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Abstract The non-protein amino acid B-N-methyl-amino-L-alanine (BMAA) is a neurotoxin that was recently found to
be produced by most cyanobacteria. The neurotoxin was discovered in 1967 in the seeds of the cycad Cycas micronesica,
but this BMAA may originate from the symbiotic cyanobacterium Nosfoc, which inhabits the roots of cycads. BMAA is
thought to be the cause of the deadly neurodegenerative disease amyotrophic lateral sclerosis/parkinsonism dementia
complex (ALS/PDC), common among the Chamorro people of Guam. It was demonstrated that the Chamorros, in all
probability, have been exposed to high levels of BMAA through dietary consumption of flying foxes which fed mainly on
cycads seeds. BMAA production may be a common conserved evolutionary feature among cyanobacteria and due to their
wide global distribution, the toxin may be a common concern and potentially involved in provoking degenerative diseases
worldwide. BMAA may likewise be bioaccumulated in other cyanobacterial based food webs within ecosystems outside
Guam, and it is proposed that such webs may exist in the Baltic Sea, with its massive occurrence of cyanobacteria (blooms).
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Cyanobacteria (blue-green algae) are ancient prokaryotic
organisms, which arose approximately 3.5 billion years
ago (Schopf 1996; Whitton and Potts 2000). They
revolutionized life on earth by introducing the
chlorophyll-a based photosynthesis, which also brought
about oxygenation of the atmosphere (Des Marais et al.
1992). By forming an endosymbiosis with a eukaryotic
progenitor, which resulted in the evolution of
chloroplasts, they also gave rise to all algae and plants
(Miyagishima 2005). These events have shaped our
present day atmosphere and biosphere. Cyanobacteria
are among the most common prokaryotic groups on
Earth. They have a cosmopolitan distribution and are
found in most ecosystems, ranging from hot deserts to
cold arctic regions (Waleron et al. 2007), and from
tropical oceans (Berman-Frank et al. 2001; Capone et al.
1997; Karl et al. 2002), to brackish waters (Gallon et al.
2002; Jonasson 2006) and terrestrial environments
(Dodds et al. 1995; Ward and Castenholz 2000; Vincent
2000).

Cyanobacteria are known for their capacity to
establish long-lived symbioses with a range of plants and
marine organisms (Bergman et al. 2007; Rai et al. 2002;
Vessey et al. 2005). The oldest are the symbioses with
fungi, to form lichens that evolved at least 400 billion
years ago in coastal habitats (Paszkowski 2006). Such

cyanolichens  (Peltigera  spp.  Nephroma  spp.
Stereocaulon spp. etc) are common in most boreal
forests and mountain areas. Cyanobacteria also live in
association with common boreal mosses (e.g. with
Pleurozium) and they form symbiosis with liverworts
and hornworts (Read et al. 2000), with one genus of
ferns (Azolla), with gymnosperms such as cycads and
with one angiosperm, Gunnera spp.

The production of bioactive compounds such as toxins
is a well-known feature among cyanobacteria and has for
long and in many cases been connected with adverse or
lethal health effects (van Apeldoorn et al. 2007). The
first report of fatalities resulting from cyanobacterial
poisoning was from a lake in Australia in 1878 (George
1878). Since then, instances of human poisoning/death
from cyanobacteria have repeatedly been reported. The
main toxinogenic cyanobacteria considered as a potential
health risk so far occur in aquatic environments, where
they under certain conditions form massive surface
scums or ‘blooms’. The most studied cyanobacterial
toxins are the hepatotoxins, produced by members of the
genera Microcystis (Carmichael et al. 1988) and
Nodularia (Sivonen et al. 1989) and neurotoxins
produced by genera such as Anabaena and
Aphanizomenon. Several of these toxin producing
cyanobacteria regularly bloom in the brackish water of
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Figure 1. Map of the Baltic Sea.

the Baltic Sea, located in northern Europe (Figure 1)
(Gugger et al. 2002; Mahmood and Carmichael, 1986).

