
Plants are continually challenged by pathogens, such as
fungi, bacteria, and viruses in nature. However, only a
few pathogens actually infect the plant and cause
damage. Many plants defend themselves against fungi
and other microbial pathogens by inducing both
localized and systemic resistance responses. These
responses are governed by hormonal regulation, in which
salicylic acid (SA), jasmonic acid (JA) and ethylene (ET)
can each contribute.

Systemic acquired resistance (SAR) is an inducible
defense mechanism that plays an important role in
defending plants from attack by pathogens (Chester
1933; Durner et al. 1997). SAR has been well
characterized in tobacco and Arabidopsis thaliana, and
SA was found to be the signaling molecule (Gaffney et
al. 1993; Delaney et al. 1994). The signal transduction
pathway downstream of SA leads to the expression of a
number of pathogenesis-related (PR) genes, such as PR-
1 and b-1,3-glucanase (Ryals et al. 1996). JA also
modulates resistance to pathogens and insects as well as
other physiological events such as fruit ripening and
senescence. Wounding and methyl jasmonate (MeJA)
treatment are known to induce the expression of LOX2,
AOS, VSPs, Thi2.1, PDF1.2 and various other stress-

related genes (Creelman and Mullet 1995; Benedetti et
al. 1995; Epple et al. 1995; Penninckx et al. 1996). ET
regulates many aspects of plant growth, development 
and senescence (Yang and Hoffman 1985) and has also
been implicated in disease resistance and disease
susceptibility (Feys and Parker 2000). ET has also been
shown to work synergistically with JA to activate
induced systemic resistance (ISR) and PDF1.2 gene
expression in Arabidopsis (Pieterse and van Loon 1999).

Several synthetic compounds that induce SAR 
and the expression of various SAR-associated 
marker genes, including PR genes, have been 
identified. For example, 2,6-dichloroisonicotinic 
acid (INA), benzo(1,2,3)thiadiazole-7-carbothioic acid S-
methyl ester (BTH) and N-cyanomethyl-2-
chloroisonicotinamide (NCI) induce SAR by stimulating
the signal transduction pathway for SAR development at
the same point or downstream of SA accumulation
(Friedrich et al. 1996; Lawton et al. 1996; Nakashita et
al. 2002; Yasuda et al. 2003). In contrast, probenazole
(PBZ) and its derivative, benzisothiazole (BIT), stimulate
the SAR signaling pathway upstream of SA
accumulation (Yoshioka et al. 2001). The non-protein
amino acid b-aminobutyric acid (BABA) has been
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shown to protect Arabidopsis against some pathogens
through activation of defense mechanisms such as
callose deposition and hypersensitive cell death (Jakab et
al. 2001; Zimmerli et al. 2000). Although these synthetic
compounds activate plant defense mechanisms they do
not have any direct activity against pathogens, and are
hence classified as chemical activators or plant activators
(Friedrich et al. 1996; Kessman et al. 1994). Plant
activators are potentially very useful for crop disease
control and management. However, their identification is
challenging because they lack any direct toxic effects
against pathogenic fungi and bacteria. In this study, we
developed a model screening system for plant activators
by monitoring the induction of the plant immune system
and changes in expression of pathogen-responsive genes.

We developed a system using Arabidopsis
transformants to readily monitor the expression profile of
defense-related genes in response to chemical treatment.
We used the Arabidopsis gene PR-1 as a marker for the
SA-dependent signal transduction pathway, and PR-4 as
a marker for the JA/ET pathway. We used 1.29 kbp and
1.5 kbp regions upstream from start codon (ATG) of PR-
1 and PR-4 gene as a promoter region respectively,
because most Arabidopsis promoters use cis-acting
elements located within the first 1.0 kb and most
Arabidopsis 5� untranslated sequences are less than
150 bp (Maleck et al. 2000). T3 homozygous transgenic
Arabidopsis plants harboring the PR-1- or PR-4-
promoter fused to the b-glucuronidase (GUS) gene were
generated to investigate the regulated gene expression.
The transgenic Arabidopsis plants were grown in soil for
28 days in a growth chamber at 22°C under a 12-h light/
12-h dark cycle. Then they were applied a foliar spray of
2.5 mM SA, 0.1 mM MeJA, 1 mM ethephon (as ethylene
treatment), 0.5 mM BTH, 10 mM BABA, 1 mM INA,
2.5 mM p-hydroxybenzoic acid (4HBA), distilled water
(DW) or DW plus 1% acetone (DW�A). Twenty-four h
later, the GUS reporter gene assay was performed using a
standard protocol (Jefferson et al. 1986). After the
treatment with SA and MeJA or ethephon, we performed
a GUS assay to detect specific activation of PR-1 and
PR-4 promoters, respectively. The expression patterns
were similar to those of endogenous PR-1 or PR-4
mRNAs (data not shown).

