
Flavonoid biosynthesis is the one of the most intensively
studied secondary metabolite pathways. Anthocyanins
and proanthocyanidins (or condensed tannins) are a large
subclass of flavonoid pigments that perform important
functions in plants (Winkel-Shirley 2001). Anthocyanins
are brightly colored pigments produced in flowers and
fruits whose main function is to attract pollinators and
seed dispersers (Mol et al. 1998). Proanthocyanidins are
secondary metabolites whose major role is to provide
protection against microbial pathogens, insect pests, and
herbivores. Proanthocyanidins are present in the fruits,
bark, leaves, and seeds of many plants (Dixon et al.
2005). Both anthocyanins and proanthocyanidins are
localized in the vacuole; however, the enzymatic steps of
their synthesis occur in the cytoplasm (Mol et al. 1998;
Springob et al. 2003). Glutathione S-transferase (GST)
plays a role in the vacuolar transport of anthocyanins,
and it is represented by Bz2 in maize (Marrs et al. 1995)
and AN9 in petunia (Alfenito et al. 1998). GSTs
presumably act as flavonoid-binding proteins and play
the role of cytoplasmic flavonoid-carrier proteins in vivo
(Mueller et al. 2000). In Arabidopsis thaliana,
TRANSPARENT TESTA 19 (TT19, At5g17220), a gene

encoding a GST, has recently been isolated. TT19 is
required for the accumulation of anthocyanin in vegetative
tissues and proanthocyanidin in the seed coat (Kitamura
et al. 2004).

GSTs constitute a family of multifunctional enzymes
present in both plants and animals (Edwards et al. 2000;
Frova 2003). The main function of GSTs is to detoxify
xenobiotics (Frova 2003). GSTs also play an indispensable
role in the intracellular transportation of anthocyanins
and proanthocyanidins (Marrs et al. 1995; Alfenito et al.
1998; Mueller et al. 2000; Cho and Kong 2003; Kitamura
et al. 2004). Based on gene organization (intron number
and position), sequence similarity, and the conservation
of specific residues, plant GSTs can be classified into the
following 5 classes: zeta, theta, tau, phi, and lambda
(Dixon et al. 2002a). Recently, a new group of GST-like
proteins with glutathione-dependent dehydroascorbate
reductase (DHAR) activity has been classified in
Arabidopsis and some other plant species (Dixon et al.
2002b; Frova 2003).

The pap1-D mutant is a transferred DNA (T-DNA)
activation-tagged line that overproduces anthocyanins by
the ectopic overexpression of the PRODUCTION OF
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Abstract Glutathione S-transferase (GST) plays an important role in the transport and accumulation of anthocyanin and
proanthocyanidin in plants. In our previous study on Arabidopsis thaliana overexpressing the PRODUCTION OF
ANTHOCYANIN PIGMENT 1 (PAP1) gene encoding an MYB transcription factor, the AtGSTF5 and AtGSTF6 genes
encoding GST-like protein were up-regulated along with TRANSPARENT TESTA 19 (TT19), which is required for the
accumulation of anthocyanin and proanthocyanidin. The proteins encoded by these 3 genes showed very weak GST
activities as detected by using recombinant proteins expressed in Escherichia coli. The anthocyanin levels were severely
decreased in the tt19 mutant but not in the Atgstf6 mutant, suggesting that TT19 is almost exclusively involved in
anthocyanin accumulation. The results of co-expression network analysis using public transcriptome data corresponded to
the proposition of the predominant role of TT19 in anthocyanin accumulation.
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ANTHOCYANIN PIGMENT 1 (PAP1) gene encoding an
MYB transcriptional factor. This overexpression occurs
by the action of tetramerized enhancer sequences present
in the cauliflower mosaic virus 35S promoter in the
inserted T-DNA (Borevitz et al. 2000). Overexpression
of the PAP1 gene of Arabidopsis activates most of 
the genes in the anthocyanin pathway, leading to
anthocyanins production throughout the plant (Borevitz
et al. 2001; Tohge et al. 2005). Thus, it is a potential tool
for the functional identification of genes involved in
anthocyanin biosynthesis. In PAP1-overexpressing mutant
plants, 3 members of the GST gene family—TT19,
AtGSTF5 (At1g02940), and AtGSTF6 (At1g02930)—
were found to be up-regulated 19.1-, 3.6-, and 17.9-fold,
respectively (Tohge et al. 2005). In this study, we
examined the enzymatic activities of recombinant
proteins and the metabolite changes in knockout mutants
of these GST-like genes.

