
Fluctuations in day length affect the developmental
processes and behaviors of many organisms. This
phenomenon is called photoperiodism and allows the
detection of seasonal changes and anticipation of future
environmental conditions (Garner and Allard 1920).
Garner and Allard (1920) found that many plants flower
in response to changes in day length. The photoperiodic
control of flowering time is tightly linked to the circadian
clock (Mizoguchi et al. 2002, 2005). In Arabidopsis,
LATE ELONGATED HYPOCOTYL (LHY) and
CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) each
encode a myb protein essential for clock function
(Schaffer et al. 1998; Mizoguchi et al. 2002; Wang and
Tobin 1998;). Two floral activator genes, GIGANTEA
(GI) and CONSTANS (CO), play key roles in
photoperiodic flowering (Fowler et al. 1999; Park et al.
1999; Putterill et al. 1995). We recently proposed that GI
plays dual roles, acting within the circadian clock to
regulate period length and circadian phase while also
more directly promoting the expression of a circadian
clock output pathway that includes CO and
FLOWERING LOCUS T (FT ) and promotes flowering in
Arabidopsis (Mizoguchi et al. 2005). FT has been
proposed as an important component of the elusive
“florigen” signal (Abe et al. 2005; Huang et al. 2005;
Wigge et al. 2005).

The photoperiodic flowering responses of plants are
classified into 3 major types, long-day (LD), short-day
(SD) and day-neutral (DN) (Thomas and Vince-Prue
1997). The LD plants only flower (an absolute LD plant)
or flower most rapidly (a facultative LD plant) with more
than a certain number of hours of light in each 24 h
period. By contrast, the SD plants only flower or flower
most rapidly with fewer than a certain number of hours
of light in each 24 h period. The DN plants flower at the
same time irrespective of the photoperiodic conditions.
Arabidopsis is a facultative LD plant and flowers much
earlier in a photoperiod with a long light period and a
short dark period (e.g. 16 h light/8 h dark) than that with
a short light period and a long dark period (e.g. 8 h light/
16 h dark or 10 h light/14 h dark).

The reverse response to day length observed between
Arabidopsis (LD plant) and rice (Oryza sativa L.; SD
plant) is partly explained by the difference in the
function of CO in Arabidopsis and the rice homolog
HEADING DATE 1 (Hd1; Hayama et al. 2003; Izawa et
al. 2002). However, the molecular mechanisms
underlying the photoperiodic responses of other LD, SD,
and day-neutral (DN) plants are largely unknown.
Among these, the DN response is the most poorly
characterized. Finding novel mechanisms involved in
photoperiodism and switching one type to another (e.g.,
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LD to SD or DN plants) remain important topics of
investigation. In the first section of this short review, we
summarize recent progress in comparisons of molecular
mechanisms of photoperiodic flowering in Arabidopsis
and rice. In the second section, we summarize how to
create DN Arabidopsis based on recent genetic analyses
of genes involved in photoperiodic flowering and
circadian rhythms. Finally, we discuss potential
molecular mechanisms of the DN response in tomatoes.

Why does photoperiod not affect flowering
time in tomato?

Lessons from Arabidopsis research
Photoperiods affect the developmental processes not only
of plants but also of insects and animals. Diapause
induction and termination of certain kinds of insects are
under photoperiodic control. For examples, the
production of elusive signal, pigment dispersing factor
(pdf), is controlled by circadian clock, and this signal
mediates between the clock and the photoperiodic
response, diapause in flies (Figure 1).

In the past decade, photoperiodic flowering of the LD
plant Arabidopsis (Figure 1) and the SD plant rice has
been well characterized using molecular genetics. Loss-
of-function or over-expression of certain genes changes
the photoperiodic response type of Arabidopsis from the

LD-type to the DN-type. DN (or day-length insensitive)
responses can be further classified into several groups:
types I to III (Figure 1).

Arabidopsis is a facultative LD plant that flowers
much earlier under LD than SD conditions. Loss-of-
function of floral activators in the photoperiod pathway
such as gi, co, and ft largely delay flowering under LD,
but not SD conditions (Koornneef et al. 1991). The gi
mutation has the most severe effect among these
mutations. The gi mutant plants produce more leaves
than do wild-type plants in the inductive condition (LD),
but the flowering times of gi and wild-type plants are
almost the same in the noninductive condition (SD; type
I; Figure 2).

In contrast, over-expression of CO (CO-ox) accelerates
flowering even under SD conditions (Simon et al. 1996).
The CO-ox plants flower earlier than wild-type plants
under LD conditions (type II; Figure 2). Photoperiodic
flowering is affected by the circadian clock (Mizoguchi
and Coupland 2000; Mizoguchi et al. 2006). For
example, LHY and CCA1 encode myb proteins and play
key roles in the control of circadian rhythms and
flowering time. The lhy cca1 double loss-of-function
causes day-length insensitive early flowering (Mizoguchi
et al. 2002) and is classified as type II (Figure 2).