The Guam hypothesis

The non-protein amino acid S-N-methyl-amino-L-
alanine (BMAA) is a neurotoxin that was recently
discovered to be produced by cyanobacteria (Cox et al.
2005). However, BMAA was found already in 1967 in
the seeds of the cycad (Gymnosperm) Cycas micronesica
(Vega and Bell 1967). At the time, the discovery was
thought to be the key to the deadly neurodegenerative
disease amyotrophic lateral sclerosis/parkinsonism
dementia complex (ALS/PDC), which was common
amongst the native Chamorro people of Guam compared
to ALS/PDC incidence elsewhere (Kurland and Mulder
1954). BMAA has been shown to be a neurotoxin that
effects the motor neurons at lower concentrations than
those causing general neurodegeneration. Recent reports
have shown that BMAA concentrations as low as 10-30
UM BMAA can cause selective death of motor neurons
(Lobner et al. 2007; Rao et al. 2006). The selective
damage to motor neurons caused by purified BMAA was
reproduced by crude cycad extracts. ALS/PDC does not
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Figure 2. Schematic illustration of the biomagnification of the
neurotoxin BMAA (both free and protein bound) through the Guam
ecosystem, from cyanobacteria in the roots of cycads, via flying foxes
to man (Murch et al. 2004a). * Guam’s population is estimated to
152,000 people with about 47% belonging to the Chamorros.

only cause loss of motor neurons function, but also
exhibits the same features of neurofibrillary tangles, as
those found in Alzheimer’s disease (Rao et al. 2006).

BMAA has been detected in biopsies of diseased
Chamorroan people suffering from ALS/PDC, as well as
in biopsies from Canadian patients diseased in
progressive neurodegenerative disease. No BMAA was
found in the comparison group who died of causes
unrelated to neurodegeneration (Cox et al. 2003; Murch
et al. 2004b). First it was hypothesized that the Chamorro
people were exposed to a naturally occurring toxin
through their consumption of traditional tortillas made of
cycad seed flour (Banack and Cox 2003; Banack et al.
2006; Brownson et al. 2002). However, it was later
shown that the exposure came indirectly from cycads via
consumption of flying foxes (Pteropus mariannus
mariannus), a prized food of the indigenous Chamorro
people. The flying foxes feed on cycad seeds and was
shown to have a tissue concentration of BMAA more
than 400 times that of cycad seeds (Murch et al. 2004a).
A biomagnification of BMAA from the cycad seeds to
flying foxes and to man could explain the exposure of the
Chamorroan people to extremely high levels of BMAA
(Figure 2).

Cox and Banack (2003) later showed that BMAA is
produced by the cyanobacteria Nostoc, which is living in
symbiosis with cycads. The Nostoc filaments colonize
the roots of cycads, and as they are able to fix
atmospheric nitrogen, they support the plant with all
nitrogen needed for growth (Bergman et al. 2007; Vessey



et al. 2005). A still unresolved question is therefore
whether the cycads are able to synthesize BMAA or
whether all cycad derived BMAA actually originates
from the symbiotic cyanobacterium. As only a few
cycads have been analysed for BMAA so far, and all
natural cycad populations are colonized by Nostoc,
additional investigations are needed.

The biomagnification of BMAA through the Guam
ecosystem fits a classical triangle of increasing
concentrations of toxic compounds up the food chain
(Figure 2). This is similar to that of lipophilic
compounds such as DDT, PCBs, and other industrial
toxins/pollutants (Mariussen and Fonnum 2006).
However, since BMAA 1is not lipophilic but water
soluble, its biomagnification pathway must differ from
that of the lipophilic agents. It has been hypothesized
that BMAA associates with proteins and/or is
compartmentalized within the cell, and that this fraction
functions as an endogenous neurotoxic ‘reservoir’ from
which BMAA slowly with protein turnover, is released
over time. This increases the potential health risk even
for organisms exposed to lower doses of BMAA and
would explain its non-acute mode of toxic action (Murch
et al. 2004a).

