
The use of transgene technology in plants is becoming
increasingly important, serving multiple purposes in the
fields of commerce and research. However, the level of
transgene expression often varies considerably among
independent plant transformants (Fagard and Vaucheret
2000), hampering the effective use of transgenic plants in
both applied and basic research. Variability of transgene
expression has been attributed to several factors
including differences in chromosome position, sequence-
specific gene silencing and copy number (Matzke and
Matzke 1998; Kooter et al. 1999; Selker 1999).

The eukaryotic genome is organized as a condensed
chromatin structure, is not uniform in its transcriptional
activity and chromatin condensation states. In general,
because chromatin condensation limits access of protein
factors to the underlying DNA, it is thought that genes in
relatively condensed chromatin are inactive, and active
genes are contained within a decondensed chromatin. In
chicken erythrocytes, for example, the active b-globin
locus resides in a 30-kb decondensed chromatin domain,
whereas the inactive ovalbumin gene is found in
relatively condensed chromatin (Kimura et al. 1983;
Fisher and Felsenfeld 1986; Caplan et al. 1987).

As a consequence of this heterogeneity of the

eukaryotic genome, different chromatin condensation
states surrounding integrated transgenes are thought to
influence transgene expression positively or negatively;
this phenomenon is referred to as the position effect
(Wakimoto 1998; Wallrath 1998). For example, in the
Drosophila and yeast genomes, inactive and condensed
chromatin regions inactivate nearby transgenes by
converting them into a condensed, inaccessible
chromatin conformation (Gottschling 1992; Wallrath and
Elgin 1995; Cryderman et al. 1999; Sun et al. 2001).

With the plant transformation methods currently used,
it is not feasible to target efficiently the transgene to
specific positions in the plant genome (Day et al. 2000).
Differences in chromatin condensation state near the
transgene integration site are also thought to be one of
the causes of variable transgene expression observed in
plants (Matzke and Matzke 1998). The chromatin
condensation states of the plant genome are cytologically
different as in other eukaryotes, typical heterochromatin
regions such as centromere, nucleolus organizing regions
and telomere are highly condensed. The regions outside
of these typical heterochromatin are relatively
decondensed in Arabidopsis (Fransz et al. 2002, 2006;
Houben et al. 2003) or contain blocks of condensed
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individual gene expression levels.
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heterochromatic regions composed of clusters of
repetitive elements in maize or tobacco (Bennetzen et al.
2000; Houben et al. 2003; Kovarik et al. 2000). However,
these low-resolution microscopic analyses cannot assess
the chromatin condensation states of inactive and active
genes within euchromatin or heterochromatin.

In this study, to analyze the differences in chromatin
condensation states at higher resolution in plants, we
evaluated chromatin condensation states by measuring
DNase I sensitivity at 500 bp resolution, at 30 variably
expressed genes in an 80-kb genomic region, a gene
thought to be repressed by polycomb group and
heterochromatin protein 1-like genes, two genes located
near the centromere and telomere, and a retrotransposon
within genetically-defined centromere in Arabidopsis
thaliana.

Materials and methods

Plant material and growth conditions
A. thaliana ecotype Columbia Col-0 was grown in potting soil
at 22°C under a 16-h-light/8-h-dark cycle.