The transformant with the PR-1 promoter::GUS gene
fusion showed a 130.3-fold increase in GUS activity
after treatment with 2.5 mM SA (Figure 1A). The
transformant with the PR-4 promoter::GUS gene
displayed a 7.4-fold and 4.5-fold increase in GUS
activity after treatment with 1 mM ethephon and 0.1 mM
MeJA, respectively (Figure 1B). Similar treatment with
an inactive SA analogue, 4HBA, did not affect promoter
activity. These results suggest that GUS activity is 
not induced by treatment with inactive chemicals under
this condition. The transformant with the PR-1

promoter::GUS gene showed a 29.0- and 22.8-fold
increase in GUS activity after 1 mM INA and 0.5 mM
BTH treatment, respectively. In contrast, the levels of
GUS activity in the transformant with the PR-4
promoter::GUS gene were low after treatment with INA
or BTH (Figure 1). After treatment with 10 mM BABA,
the PR-1 promoter::GUS transformants showed a 19.0-
fold increase of GUS activity (Figure 1A) whereas the
PR-4 promoter::GUS transformants showed a 5.2-fold
increase of GUS activity (Figure 1B), indicating that
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Figure 1. Plant activator-inducible expression of GUS activity in
transgenic Arabidopsis plants carrying either the PR-1 or PR-4
promoter::GUS fusion gene, 24 h after treatment. The T3 homozygous
transgenic Arabidopsis plants with the PR-1 (A) or PR-4 (B)
promoter::GUS fusion gene were grown in soil for 28 days in a growth
chamber at 22°C under a 12-h light/12-h dark cycle, and sprayed with
2.5 mM SA, 0.1 mM MeJA, 1 mM ethephon, 0.5 mM BTH, 10 mM
BABA, 1 mM INA, 2.5 mM 4HBA, distilled water (DW) or DW plus
1% acetone (DW�A). Ratios indicate the multiplicities of expression
compared with the value obtained with DW (SA, MeJA, ethephon,
BTH, BABA) or DW plus 1% acetone (INA, 4HBA) treatments. The
values of GUS activity are the averages of values obtained from more
than 21 plants per treatment. Bars indicate SE.



BABA activates both the SA and JA/ET signaling
pathways. The results of this study showed that candidate
plant activators can be screened easily by monitoring PR-
1 and PR-4 promoter activity after various chemical
treatments, and that the plant activators could be
classified into those activating the SA-signaling pathway
and those activating the JA/ET-signaling pathway. This
screening system needs to be developed using additional
defense-related genes to elucidate further the functions
of the plant activators.

The tobacco PR-1a gene, which is strictly up-
regulated after activation of the SA-dependent signal
transduction pathway, has been used as a marker to
monitor chemical activation of this pathway, and
transgenic tobacco BY-2 cells harboring the PR-1a
promoter-luciferase fusion gene have been suggested to
be useful for the study of defense gene expression (Ono
et al. 2004). This system may also be used to screen for
plant activators after modification for high through-put
screening procedures (Ono et al. 2004; Ogura et al.
2005). Then, we will need an assay system to screen the
candidate plant activators identified in the cell culture for
activity in planta.

Previously, the characteristics of most plant activators
were assessed by the expression of only a limited number
of genes at a time. Here, we have adopted a more
comprehensive approach that generates information
about the expression of large numbers of genes
simultaneously using an Arabidopsis microarray
consisting of 1200 (1.2 K) full-length cDNA clones
representing putative defense-related and regulatory
genes.

A total of 1.2 K potential biotic and abiotic stress-
related genes were selected from the genes covered by
the Arabidopsis 7 K array (RIKEN, Japan) and
Arabidopsis oligo microarray (Agilent Technologies,
USA) for this study (Seki et al. 2002; Narusaka et al.
2003a; 2003b; 2004a; 2004b; 2005). To gain further
information on the characterization of plant activators in
the defense response, we studied their effect on the
expression of the 1.2 K stress-related genes in our
microarray.