The third class of the DN response of flowering can be
obtained by over-expression of either LHY or CCA1.
These plants flower later than wild-type plants under LD
conditions, but slightly earlier under SD conditions
(Mizoguchi et al. 2005; Súarez-López et al. 2001).
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Figure 1. Connection between the photoperiodic responses and
circadian clocks in Arabidopsis and fly. Circadian clocks play key roles
in photoperiodic responses such as flowering in Arabidopsis and
diapause in flies. In both cases, the production of elusive signals, i.e.,
FT and pigment dispersing factor (pdf), is controlled by the clocks, and
these signals mediate between the clocks and the photoperiodic
responses. The Arabidopsis clock not only affects the gene expression
of GI–CO, but may also play important roles in distinct pathway(s) to
control FT expression.

Figure 2. Three types of day-neutral flowering response in
Arabidopsis. Delay of flowering in the inductive condition (long day
[LD]; type I, e.g., gi) and acceleration of flowering in the noninductive
condition (short day [SD]; type II, e.g., CO-ox and lhy cca1) cause day-
neutral flowering responses in Arabidopsis. Over-expression of either
LHY or CCA1 has a unique effect on flowering; it delays and
accelerates flowering under LD and SD conditions, respectively (type
III). WT, wild type. See text for details.



Almost all of the late and early flowering patterns
described above are well correlated with levels of FT
expression in Arabidopsis (Calvino et al. 2005; Fujiwara
et al. 2005a, b, c; Mizoguchi et al. 2005).

Can the tomato day-neutral response type
be explained by simple loss- or gain-of-
function of GI, CO, or FT?

Current tomato cultivars with the DN response have been
chosen by breeders using long-term selection. The
modern tomato has a mild short day response that is
sometimes unnoticed due to other environmental
inductions (high light or mild temperatures) (Samach
and Lotan 2006, this issue). This allows for the harvest
of tomato fruits over the entire year if temperatures in the
growth environment are high enough. How did the
ancestral tomato with the strong/mild photoperiodic
response type become day-neutral? Or did the ancestral
tomato has DN response type?

Day length affects a number of secondary compounds
in tomato cultivars. For example, in syn. Solanum
hirstum, levels of the steroidal glycoalkaloid tomatine
are different under LD than SD conditions at the same
irradiance (Sinden et al. 1978). The levels of tomatine
are correlated with the susceptibility to attacks by the
Colorado potato beetle (Sinden et al. 1978).

Trichome density is also affected by day length in
tomatoes and Arabidopsis (Chien and Sussex 1996;
Gianfagna et al. 1992). Tight connections between
photoperiodic responses and circadian rhythms have
been outlined in detail in recent reviews (Mizoguchi et
al. 2000, 2006). Some biological processes in tomatoes
are controlled by the circadian clock (Samach and Lotan
2007, this issue), although core clock components in
tomatoes have not been identified to date.

These results suggest that tomatoes have a sense of
time measurement and that the connection between the
circadian clock and one of the output pathways,
flowering, may be impaired at a certain point. Below, we
show several examples of how to make an LD plant,
Arabidopsis, day neutral (Figure 1).

The loss-of-function of an FT homolog in tomato
(SINGLE FLOWER TRUSS ; SFT ) delays flowering,
which indicates that SFT in tomato actually functions as
a floral activator in a manner similar to those in other
plant species such as Arabidopsis and rice (Lifschitz and
Eshed 2006; Lifschitz et al. 2006). What about GI and
CO homologs? Tomatoes possess GI and CO-related
genes, and the GI-homolog shows diurnal and circadian
expression patterns (Niinuma et al. 2007, this issue),
suggesting that at least the GI homolog may have similar
functions to those of Arabidopsis and rice. This
possibility can be tested by analyzing both loss- and
gain-of-function of the GI and CO homologs in

tomatoes.
Although the GI–CO–FT pathway is well conserved in

Arabidopsis, rice, and other plant species, a unique
molecule that seems to be specific to rice has also been
reported. The EARLY HEADING DATE 1 (EHD1)
encodes a B-type response regulator and plays key roles
in the photoperiodic flowering of rice (Doi et al. 2004).
The analysis of approximately 36,000 expressed
sequence tags (ESTs) from the one of the tomato
cultivars ‘Micro-Tom’ revealed that these ESTs included
more than 10,000 unigenes, approximately 30% of which
have not been found in Arabidopsis and rice and appear
to be unique to tomato (Yamamoto et al. 2005). Novel
players may have key roles in the control of
photoperiodic flowering in tomato. The identification of
the genetic network for photoperiodic flowering in
tomatoes and a comparison of the genetic networks
among Arabidopsis (LD plant), rice (SD plant), and
tomato (DN plant) are important topics for future
investigations. The molecular mechanisms underlying
the DN flowering response in tomato have not been
elucidated. EMS-mutagenesis and generation of T-DNA
insertional lines of ‘Micro-Tom,’ which are currently
underway in our laboratory, will be useful in determining
these mechanisms.
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