
The potassium ion (K�) is the most abundant cation in
plant cells and is involved in enzyme activity, stomatal
opening, and regulation of osmolarity. K� is present at
�100 mM in cytosol and �200 mM in the vacuole.
Since K� concentration is present at the micro-molar
level in ordinary soil, high-affinity K� transporters 
are required for K� uptake in roots. In addition to K�

channels, three other types of K� transporter families
involved in potassium transport have been investigated 
in plants: the K� transporters (KT/HAK/KUP), high-
affinity K� transporters (Trk/HKT), and cation proton
antiporters (CPA) (Gierth and Mäser 2007). Since both
K� and Na� are monovalent cations, Na� can be passed
through some K� transporters. In high salt conditions,
K� uptake mediated by TaHKT2;1 is blocked and low-
affinity Na� uptake occurs (Gassmann et al. 1996). K�

transporters may be influx routes for Na� under high-
salinity conditions (Kader and Lindberg 2005, Takahashi
et al. 2007). Thus, high-affinity K� transport systems are
also essential for preventing Na� toxicity. We wish to
identify transporters that mediate high-affinity K� uptake
from soil in rice (Oryza sativa), a globally important
crop.

K� uptake system in plants

AtAKT1 was initially identified as the K� uptake
transporter in plants by reverse genetics. Root cells of

atakt1 mutants have no inward current, as determined by
patch-clamp and their growth is inhibited in low K�

media (100 mM or less) (Hirsch et al. 1998). In an
analysis of atakt1 mutant, Spalding et al. characterized
other K� uptake transporters (Spalding et al. 1999). K�

uptake of atakt1 mutants is inhibited by NH4
�, and was

activated by Na� and H�. KT/HAK/KUP transporters
are inhibited by NH4

�, and Trk/HKT transporters are
K�/Na� symporters that require an H� gradient for
activation; consequently, these two transporters are
considered K� uptake transporters in A. thaliana. Further
studies have also suggested that AtHAK5 function in K�

uptake (Gierth et al. 2005). However, AtHKT1, which is
the only one Trk/HKT transporter in A. thaliana, is a
Na� transporter (Berthomieu et al. 2003).

The OsAKT1 gene was isolated as the homologue of
AtAKT1 in rice. Golldack et al. comparatively analyzed
the expression of OsAKT1 gene in the salt-sensitive
cultivar IR29 and the salt-tolerant cultivar BK. The
difference in salt-tolerance of these cultivars is caused by
the difference in OsAKT1 expression: the mRNA of
OsAKT1 in root epidermis is reduced by salt stress in BK
but not IR29. Although the expression of OsAKT1 is
down-regulated under salt stress in BK, the level of K�

accumulation does not change under these conditions.
These results suggest the presence of high-affinity K�

transporters other than OsAKT1 in rice (Golldack et al.
2003) (Figure 1). Whole-cell clamp studies on rice root
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protoplasts indicated that OsAKT1-like K� transport is
inhibited in response to salt stress (Fuchs et al. 2005);
treatments with tetraethylammonium (TEA), an inhibitor
of K� channels including OsAKT1, reduced the
accumulation of Na� in the protoplasts of the salt-
sensitive cultivar, BRRI Dhan 29 (Kader and Lindberg
2005). It is considered that the rice K� channels
including OsAKT1 participate in the Na� influx from
soil. Two types of HKT transporters — OsHKT2;1, a
Na� transporter, and OsHKT2; 2 a K�/Na� co-
transporter–have been characterized in rice (Horie et al.
2001, 2008). OsHKT2;1 is the central transporter for
nutritional Na� uptake into K�-starved rice roots (Horie
et al. 2007).