Salk_105779 (designated as gstf6-1), an A. thaliana
(ecotype Columbia) T-DNA insertion mutant of
AtGSTF6 and Salk_026398 (designated as gstf12-1), an
insertion mutant of TT19, were obtained from the Salk
Institute collection (Alonso et al. 2003). The plants were
germinated on agar medium containing 1% sucrose
(Valvekens et al. 1988) at 22°C in 16/8 h light and dark
cycles for 2 weeks, and they were then transferred onto
agar medium containing 10% sucrose and cultivated for
1 week in order to induce anthocyanin accumulation
under high-sugar stress conditions. Rosette leaves from
3-week-old plants were harvested, immediately frozen in
liquid nitrogen, and stored at �80°C until use.

To confirm the T-DNA insertion and determine its
position in the gstf12-1 and gstf6-1 lines, the genomic
DNAs extracted from the leaves were polymerase chain
reaction (PCR)-amplified with a combination of specific
primers designed for the individual lines (gstf12-1: left,
5�-TGAGAACCCCAAAAACGTCA-3� and right, 5�-C-
TCATCAAGTACCCCATCGCC-3�; gstf6-1: left, 5�-CA-
ACAACGGTTTTGTCTGTGGTC-3�, gstf6-1 and right,
5�-GACCCCAAATTTGTAATTGTACCAG-3�) and LBb1
(5�-GCGTGGACCGCTTGCTGCAACT-3�).

The levels of TT19 and AtGSTF6 gene transcripts in
the homozygotes of the T-DNA-inserted mutants were
determined by semiquantitative reverse transcription
(RT)-PCR using gene-specific primers. The primer
sequences for RT-PCR were 5�-GGTTGTGAAACTAT-
ATGGACAGG-3� and 5�-TCAGTGACCAGCCAGCAC-
C-3� for TT19, and 5�-GAGTATTCAAGCTTGGTGGC-
G-3� and 5�-CAAGACTCATTATCGAAGATTACATT-3�

for AtGSTF6. The PCR program comprised an initial
denaturation step of 94°C for 3 min; 24 cycles of 94°C
for 30 s, 55°C for 30 s, and 72°C for 1 min; and a final
extension step of 72°C for 7 min. The expression of the
genes was normalized to tubulin.

For flavonoid analysis, the rosette leaves of the 3-

week-old plants were harvested and extracted with 5 m l
extraction solvent (methanol : glacial acetic : water�
45 : 5 : 50) per milligram fresh weight of tissue. After
centrifugation at 12,000�g, the cell debris was
discarded, and the extract was centrifuged again. Using 
a high-performance liquid chromatography/photodiode
array detection/electrospray ionization mass spectrometry
(HPLC/PDA/ESI-MS) system comprising a Finnigan
LCQ-DECA mass spectrometer (ThermoQuest, San Jose,
CA, USA) and an Agilent HPLC 1100 series (Agilent
Technologies, Palo Alto, CA, USA) as described
previously (Jones et al. 2003; Yamazaki et al. 2003;
Tohge et al. 2005), 50 m l of the supernatant was analyzed.

Full-length AtGSTF6 cDNA (RAFL clone no. RAFL05-
16-O07) was obtained from RIKEN BioResource Center,
Tsukuba, Japan. For TT19 and AtGSTF5, cDNAs were
isolated by RT-PCR from the leaf RNA of wild-type
Arabidopsis by using gene-specific primers (TT19: 5�-
AAAAAGCAGGCTCAATGGTTGTGAAACTATATGG
ACAGG-3� and 5�- AGAAAGCTGGGTTCAGTGACC-
AGCCAGCACCATAA-3�; AtGSTF5: 5�- AAAAAGCA-
GGCTGGATGGGCATAAACGCGAGC-3� and 5�-AGA
AAGCTGGGTTTAATTCTTCTTCTTATGGTACCAAG
CC-3�). To express the recombinant proteins, the cDNAs
of TT19, AtGSTF5, and AtGSTF6 were introduced into
the GatewayTM system (Invitrogen Corp., CA, USA)
following the manufacturer’s instructions. The attB site
was introduced by 2 steps of PCR using gene-specific
primers (for TT19 and AtGSTF5, we used the above
mentioned primers; AtGSTF6: 5�-AAAAAGCAGGCTC-
AATGGCAGGAATCAAAGTTTTCGG-3� and 5�-AG-
AAAGCTGGGTTTAAAGAACCTTCTGAGCAGAAG
GC-3�) and attB adaptor primers (5�-GGGGACAAGTT-
TGTACAAAAAAGCAGGCT-3� and 5�-GGGGACCA-
CTTTGTACAAGAAAGCTGGGT-3�). Entry clones were
then obtained by BP recombination with pDONR221. The
nucleotide sequences of the entry clones were determined
to confirm the sequence. Subsequently, the cDNAs of these
3 genes were introduced into pDEST17. Recombinant
proteins with a 6-histidine (6�His) tag at the N-terminal
extension were expressed in E. coli BL21-AITM. Cells
were grown overnight at 37°C with shaking in 3 ml of
Luria-Bertani (LB) medium containing 100 mg ml�1