Full-length cDNA microarray analysis was carried out
essentially as reported previously (Seki et al. 2001; 2002;
Narusaka et al. 2003a; 2003b; 2004a; 2004b; 2005).
Arabidopsis wild-type plants (ecotype Columbia; Col-0)
were grown in soil for 28 days in a growth chamber at
22°C under a 12-h light/12-h dark cycle. Arabidopsis
plants were applied a foliar spray with 5 mM SA, 0.1 mM
MeJA, 1 mM ethephon, 0.5 mM BTH, 10 mM BABA and
1 mM INA. Leaves were harvested at 2, 5, 10 and 24 h
after treatment, snap-frozen in liquid nitrogen and stored
at �80°C until RNA extraction. Total RNA was isolated
as described previously (Narusaka et al. 2004a). To
ensure biological reproducibility of the microarray

results, we replicated the experiment three to four times
with between thirty and seventy plants per sample. To
obtain sufficient material for the experiments, we pooled
samples from replicate experiments prior to RNA
extraction. In addition, we conducted two to three
independent microarray analyses with the same RNA for
reproducibility of handling. The results demonstrated a
high degree of correlation in fold change values between
the different data sets.

We regarded cDNAs with expression ratios (treated/
untreated) five-fold greater than the expression ratio of
the lambda control template DNA fragment (TX803;
Takara, Kyoto, Japan) at one or more time points to be
up-regulated, compound-inducible genes (Narusaka et al.
2004a; 2005; Seki et al. 2001; 2002). Untreated Col-0
plants grown under the same conditions as the treated
plants were used for calculations of fold induction for all
treatments including the water control. Image analysis
and signal quantification were performed with a
ScanArray Express version 3.0 (PerkinElmer, MA,
USA). The median of 80 signal values obtained from the
lambda control template DNA fragment was used as an
external control to equalize hybridization signals
generated from different samples. Gene-clustering
analysis was performed with GeneSpring ver. 6.2
(Silicon Genetics, San Carlos, CA, USA).

The microarray data in this study is available 
with Gene Expression Omnibus (GEO) at http://
www.ncbi.nih.gov/geo/ (See the figure legend in Fig. 2).
To investigate the relationship between experiments, two
different methodologies were performed in this study.
First, the relation between experiment pairs was analyzed
by means of Pearson’s correlation coefficient using the
software GeneSpring ver. 6.2 (Table 1). The absolute
value of correlation coefficient is large when there is
little variation within the groups compared to variation
among group means. The results suggest that the
correlation coefficient between INA- and SA-treatments
was high between the two (INA 2 h and SA 5 h, INA 5 h
and SA 10 h, INA 10 h and SA 10 h, INA 24 h and SA
24 h), and the weak correlation between INA- and
ethephon-treatments was shown. In contrast, the
correlation coefficient between INA- and MeJA-
treatments is below 0.2, and therefore it suggests that
their pairs are not close. The correlation coefficient
between BTH- and SA-treatments indicates that two
experiments are closer than other experiments
(MeJA/ethephon), although the correlation coefficient
between BTH- and ethephon-treatments is high 2 h and
24 h after BTH-treatment. The correlation coefficient
between BABA- and SA/ethephon-treatments was high
and the pairs are close. In contrast, the results indicate
that the correlation coefficient between BABA- and
MeJA-treatments is low and the pairs are not close.

Second, the ratios of expression levels of treated
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versus control Col-0 plants were log2 transformed and
subjected to hierarchical clustering using GeneSpring
ver. 6.2 (Figure 2A). On the basis of the altered
expression patterns after SA, MeJA and ethephon
treatments, we categorized these treatments into three
groups. Expression analyses with the cDNA microarray
indicated that changes in expression caused by ethephon
were more similar to those caused by MeJA than SA.

Treatment of Col-0 plants with SA, MeJA and
ethephon induced the expression of 282, 159 and 246
genes, respectively. There were 241 genes up-regulated