Digestion with DNase I and DNA purification
Digestion with DNase I was performed using a modification of
a previously described method (Vega-Palas and Ferl 1995).
Leaves of six-week-old plants were collected and ground in a
cold mortar with ice-cold nuclei isolation buffer (NIB; 50 mM
Tris, pH 8.0, 5 mM MgCl2, 0.1 mM EGTA, 0.3 M sucrose,
1 mM b-mercaptoethanol, and 0.1 mM phenylmethylsulphonyl
fluoride). The resulting slurry was homogenized with a motor-
driven homogenizer, and the homogenate was filtered through
one layer of a 105-micron nylon mesh filter. The permeabilized
cells were pelleted by centrifugation at 2000�g at 4°C for
10 min, washed twice with NIB and resuspended in an
appropriate volume of NIB. The resulting suspensions were
pre-incubated at 37°C for 2 min and digested with DNase I
(Sigma-Aldrich, St. Louis, MO) at 0, 0.025, 0.25, 0.5, 1, and
2 U ml�1 at 30°C for 10 min. The reaction was stopped by
adding EDTA to 16 mM. The samples were pelleted by brief
centrifugation at 4500�g at 4°C and resuspended in nuclei
extraction buffer (100 mM Tris, pH 8.0, 50 mM EDTA,
500 mM NaCl, 1% SDS and 10 mM b-mercaptoethanol)
containing 0.35 mg ml�1 Proteinase K (Wako pure chemical,
Osaka, Japan), the preparations were incubated at 65°C for 1 h.
After the addition of 1/5 volume of 5 M potassium acetate, pH
5.5, suspensions were set on ice for 30 min. The debris were
removed by centrifugation at 18000�g at 4°C for 30 min, the
supernatants were extracted with chloroform and the DNA was
then precipitated by the addition of 0.7 volume of isopropanol.
The DNA was pelleted by centrifugation at 2000�g at 25°C for
30 min, washed with 70% ethanol and dissolved in appropriate
volume of TE buffer (10 mM Tris, pH 8.0 and 1 mM EDTA)
containing 100 mg ml�1 RNase (Roche, Indianapolis, IN). After
incubation at 37°C for 1 h, the samples were extracted with
phenol-chloroform, and the DNA was precipitated by adding
1/10 volume of 3 M sodium acetate and 2.5 volume of ethanol,

washed with 70% ethanol, and finally dissolved in 0.1�TE
buffer (1 mM Tris, pH 8.0 and 0.1 mM EDTA) and used as in
vivo digested chromatin DNA. The purified intact genomic
DNA was also digested in vitro with DNase I at 0.01 and
0.025 U ml�1 at 30°C for 10 min in NIB and used as in vitro
digested naked DNA.

Preparation of DNA probes
All DNA probes used for DNase I sensitivity assays were
500 bp long and were prepared as below. Bacterial artificial
chromosome (BAC) clones containing target genes were
divided into continuous, non-overlapping 500-bp segments
from the first nucleotide (designated coordinate number 1) of
each clone. Each 500-bp segment was numbered consecutively
from number 1, preceded by two letters designating the clone
from which it originated (for example, probe XK101
corresponds to bases 50001 to 50500 in the MXK3 BAC
clone). The BAC clones used were as follows: MXK3, F13C5
(AGAMOUS), F19I11 (ribosomal protein S1), and T25K16
(NAC1) (underlined letters are those used to name the
corresponding probe series). The Athila retrotransposon in the
centromeric region of chromosome V (ALA region) was
amplified from the BAC clone T8H11 by PCR with the primers
5�-GGTTACATGTTATTTCAAGAGATCATAGAC-3� and 5�-
GGATGAGTAAGAGGTTGTTGATGAAGAGGA-3 �

(Kumekawa et al. 2000). Other 500-bp DNA fragments were
amplified from the Arabidopsis genome by PCR using 30-mer
primer pairs at 500-bp intervals. The amplified 500-bp
fragments were inserted into the HincII site of pUC19, and the
identity of the inserted DNA was verified by sequencing. The
resulting plasmid was used as a template for PCR amplification
with M13 forward and reverse primers, and amplified DNA
fragments were used as a DNA probe. All information about
gene position, gene annotation and expressed sequence tag
(EST) is based on the MIPS A. thaliana database (MAtDB;
http://mips.gsf.de/proj/thal/db).

DNase I sensitivity assays by Southern blotting
The DNase I sensitivity of specific genomic DNA regions was
evaluated by Southern blot using the corresponding DNA
probes. DNase I-treated DNA fragments were separated on 1%
agarose gels and transferred to nylon membranes (Hybond-
N�, Amersham Biosciences, Piscataway, NJ). The membranes
were hybridized with DNA probes randomly labeled with [a-
32P]dCTP, washed, and visualized by exposure to X-ray film as
described previously (Nagaya et al. 2004).

Results

DNase I sensitivity is similar irrespective of gene
expression level in the 80-kb MXK3 region
To systematically investigate chromatin condensation
states at various genomic regions in the Arabidopsis, we
used the DNase I sensitivity assay. This is a reliable
method to assess chromatin condensation in a particular
region in terms of overall accessibility to the 31-kDa
protein DNase I (DNase I sensitivity) for many
eukaryotes (Yaniv and Cereghini 1986; Krebs and
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Peterson 2000). We evaluated DNase I sensitivity as the
extent of DNA digestion visualized by Southern blotting
using 500-bp DNA probes to allow the measurement of
chromatin condensation at higher resolution in the
Arabidopsis genome.