ampicillin and then diluted 1 : 200 in 1 l of the same
medium. Growth was monitored by measuring the
turbidity at 600 nm; L-arabinose was added to a final
concentration of 0.2% when the turbidity was between
0.4 and 0.6 absorption units. Incubation was continued at
20°C for 12 h. The cells were collected by centrifugation
at 10,000�g for 30 min and washed with 0.9% NaCl,
and the pellet was frozen at �80°C until use. The pellet
was resuspended in lysis buffer (50 mM NaH2PO4, 300
mM NaCl, 10 mM imidazole; pH 8.0) containing
1 mg ml�1 lysozyme and incubated on ice for 1 h. The
cells were disrupted by sonication. Soluble protein

192 Arabidopsis Glutathione S-transferase

Copyright © 2008 The Japanese Society for Plant Cell and Molecular Biology



extracts were obtained by centrifugation at 12,000�g for
30 min. They were purified over a nickel-nitrilotriacetic
acid (Ni-NTA) affinity resin (Qiagen, Marvland, USA)
by using a chromatographic open column according to
the manufacturer’s protocol. All purification steps were
carried out at 4°C or on ice. The protein levels were
analyzed using the dye-binding method (Bio-Rad, CA,
USA); sodium dodecyl sulphate (SDS)-polyacrylamide
gel electrophoresis (PAGE) was performed using 12%
polyacrylamide gels, and Coomassie brilliant blue
staining was performed.

The GST activities of the purified proteins, i.e., their
ability to conjugate glutathione the universal substrate 1-
chloro-2,4-dinitrobenzene (CDNB) were determined.
CDNB is usually used as a model GST substrate
(Edward et al. 2000). The absorbance at 340 nm was
used to measure the amount of the conjugated product,
i.e., dinitrophenol-glutathione (DNP-GS; Marrs 1996), at
25°C in a reaction buffer containing 98 mM potassium
phosphate (pH 6.5), 0.98 mM EDTA (Habig et al. 1974),
2 mM reduced glutathione (Wako, Osaka, Japan), and 1
mM CDNB (Wako, Osaka, Japan). GST from rat liver
(Sigma-Aldrich, St. Louis, USA) was used as positive
control.

Phylogenetic analysis of the deduced amino acid
sequences of Arabidopsis GSTs and known GSTs that
are involved in anthocyanin biosynthesis were performed
using the neighbor-joining method (Figure 1). The
phylogenetic tree showed that TT19, AtGSTF5, and
AtGSTF6 were classified in the phi class, as were AN9
from petunia (Petunia hybrida) and PfGST1 from perilla
(Perilla frutescens); in contrast, Bz2 from maize (Zea
mays) was classified into the tau class.

As shown in Table 1, all the recombinant proteins of
the Arabidopsis GST-like genes exhibited GST activity,
although the activity was very weak compared with that
of the authentic rat liver GST. On comparison with the
Bz2 and AN9 recombinant proteins expressed in E. coli,
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Figure 1. Phylogenetic analysis of Arabidopsis GST homologues. Phylogenetic analysis of Arabidopsis GST-like proteins using amino acid
sequences from GenBank database presented in the Arabidopsis genome initiative (AGI) code. Phylogenetic tree was constructed using the ClustalW
program with the neighbor-joining method (Thompson et al. 1994) and TreeView X. The reported GSTs—AN9 from petunia (Petunia hybrida)
(Alfenito et al. 1998), PfGST1 from perilla (Perilla frutescens) (accession number AB362191), and Bz2 from maize (Zea mays) (Marrs et al.
1995)—were also included.

Table 1. GST activity of purified TT19, AtGSTF5 and AtGSTF6
recombinant proteins against CDNB

Proteins GST specific activity (nmol min�1 mg�1 protein)

Standard GST 
383.1 �0.1

from rat liver
TT19 0.52 �0.02
AtGSTF5 0.36 �0.02
AtGSTF6 0.87 �0.05

Values are means�SD (n�3)



it was found that the recombinant proteins of the
Arabidopsis GST-like genes showed a similar level of the
GST activity of CDNB conjugation as Bz2 (Marrs et al.
1995). However, AN9 showed several-fold higher GST-
specific activity than Arabidopsis proteins (Alfenito et al.
1998).