by treatment with INA, including some genes known to
be important for the SA-signaling pathway such as PR-1
and PR-5 and the increase of mRNA in Col-0 plants
treated with INA peaked at 5 h. The 241 genes were
subjected to clustering by treatments (INA, SA, MeJA
and ethephon) and the data in Figure 2B shows the
results of the cluster analysis of expression profiles. The
dendrogram of Figure 2B indicates the relationship
among experiments across all 241 genes included in the
cluster analysis. The expression profiles of stress-
inducible genes after treatment with INA resembled
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Figure 2. Hierarchical clustering of gene expression data in Arabidopsis Col-0 plants treated with plant activators. Arabidopsis plants were grown
in soil for 28 days in a growth chamber at 22°C under a 12-h light/12-h dark cycle, and treated with 5 mM SA, 0.1 mM MeJA, 1 mM ethephon,
0.5 mM BTH, 10 mM BABA, and 1 mM INA. Total RNA was extracted from Arabidopsis leaves at 2, 5, 10 and 24 h. Using a cDNA microarray, 241,
134 and 220 genes with expression ratios (treated/untreated) of more than five-fold at least at one time point were regarded as INA, BTH or BABA-
inducible genes, respectively. (A) Hierarchical clustering of 1.2 K genes in response to treatment with SA, MeJA or ethephon. (B) Hierarchical
clustering of 241 genes in response to the treatment with INA and treatment with SA, MeJA or ethephon. (C) Hierarchical clustering of 134 genes in
response to the treatment with BTH and treatment with SA, MeJA or ethephon. (D) Hierarchical clustering of 220 genes in response to the treatment
with BABA and treatment with SA, MeJA or ethephon. The lengths of the branches on the ordinate show the correlation between the treatments.
Short branches indicate a closer correlation than long branches. The microarray data are available with Gene Expression Omnibus (GEO) at
http://www.ncbi.nih.gov/geo/ (Accession No. GSM85771, GSM85772, GSM85773, GSM85774 for SA treatment; GSM85783, GSM85784,
GSM85785, GSM85786 for MeJA treatment; GSM85236, GSM85624, GSM85625, GSM85663 for ET treatment; GSM85664, GSM85665,
GSM85666, GSM85667, GSM85668, GSM85669 for INA treatment; GSM85779, GSM85780, GSM85781, GSM85782, GSM86106 for BTH
treatment; GSM85775, GSM85776, GSM85777, GSM85778 for BABA treatment.



those of SA-treatment, whereas they were less similar to
the defense-induction profiles after MeJA/ethephon
treatment. In the Col-0 plants treated with BTH, 134
genes showed increased expression with a peak in overall
mRNA production at 5 h. The results of the cDNA
microarray analyses indicated that BTH activates plant
defense responses via the SA dependent signaling
pathway, and to a lesser extent via the ET- and JA-
dependent pathway (Figure 2C). Then, we compared the
BABA microarray data set (220 genes) with that of SA,
MeJA and ethephon. Treatment of Col-0 plants with
BABA increased the expression of PR-1 and PR-4 genes,
which are involved in the SA- and JA/ET-signaling
pathways respectively. However, the expression profiles
of stress-related genes after BABA treatment were
generally more similar to those of SA treatment than
those of MeJA/ethephon treatment (Figure 2D). It is also
known that BABA-treated plants accumulate products
associated with disease resistance including phenolics,
callose, PR-proteins, salicylic acid, and hydrogen
peroxide (Cohen 2002). Hence, BABA triggers a primed
state in the plant that enables a more efficient activation
of SA-, JA- and ET-dependent defense mechanisms. As
mentioned above, the classification and characterization
by the patterns of gene expression is more accurate and
useful than by the correlation coefficient between each
experiment pair.

The broad-spectrum activity of BTH compounds 
has been reported to protect dicotyledonous and
monocotyledonous plant species against a number of
bacterial, fungal and viral diseases, suggesting an
indirect mode of action via activation of plant defense
mechanisms (Friedrich et al. 1996; Görlach et al. 1996;
Lawton et al. 1996; Benhamou and Bélanger 1998;
Narusaka et al. 1999; Cole 1999; Godard et al. 1999;
Buonaurio et al. 2002; Babu et al. 2003). Similar to
BTH, BABA is also known to induce resistance against a
broad spectrum of pathogens in many plant species,
containing the Arabidopsis plant (Cohen 2002; Jakab et
al. 2001). Therefore, a model screening system for

candidate plant activators in Arabidopsis is a useful tool.
BABA protects potato and Arabidopsis from infection
with Phytophthora species but not BTH (Si-Ammour et
al. 2003). In addition, many potato cultivars have high
endogenous SA levels (Coquoz et al. 1995). Therefore, it
seems that the resistance of potato against pathogens is
different from that of Arabidopsis. In several cases,
screening and assessing systems except Arabidopsis are
also necessary to identify the novel active candidate for
plant activators.

In summary, we assessed known plant activators by
initially using a GUS reporter gene system in which the
expression of GUS was driven by the promoter of either
of two selected defense-associated genes. Subsequently,
microarray analyses validated the strategy. From the data
gathered in this study, we have identified molecular
phenotypes of plant activators, independently of visible
phenotypes. These plant activators were then classified
according to the patterns of gene expression that they
induced and the signaling pathway to which each plant
activator belongs was revealed. The knowledge gained
here will enable the development of new plant activators
and will offer novel perspectives for engineering durable
resistance in crop plants. We used cDNA microarrays to
assess how plant activators affect the expression of stress
related genes in Arabidopsis plants. Using these data, we
will link bioinformatics with chemoinformatics by
correlating gene expression profiles with the activity of
plant activators. This is the first report of integration of
large databases on gene expression and molecular
pharmacology for agrichemicals.
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