We analyzed an euchromatic 81,494-bp genomic
region on chromosome V covered by BAC clone MXK3
and an Athila retrotransposon within the centromeric
heterochromatin of chromosome V (ALA region) (Figure
1A). The MXK3 region lies about 1 Mb from the end of
the long arm of chromosome V (Figure 1A), and
contains 30 protein-coding genes with expression levels
in leaves varying over 500-fold as measured previously
(Hanano et al. 2002), two tRNA genes and one
pseudogene (Figure 1B). For direct comparison of the
DNase I sensitivity of different genomic segments,
hybridization was performed using a set of membranes

prepared with genomic DNA that had been subjected to
the same DNase I digestion series using the Arabidopsis
leaf. To confirm specific hybridization of a probe to its
target genomic region, EcoRI-, EcoRV- or HindIII-
digested genomic DNA was also included in the blot
(Figure 2A, lanes E, V and H, respectively). DNase I
sensitivity was analyzed using continuous and non-
overlapping 500-bp DNA probes. A total of 163 probes
covering the entire 81,494-bp MXK3 region were used.

The DNase I digestion profiles of bulk chromatin, as
well as of the Unknown (At5g64890, XK66 probe), b-
1,3-glucanase (At5g64790, XK3 probe), cdc2-like
protein kinase (At5g64960, XK107 probe) and ABC
transporter protein 1-like (At5g64840, XK30 probe)
coding regions in leaves are shown in Figure 2A, as
representatives of the entire set of 163 autoradiographs
(probe positions are indicated in Figure 1B). The
Unknown gene gave a very weak expression signal
(Hanano et al. 2002), and only one EST has been
identified according to the MAtDB database, suggesting
that this gene is hardly expressed in leaves. The b-1,3-
glucanase gene gave a weak expression signal, whereas
the WRKY51, cdc2-like protein kinase, ABC transporter
protein 1-like genes are expressed at about 4-, 30- and
220-fold higher levels than the b-1,3-glucanase gene,
respectively (Hanano et al. 2002). In spite of the
differences in expression levels, these four segments
showed similar DNase I sensitivity, the majority of the
DNA being digested to fragments smaller than 2 kb as
seen in lane 6 of each membrane (Figure 2A). In the
other regions, all 500-bp MXK3 segments containing the
coding and regulatory regions showed similar DNase I
sensitivity to those of the XK3, 30, 66 and 107 segments
(data not shown).

The DNase I sensitivity of the typical heterochromatin
region was also analyzed. To avoid intense cross-
hybridization to repetitive elements, one of the double-
copy Athila retrotransposons (named ALA, Figure 1A)
within the genetically defined core centromere region of
chromosome V was used as a probe (Copenhaver et al.
1999; Kumekawa et al. 2000). As expected, the
centromeric ALA segment showed significantly
decreased DNase I sensitivity compared to those of the
XK66, 3, 107, and 30 segments (Figure 2A, compare
lanes 5 and 6).

Because DNase I has a little sequence specificity, we
assessed the contribution of sequence-specific cleavage
by DNase I to in vivo DNase I sensitivity assays for the
XK3, XK30 and ALA segments by Southern
hybridization with DNase I-digested naked DNA. The
XK3, XK30 and ALA probes gave almost identical
digestion profiles upon Southern hybridization with
DNase I-digested naked DNA (Figure 2B), confirming
that the signals observed in the DNase I sensitivity
assays reflect the in vivo chromatin structure of the DNA.
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Figure 1. Map of the target regions and genes on chromosomes and
in MXK3 BAC clone. (A) Chromosomal positions of the MXK3 clone,
ALA region, AGAMOUS, ribosomal protein S1, and NAC1 genes.
Roman numerals indicate chromosome identities and ovals represent
core centromere regions. (B) Gene organization in the MXK3 region.
The entire MXK3 region is represented by eight horizontal lines (each
line corresponds to a 10-kb segment). The 30 protein-coding genes are
represented by open arrows, with a five-digit number below each arrow
indicating their AGI locus codes (At5gxxxxx). One pseudogene (open
arrow, pseudo) and two tRNA-coding genes (closed arrowheads) are
also shown. The positions of the XK3, 30, 66 and 107 segments are
indicated by thick horizontal bars with the corresponding gene names.
Bar indicates 1 kb. The map is drawn to scale.