The T-DNA-inserted mutants of TT19 (Salk_105779,
gstf12-1) and AtGSTF6 (Salk_026398, gstf6-1) were
analyzed in terms of relevant gene expression and
flavonoid accumulation. The gstf12-1 line contained a T-
DNA insertion at the second intron of At5g17220 and
the gstf6-1 line, at the first intron of At1g02930 (Figure
2A). The expressions of TT19 and AtGSTF6 were
analyzed by RT-PCR. The transcripts of AtGSTF6 and
TT19 were not observed in the homozygotes of the gstf6-
1 and gstf12-1 mutants, respectively, while they were in
the wild-type plant (Figure 2B). As shown in Figure 3B,
the accumulation of anthocyanins in the gstf12-1 mutant
was severely decreased (96%) compared with that in the
wild-type plants. In contrast, both the total anthocyanin
level and the anthocyanin pattern of the gstf6-1 mutant
showed no significant change. With regard to the level
and composition of flavonoids, both the gstf6-1 and
gstf12-1 mutants showed no obvious change compared to
the wild-type control plants (Figure 3A, B). These results
suggest that TT19 is almost exclusively involved in
anthocyanin accumulation; the mutation in TT19 thus
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Figure 2. T-DNA-inserted mutants of TT19 (At5g17220) and
AtGSTF6 (At1g02930). A. Schematic structure of the T-DNA-inserted
lines of TT19 (At5g17220) (line gstf12-1, Salk_105779) and AtGSTF6
(At1g02930) (line gstf6-1, Salk_026398). B. Expression of the TT19
and AtGSTF6 genes in mutant plants compared with that in wild-type
Col-0 (WT) plant. Total RNA was isolated from the rosette leaves of 3-
week-old plants grown under the high-sugar stress condition (10%
sucrose). b-Tubulin was used for normalization. (left) gstf12-1
(Salk_150779) mutant. (right) gstf6-1 (Salk_026398) mutant.

Figure 3. Flavonoid accumulation in knockout mutants. A.
HPLC/PDA chromatograms of rosette leaf extract from wild-type
(WT) Arabidopsis, the tt19 knockout mutant (gstf12-1), and the
AtGSTF6 knockout mutant (gstf6-1). (a, c, e) Absorbance at 520 nm for
detection of anthocyanins. (b, d, f) Absorbance at 320 nm for detection
of flavonoids. A1, cyanidin 3-O-[2�-O-(xylosyl) 6�-O-(p-O-(glucosyl)
p-coumaroyl) glucoside] 5-O-[6�-O-(malonyl) glucoside]; A2, cyanidin
3-O-[2�-O-(xylosyl) 6�-O-(p-coumaroyl) glucoside] 5-O-[6�-O-(malonyl)
glucoside]; A3, cyanidin 3-O-[2�-O-(2�’-O-(sinapoyl) xylosyl) 6�-O-(p-
O-(glucosyl) p-coumaroyl) glucoside] 5-O-glucoside; A4, cyanidin 3-
O-[2�-O-(2�-O-(sinapoyl) xylosyl) 6�-O-(p-O-(glucosyl) p-coumaroyl)
glucoside] 5-O-[(6��-O-malonyl) glucoside]; F1, kaempferol 3-O-
rhamnoside 7-O-rhamnoside; F2, kaempferol 3-O-glucoside 7-O-
rhamnoside; F3, kaempferol 3-O-[6�-O-(rhamnosyl) glucoside] 7-O-
rhamnoside.

B. Total peak area analyzed from liquid chromatography/mass
spectrometry (LC-MS) data of wild-type (WT) Arabidopsis, the tt19
knockout mutant (gstf12-1), and the AtGSTF6 knockout mutant (gstf6-
1). The values represent the mean with standard deviation (SD) of
triplicate determination. Data were analyzed by one-way analysis of
variance as indicated with Bonferroni post hoc adjustment for multiple
testing (*; p	0.05, **; p	0.005).



causes a change in the anthocyanin accumulation level,
and no other genes including AtGSTF6 and possibly
AtGSTF5, can complement.

The co-expression networks among 39 genes up-
regulated by PAP1 (Tohge et al. 2005) and all
Arabidopsis genes were evaluated using the ATTED-II
database, which allows co-expression analyses based on
publicly available microarray data via a co-expression
gene search program available at the RIKEN PRIMe
website (http://prime.psc.riken.jp/). The linkages
between genes that had a higher correlation coefficient (r

0.6) in 3 data sets; all data set version 1 (771 data),
tissue and development version 1 (237 data), and stress
treatment version 1 (298 data). The co-expression
networks were computed using 39 PAP1-up-regulated
genes as “bait” or “guide”. As shown in Figure 4, the
networks were divided into 4 groups: anthocyanin
biosynthesis, proanthocyanin biosynthesis, general
flavonoid biosynthesis, and lignin biosynthesis. These
networks indicated that TT19 is tightly connected to
anthocyanin biosynthesis; however, in contrast, AtGSTF5
and AtGSTF6 showed no connection to anthocyanin

biosynthesis. AtGSTF5 and AtGSTF6 exhibited co-
expression with TT2 (R2R3Myb) and At1g05575
(unknown), respectively. These results suggest that the
up-regulated genes in the PAP1-overexpressing mutant
are not directly involved in anthocyanin accumulation.
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