The phosphorylation sites of protein kinase C (*) and casein kinase I (#) and the site of

potential N-glycosylation (+) are indicated.
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