DNase I sensitivity of AGAMOUS gene and of
genes near heterochromatin
In addition to the genes in the MXK3 and the ALA
region, we also analyzed the floral homeotic gene
AGAMOUS (AG; At4g18960; Figure 1A) on
chromosome IV. In Arabidopsis leaf, the AG gene is
repressed by polycomb-group (PcG) genes, Curly leaf,
Embryonic flower 2, Fertilization independent
endosperm, and heterochromatin protein 1 (HP1)-like
gene Terminal flower 2 (Goodrich et al. 1997; Kinoshita
et al. 2001; Kotake et al. 2003; Moon et al. 2003; Katz et
al. 2004; Nakahigashi et al. 2005). PcG proteins are
known to repress homeotic genes by reducing
accessibility of their chromatin in Drosophila (Zink and
Paro 1995; Fitzgerald and Bender 2001), and HP1 is a
critical component of heterochromatin that causes
chromatin condensation in animals (Maison and
Almouzni 2004; Verschure et al. 2005). To directly
investigate the condensation state of the AG gene, we
examined the DNase I sensitivity of the repressed AG in
leaves. Sensitivity of the AG gene was comparable to that
in the MXK3 region and was significantly higher than
that in the ALA region (Figure 2, 3).

In the Arabidopsis genome, a number of functional
genes have been found in typical heterochromatin
regions (Copenhaver et al. 1999; CSHL/WUGSC/PEB
Arabidopsis Sequencing Consortium 2000; Kumekawa et
al. 2000; Haupt et al. 2001). To gain insight into the
chromatin structure of genes in heterochromatin, the
ribosomal protein S1 gene (S1; At5g30510) in the
pericentromeric region of chromosome V (Kumekawa 
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Figure 2. DNase I sensitivity of the Unknown, b-1,3-glucanase, cdc2-like protein kinase and ABC transporter protein 1-like genes, and the core
centromere region of chromosome V in leaves. (A) Chromatin of leaves was digested with DNase I at 0, 0.025, 0.25, 0.5, 1, and 2 U ml�1 (lanes 1–6,
respectively), and DNA was isolated and 20 mg was fractionated on an agarose gel. Intact genomic DNA was digested with EcoRI, EcoRV, or HindIII
(lanes E, V and H, respectively). An ethidium bromide-stained gel is shown at the left with molecular weight markers on the left side. The general
DNase I sensitivity of the Unknown, b-1,3-glucanase, cdc2-like protein kinase, ABC transporter protein 1-like genes, and of the centromeric ALA
region of chromosome V, is shown, with the corresponding probe names below. (B) Naked genomic DNA was digested with increasing amounts of
DNase I (denoted by triangles above lanes 1 and 2), and DNA was isolated; 12 mg was fractionated, transferred to membranes and hybridized. An
ethidium bromide-stained gel is shown at the left with molecular weight markers on the left side. The in vitro DNase I digestion profiles of the XK3,
X30 and ALA probes are shown, with the corresponding probe names below.

Figure 3. DNase I sensitivity of the AGAMOUS gene and genes near
heterochromatin in leaves. The general DNase I sensitivity of the
AGAMOUS, ribosomal protein S1 and NAC1 genes in leaves is shown,
with the corresponding probe names below. Symbols are as in Figure 2.



et al. 2000), and the NAC1 gene (At1g01010) within 
the cytologically-condensed subtelomeric region of
chromosome I (Avivi et al. 2004), were analyzed in
leaves (Figure 1A). Both the S1 and NAC1 genes are
surrounded by dispersed repetitive elements, the S1 gene
is located 0.3 kb apart from clusters of retrotransposons,
and the NAC1 gene is located 4 kb apart from the
telomeric repeats. The S1 gene is expressed in leaves
(data not shown), and the NAC1 gene is not expressed in
leaves but is activated by protoplasting leaf cells (Avivi
et al. 2004). As a result, sensitivity of the S1 and NAC1
genes was comparable to that in the MXK3 region and
was significantly higher than that in the ALA region
(Figure 2, 3).