BMAA may occur in both free and protein-bound
form and it has been shown that the ratio between the
protein-bound and free BMAA is present in a ratio
between 60:1 and 120:1 (Ince and Codd 2005). The
function of BMAA in cyanobacteria and in the cycads is
still unknown. However it has been hypothesized by Cox
et al. 2003 that BMAA in cycads may function as a
chemical deterrent to herbivory. Recently it was
documented that BMAA is produced by cyanobacteria
not only in the Nostoc-cycad symbioses, but also in other
plant symbioses (Cox et al. 2005). And perhaps even
more importantly, BMAA was found to be
biosynthesized in the majority of the free-living
cyanobacteria tested (Cox et al. 2005). This finding
suggests that the BMAA toxin can, like cyanobacteria,
have a global distribution and therefore the occurrence of
BMAA may be a widespread phenomenon.

The Baltic Sea and BMAA

Since cyanobacteria are globally widespread and harbour
many different habitats, the biomagnification of
cyanobacterial BMAA may not be unique to Guam.
BMAA might likewise be transferred in food-webs of
ecosystems outside Guam, and potentially be
biomagnified through other food chains. It is therefore of
key-importance to examine whether BMAA is produced
in natural environments outside tropical areas. The Baltic
Sea may exhibit a similar classical cyanobacterial based
biomagnification triangle as the Guam ecosystem (Figure
3). This semi-enclosed sea is one of the world’s largest
brackish water bodies, and could serve as a model
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Figure 3. A proposed biomagnification scenario of BMAA through
the Baltic Sea ecosystem. * Man in the figure represents the 16 million
people living along the shores of the Baltic Sea and which are
dependent on its services.

system for studies on the occurrence of BMAA and its
fate in a temperate environment.

Massive accumulations of surface ‘blooms’ of the
nitrogen-fixing  cyanobacterial genera  Nodularia,
Aphanizomenon, Nostoc, and Anabaena, are typical
phenomena during July-August in the Baltic Sea (Figure
1). These cyanobacteria are independent of a combined
nitrogen source as they are able to fixate atmospheric
nitrogen (Degerholm et al. 2006; Gallon et al. 2002). The
dense summer blooms of cyanobacteria are a nuisance
for fishing industries and holiday makers that may be
exposed to toxic compounds produced by some of these
cyanobacteria. The Baltic Sea has always been an
important resource to people living along its shores and
affects sixteen million people living in nine countries
surrounding it (Boesch et al. 2005).

The availability of dissolved P is an important factor
determining the spatial and temporal distribution of
nitrogen-fixing cyanobacteria in the Baltic Sea (Karlson
et al. 2007). Even though waste water treatment has
greatly improved in countries surrounding the Baltic Sea
during the last decades, there is still today no significant
reduction in average phosphate availability and
cyanobacterial blooms of the Baltic Sea have increased
due to other anthropogenic activities causing nitrogen
and phosphate run-offs from e.g. surrounding farming
areas (Jonasson, 2006; Karlson et al. 2007). Such
circumstances may increase the production and spread of
cyanobacteria that potentially produce the well-known
toxins and BMAA and negatively affect all organisms
exposed to and dependent on Baltic Sea services. For
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instance, in the Baltic Sea cyanobacteria constitute a
food source for zooplankton, which in turn are eaten by
fish and later by seal and man. Many coastal areas and
lakes that are used for fish or shellfish farming harbour
other potentially BMAA producing cyanobacteria.

Thousands of birds (primarily gulls) showing
symptoms of nervous disturbances and mass die-offs
have also been noted in coastal areas of Sweden in
2000-2004 (National veterinary institute 2004). The
reason for this has still not yet been established, but
cyanobacterial toxins like BMAA may be involved.

Cyanobacterial blooms are not restricted to lakes and
the Baltic Sea, but similar mass-occurrences are a
circum-global phenomena proven to occur in warmer
surface waters of all oceans. For instance, the larger
planktonic ~ cyanobacterium  Trichodesmium  spp.
dominate nutrient poor tropical and subtropical surface
waters together with small unicellular genera such as
Prochlorochoccus and Synechococcus (Capone et al.
1997; Karl et al. 2002). It was recently shown that
BMAA is produced by Trichodesmium and there are
reasons to believe that this is also the case in the
extremely common unicellular genera mentioned (Cox et
al. 2005).