Phylogenetic tree of KT/HAK/KUP
transporters in plants

KT/HAK/KUP transporters compose a large family: 13
proteins are encoded in the genome of A. thaliana, 25 to
27 genes in the rice genome, and 24 genes in the poplar
genome (Gierth and Mäser 2007, Grabov et al. 2007).
These proteins can be classified into four clusters based
on their amino acid sequence (Figure 2). Mutant strains
of budding yeast (Saccharomyces cerevisiae) and E. 
coli that are defective in the high-affinity K� transport 
system are often used as host cells for complementation
tests to assess whether a given transporter has K�

transport activity. The TRK1 and TRK2 genes encode 
the high-affinity K� transporters in S. cerevisiae.
Complementation tests with trk1 and trk2 mutant of yeast
and analysis of T-DNA mutant Arabidopsis have revealed
that KT/HAK/KUP transporters in cluster I, AtHAK5,
HvHAK1, and OsHAK1-1, had high-affinity K� transport
activity (Banuelos et al. 2002, Gierth et al. 2005, Santa-
Maria et al. 1997). In contrast, OsHAK7, OsHAK10 and
HvHAK2 transporters in cluster II could not complement
the trk1 and trk2 mutations of yeast (Banuelos et al.
2002; Santa-Maria et al. 1997). The chimeric protein
OsHAK10-GFP is localized to the tonoplast in onion
epidermal cells (Banuelos et al. 2002). It is thought that
OsHAK10 protein cannot be localized to the plasma
membrane in yeast cells (Banuelos et al. 2002). In some
reports, the K� transport activity of KT/HAK/KUP
transporters in cluster II was assessed using E. coli
mutants (Ahn et al. 2004; Banuelos et al. 2002; Senn 
et al. 2001). Results of complementation tests with 
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Figure 1. A schematic diagram of K� transport system in rice root.

Figure 2. Phylogenetic tree of KT/HAK/KUP transporters. Alignments of the amino acid sequences were performed with the Clustal W program
(http://clustalw.ddbj.nig.ac.jp/top-j.html). The phylogenetic tree was reconstructed by neighbor-joining algorithm.



E. coli revealed that the K� affinities of KT/HAK/KUP
transporters in cluster II is lower than those of cluster 
I (Senn et al. 2001). It is thought that some of the 
cluster II KT/HAK/KUP transporters mediate K� efflux
from the vacuole, in order to maintain intracellular 
ion homeostasis (Rodríguez-Navarro and Rubio 2006).
AtKT/KUP10 and AtKT/KUP11 transporters in cluster III
were confirmed to have K� transport activity (Ahn et al.
2004), but PpHAK2 transporter could not complement
the yeast trk mutations and the PpHAK2-GFP chimeric
protein localized to tonoplast in yeast cells (Garciadeblas
et al. 2007). In cluster IV, PhaHAK5 could complement
the trk1 and trk2 mutations of yeast. Since PhaHAK5 can
mediate Rb� uptake in the micromolar range in the yeast
cells with the trk1 and trk2 mutations, it was classified as
a high affinity K� transporter. However, Na� and K�

transport activity of yeast cells expressing PhaHAK5 was
significantly inhibited when the concentration of Na� is
higher than that of K� in media. In contrast, the K�

transport activity of PhaHAK1 (cluster I) is not inhibited
even when the concentration of Na� is one hundred
times higher than that of K� (Takahashi et al. 2007).

For the transporters involved in K� uptake, it is
necessary that they 1) have inward transport activity of
potassium ion, 2) localize plasma membrane, and 3) are
expressed in root epidermis cells. There is no report that
any transporters belonging to the KT/HAK/KUP family
meet all of these three requirements. However, some
transporters in the cluster I may be the first candidates 
to meet these criteria, as judged from the results of the
following experiment. Transcripts of AtHAK5 accumulated
under K� starvation, and a GFP reporter driven by the
AtHAK5 promoter was observed in the epidermis of
main and lateral roots and in the stele of main roots in A.
thaliana. In low K� media, the accumulation level of K�

in the athak5 mutant of A. thaliana was lower than that

of wild type (Gierth et al. 2005). Although these results
suggested that AtHAK5 functions in K� uptake, its
intracellular localization is still unknown. HvHAK1 of
barley belongs to cluster I. Rb� uptake is inhibited by
NH4

�, and the transcripts of HvHAK1 are induced by K�

starvation (Senn et al. 2001, Augusto et al. 2005).
However, HvHAK1-mediated intracellular K� uptake and
subcellular localization have not been closely examined.
OsHAK1 and OsHAK16 are KT/HAK/KUP transporters
of cluster I in rice; expression of the OsHAK1 gene is
induced by K� starvation (Banuelos et al. 2002). The
subcellular and tissue localization and properties of K�

transport of OsHAK1 and OsHAK16 have not been
characterized.