Discussion

Although different chromatin condensation states near
the transgene integration site are thought to be one of the
causes for variable transgene expression in plants, we
have shown that chromatin condensation states as
measured by overall accessibility to DNase I was
relatively uniform irrespective of individual gene
expression levels in the 80-kb MXK3 region, at the
AGAMOUS gene and ribosomal protein S1 and NAC1
genes near heterochromatin in Arabidopsis (Figure 2, 3).
In contrast, the ALA region within genetically-defined
centromere of chromosome V was significantly DNase I
insensitive (Figure 2). In leaf, the AG gene is thought to
be repressed by heterochromatin formation analogous to
Drosophila and mammalian cells (Hsieh et al. 2003),
however, its chromatin showed similar sensitivity to that
of the MXK3 (Figure 3). It is possible that the AG gene
is repressed by the PcG and HP1-like proteins through
slightly-condensed heterochromatic structure which
cannot be detected in our sensitivity assay. In the
Arabidopsis leaf, the upstream At4g18950 gene (located
at 5.1–7.6 kb upstream from the 5� end of the AG gene)
and downstream At4g18965 gene (located at 1.1–2.6 kb
downstream from the 3� end of the AG gene) were
expressed (data not shown). Furthermore, in the mutant
lacking the HP1-like gene, the AG gene is up-regulated
but expression of these two genes next to the AG is not
affected (Nakahigashi et al. 2005). Collectively, these
data suggest that the expression of the two genes
adjacent to the AG gene is not affected by the PcG and
HP1-mediated heterochromatic structure of the AG. The
S1 and NAC1 genes are located near heterochromatin,
however, their chromatin showed similar sensitivity to
that in the MXK3 in leaves (Figure 3). In addition, the S1
gene is expressed (data not shown) in leaves and the
expression of the NAC1 gene can be induced by
protoplasting leaf cells (Avivi et al. 2004). Outside
typical heterochromatin, gene density in Arabidopsis is
uniformly high (average density of one gene/4.5 kb) 

(The Arabidopsis Genome Initiative 2000) and no 
large domains of hundreds of kilobases devoid of
transcriptional activity have been found in gene
expression studies at the whole genome level (Yamada et
al. 2003). Although we have examined only a small
portion of the Arabidopsis whole genome (140 Mb), the
presence of genes regulated by large-scale (extending a
number of genes) chromatin condensation states seems
to be unlikely. Further analysis of local chromatin
structure, such as nucleosome positioning or histone
modifications, will reveal the principal factors
controlling the accessibility of transcription factors to the
Arabidopsis genes.

Although the DNase I sensitivity except for the
centromeric region was similar in the analyzed regions in
the Arabidopsis genome, we cannot exclude the
possibility that differences in chromatin condensation
states too subtle to be detected in our sensitivity assay
may influence the transgene expression. However, we
previously reported that 10 independent Arabidopsis
transgenic lines, harboring a single copy of the transgene
integrated at different positions in each genome, showed
uniform expression levels (Nagaya et al. 2004).
Consistent with that report, an extensive characterization
of 132 independent transgenic lines by Schubert et al.
revealed no case of variable transgene expression as a
result of the site of transgene integration (Schubert et al.
2004). The uniformity of gene expression level of
randomly integrated single-copy transgenes therefore
makes the above possibility unlikely. Collectively, these
results suggest that the differences in chromatin
condensation state outside of heterochromatic regions
are not a major cause of variable transgene expression in
Arabidopsis. Interestingly, two transgenic lines harboring
transgenes in the pericentromeric heterochromatin of
chromosome I showed high expression levels (Schubert
et al. 2004). Considering the relatively decondensed
chromatin structure of the S1 and NAC1 genes within
heterochromatin, condensed heterochromatic structure
may not propagate into nearby transgenes in Arabidopsis.
Analysis of expression level and chromatin structure of
more number of transgenes integrated within
heterochromatin should be undertaken to reveal this
point. In barley and tobacco plants with heterochromatic
regions other than typical heterochromatin in their much
larger genomes (Houben et al. 2003), several transgenic
lines harboring randomly-integrated single copy
transgenes also showed uniform expression levels
(Hobbs et al. 1990; Koprek et al. 2001). Transgenes are
possibly not influenced by heterochromatic structure near
the integration site in these two plants, however, studies
of large number of single copy transgene expression or
direct measurement of chromatin condensation states are
necessary to conclude.

Variability of transgene expression is thus likely to be
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caused by factors other than chromatin condensation,
such as sequence-specific gene silencing mediated by
small interfering RNA and/or by increasing copy number
(Butaye et al. 2004; Schubert et al. 2004). Approaches to
eliminating these factors intrinsic to transgenes should
contribute to minimizing variability of transgene
expression in plants.
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