Until now, only a few cycads have been analysed for
BMAA production. As a complimentary organism the
water fern Azolla, which forms symbiosis with
cyanobacteria, should be included. This fern is
commonly used as a fertilizer in rice fields worldwide
(Bergman et al. 1993). Due to the high nutrient
composition of Azolla it is frequently utilized as an
efficient and effective feed for livestock by several
farmers in Asia (Kamalasanana Pillai et al. 2002). So far,
little or no research regarding this potential route of
BMAA bioaccumulation has been done. However, since
BMAA is a potentially hazardous compound, identifying
and excluding all sources of BMAA is of immense
importance.

As cyanobacteria have a cosmopolitan distribution,
there are possibly other areas where BMAA may occur
and bioaccumulate. For instance, annual or even
permanent blooms of cyanobacteria have become
increasingly common in drinking water reservoirs
(Metcalf et al. 2008). There are a number of events
where humans have been poisoned by cyanobacterial
toxins. The most well characterized case was the
poisoning of renal dialysis patients in a clinic in Caruaru,
Brazil, in 1996 (Falconer and Humpage 2005). The
occurrence of cyanobacteria and their toxins in water
bodies for production of drinking water poses a technical
challenge for water management (Codd et al. 2005;
Falconer and Humpage 2005).

Several methods are available for identification of
toxin-producing cyanobacteria, and for removal of their
toxins during drinking water treatment (Codd et al. 2005;

NH,
H
N OH

/

H,C
(0]
Figure 4. The structure of BMAA. BMAA is a hydrophilic amino acid

with a molecular weight of 118.13Da and two nitrogen functional
groups. It has a relatively high chemical stability.

Hitzfeld et al. 2000). Unfortunately, there are no efficient
methods for BMAA detection in drinking water; however
such research is currently in progress.

As BMAA (Figure 4) is a small (118.13Da),
hydrophilic molecule with no chromophores, its
detection has caused analytical challenges. In order to
detect with either fluorescence or by UV-VIS BMAA
needs to be derivatized. There are several reagents
available for pre-column derivatization (Cohen and
Michaud 1993; Sarwar and Botting 1993; Strydom and
Cohen 1994), however due to its stability and rapid
reaction rate, carbamate 6-aminoquinolyl-N-
hydrosuccinimidyl (AQC) has shown to be a suitable
derivatizing agent for BMAA. AQC reacts both with
primary and secondary amines and yield fluorescent
derivates. (Banack and Cox 2003; Banack et al. 2006;
Cox et al. 2005; Murch et al. 2004a).

To rule out any contributions of other interfering
molecules, all analytical methods must be supported with
additional data obtained with a complimentary detection
technique e.g.  with  liquid  chromatographic
masspectrometry (LC-MS) (Banack et al. 2007; Cox et
al. 2003; Cox et al. 2005; Murch et al. 2004a; Murch et
al. 2004b).

Concluding remarks

So far, the only documented biomagnification of BMAA
is in the Guam ecosystem, where it also has been shown
to negatively affect mankind by causing severe
neurodegeneration. Besides in cycads, BMAA is also
produced by numerous symbiotic and free-living
cyanobacteria, including the main bloom-forming
cyanobacterial species in the Baltic Sea. It is therefore
possible that BMAA biomagnification scenarios may be
present not only in tropical, but also in temperate regions
where cyanobacteria dominate or act as important
primary producers on which other heterotrophic
organisms feed. Extensive research is therefore now
ongoing to examine the BMAA occurrence and potential
biomagnification outside of Guam. The theory that
BMAA causes neurodegeneration in humans is not
undisputed, although it is apparent that BMAA is
produced by most cyanobacteria and that it is neurotoxic
(Buenz and Howe 2007; Cox et al. 2005;
Papapetropoulos 2007).
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