Expression of seventeen OsHAK genes in
root of rice

At least seventeen genes encoding KT/HAK/KUP
transporters are present in the genome of rice (Banuelos
et al. 2002). To identify the function of each OsHAK
transporter on the K� uptake in rice, we investigated 
the mode of expression of each gene in rice root under
the stress conditions of K� starvation and 50 mM NaCl,
using the real time (RT) PCR. The expression of
OsHAK1, OsHAK7, and OsHAK16 is much higher than
that of other OsHAK genes; mRNA of OsHAK3 and
OsHAK6 could not be detected by RT-PCR (Fig. 3A 
and B). Not only relative expression levels but also
relative fold change is an important factor for a
transporter functioning as a high-affinity K� uptake in
the epidermis. The transcripts of OsHAK1, OsHAK7, and
OsHAK12 under K� starvation, and those of OsHAK11
and OsHAK16 under salt stress, were increased �3-fold
relative to the non-stress condition (Fig. 3C and D).
Thus, OsHAK1 (cluster I) and OsHAK12 (cluster III) are
candidates for high-affinity K� uptake transporters in
rice root. Although level of expression of OsHAK genes
belong to cluster III and IV is not high in rice root,
transcription of both OsHAK11 and OsHAK12 (cluster
III) is significantly induced by salt stress and K�

starvation, respectively. In A. thaliana, transcripts of
AtKUP/HAK11 (cluster III) is increased �3-fold by salt
stress of 80 mM NaCl (Maathuis 2006). Therefore,
KT/HAK/KUP transporters in cluster III may function in
maintenance of K�/Na� homeostasis under the stress
conditions of salinity and/or low K�. To clarify the
physiological function of the whole KT/HAK/KUP
family, K� ion selectivity and intracellular and tissue
specific localization of each protein should be studied.
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Table 1. Primer sequences used for RT-PCR

genes forward primer reverse primer

OsHAK1 gttgatgatgctgatgttggaag ccaacactttcagctgaaac
OsHAK2 ctacctgtggccgcctttttg ctgaaactgaaaacgcatgg
OsHAK3 cagtactaggtcgtttattagg gcatatgtggtttattaagctcg
OsHAK4 gtaaagtagatttaggaaaccg cgggtgtattatagatctgacgatc
OsHAK5 cttggaaatctgagtaagtactc cgaatctccatgcatgttctg
OsHAK6 cttgcagaagaactttaggtc gattaatatccatcatcagctgc
OsHAK7 tgaatcttctgttggtcatcctca ctcggcaactacattacatg
OsHAK8 gatatggtcacccaaaacaacg gcaaaaggatgaccaaacatg
OsHAK9 cgtcaccacgagatctcatcgatc cgcccaattttcttccaatctg
OsHAK10 gaagtttcgcttgtatatcctcg gagcccatgatccagctgccc
OsHAK11 gtgtaggagtagggctccatg gatccattcatttgtcatatgc
OsHAK12 gtttctgattcagagagtgagcag ctacagcatcatttcatactgacag
OsHAK13 ctccgtatatacaactatacg ccttgccagttttggttatc
OsHAK14 ctagagagtgaccaatacgac caatggttgggtgctcggtag
OsHAK15 gttcgttgctatcaagtagagataac gacgtggattcctaaaacagatg
OsHAK16 catgccaacaatcagtaag catttgcaagtaagcaaacc
OsHAK17 ctaggaatcagacggttagaag gtatacagtttacataacgc
OsRAC1 gctaagccaagaggagct ctttgtccacgctaatgaag
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Figure 3. Relative expression levels of OsHAK transcripts in rice root under stress condition of potassium starvation (A) and salt stress (B) were
analyzed with the RT-PCR assays (Real-Time PCR System Light-cycler 480, Roche). The relative expression level of OsHAK genes was normalized
to the expression level of OsRAC1. Open bar indicates the non-stress condition (control), and closed bar indicates the stress condition. The relative
fold changes of transcripts under stress condition are shown in each lower panel (C, D). Stress samples were germinated and grown in K�-free
medium for 8–11 days (A) or treated with 1/2 MS medium contained 50 mM NaCl 24 hours after germination on 1/2 MS medium (B). Control
samples were germinated and grown in 1/2 MS medium during 8–11 days. The low-identity regions of the C terminus and 3�-UTR were used for
primer design.
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