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Abstract The present review focuses on two important aspects of Na* toxicity in rice (Oryza sativa L.), (i) that Na*
stress induces different changes in cytosolic Ca®*, [Ca“]cyt, and pH, [pH],,,, in tolerant and sensitive cultivars, and (ii) that
cells from a tolerant cultivar can better maintain a low cytosolic Na* and/or Na*/K* ratio. Experiments with single rice
protoplasts, fluorescence microscopy and specific ion-selective dyes suggest that Na® must be sensed inside the cytosol,
before any prolonged changes in [Ca”]Cyt and [pH],, occur. Inhibitor analyses show that Na*-induced increase in [pH],, in
the tolerant cv. Pokkali, and a decrease in [pH],,, in the sensitive cv. BRRI DHan29, likely are coupled to different H'-
ATPases. Expression analysis of OsHKT2;1 (previous name OsHKT1), OsHKT2;2 (previous name OsHKT2) and OsVHA
transcripts in rice using RT-PCR and fluorescence in situ-PCR, shows a variable and cell- specific induction in the two rice
cultivars under salt stress condition. We conclude that the transient uptake of Na*, which occurs only in the tolerant cultivar,
and the fast compartmentalization of Na™ into the vacuole, probably are the most important cellular traits for Na*-tolerance
in rice. The low [Na*]Cyt in cv. Pokkali might depend on the fast down-regulation of OsHKT2;1, causing less uptake of Na™,
and fast up-regulation of the OsVHA transcript, and subsequent activation of the Na*/H*-anti-porter in the tonoplast. To
decrease the cytosolic Na®/K* ratio under Na™ toxicity, cv. Pokkali may also induce increased uptake of K" through
induction of OsHKT2;2, and other specific K*-transporter genes.
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Salinity poses a major threat for maintaining the challenge
of food supply for the ever-increasing word population,
as it reduces the agricultural productivity in affected areas.
Currently more than 6% of the world’s land (19.5 percent
of irrigated land plus 2.1 percent of dryland agriculture)
is now affected by salinity of various magnitudes
(http://www.plantstress.com/Articles/index.asp- 22 October
2007). Furthermore, the existing problem is getting
aggravated, as sea-level rises because of global warming
(that causes primary salinization) and expansion of
irrigated area worldwide (that causes secondary
salinization). As estimated by FAO, about 20-30 million
ha of all irrigated lands were seriously damaged in 2002
due to the build-up of salts (Martinez-Beltran and
Manzur 2005). Moreover, every year 0.25-0.50 million
ha of irrigated lands are lost from production, due to
increased salt level.

Salt stress is a worldwide problem, most acute in
North and Central Asia, Australia and South America
(Pessarakli 1999). Some of the most serious salt
problems occur in rice growing regions like China,
Bangladesh, India, Thailand, Pakistan and Egypt. Rice is
one of the most sensitive plants to salt stress with critical
tolerance level 40 mM (Glenn et al. 1997). There are,
however, several land races of rice like Pokkali and Nona
Bokra cultivated under salt stress in the coastal belt of
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different regions, though their yield potentiality is very
low compared to that of modern high yielding rice culti-
vars. Rice plants, which are tolerant to salt stress to
different degree, possess some facilitating mechanisms
both at whole plant level (Yeo and Flowers 1982; Anil et
al. 2005), and at cellular level (Golldack et al. 2003;
Kader and Lindberg 2005; Kader et al. 2006; Anil
et al. 2007). At the cellular level they exhibit an ability
to restrict the entry of Na* into the cell cytosol, com-
partmentalize cytosolic Na® into vacuole, or exclude
cytosolic Na* to the apoplast or to the environment. Salt
tolerance at cellular level involves several hundred of
stress-responsive genes for ionic homeostasis as well as
osmotic homeostasis (Bartels and Sunkar 2005; Chen
and Zhu 2005; Sreenivasulu et al. 2007). This review
aims to highlight the fundamental cellular mechanisms
of Na*-tolerance in rice, including the salt-stress signal-
ing response by changes of cytosolic Ca’" and pH,
reported so far.

Salinity causes two types of stress

Salinity stress causes both osmotic stress and ionic
toxicity due to high level of Na™ and/or Cl~ ions and can
elicit many different physiological responses (Greenway
and Munns 1980; Hasegawa et al. 2000; Zhu 2001). For
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the Gramineaceous crop rice, however, Na™ toxicity is
the principal reason for causing damage (Tester and
Davenport 2003). Under non-saline conditions, cytosolic
Na® in higher plants remains 1 to 10mM (Taiz and
Zeiger 2002). The potassium ion (K™), on the other hand,
is one of the essential and most abundant monovalent
cations in cells. This ion needs to be maintained within
100-200 mM range in the cytosol for efficient metabolic
functioning (Walker et al. 1996; Taiz and Zeiger 2002;
Cuin et al. 2003). As a co-factor in the cytosol, K*
activates more than 50 enzymes, which are very
susceptible to high cytosolic Na™ and high Na®/K™*
ratios (Munns et al. 2006). Therefore, apart from low
cytosolic Na*, maintenance of a low cytosolic Na*/K*
ratio is also critical for the function of cells (Rubio et al.
1995; Zhu et al. 1998).

At saline conditions, Na® competes with K™ for up-
take through common transport systems, since Na* and
K" are physico-chemically similar monovalent cations.
Thus, elevated levels of cytosolic Na*, or in other way
high Na™/K™ ratios, exert metabolic toxicity by a compe-
tition between Na™ and K" for the binding sites of many
enzymes (Bhandal and Malik 1988; Tester and Daven-
port 2003). Moreover, at high concentration, Na* can
displace Ca’>" from the plasma membrane, resulting in a
change in plasma membrane permeability. This can be
reflected by a leakage of K™ from the cells (Cramer et al.
1989). A high uptake of Na™ and leakage of K* result in
an imbalance of the Na*/K™ ratio in the cytosol, which,
in turn, leads to many imbalances in enzymatic reactions
of the cell.

Changes in cytosolic calcium and pH are
involved in salt stress signaling

Calcium has a central role in signaling
In both yeast and plants several osmo-sensors, e.g.
receptor-like kinases are suggested to be involved in
osmotic stress signaling (Reiser et al. 2003; Tamura et al.
2003; Buoudsocq and Lauriere 2005). Plant mitogen-
activated protein kinases (MAPKs) are considered
important participants in osmoregulation in plants, yeast
and animal cells. Osmotic stress also activates a number
of phospholipid systems, generating a wide array of
messenger molecules (Zhu 2002; Boudsocq and Lauriere
2005). How plants sense Na™, and if it is sensed inside or
outside the plasma membrane are still unknown. It has
been proposed that the SOS- (Salt-Overly-Sensitive)
pathway is involved in the sensing of Na* by the SOS1
protein, a plasma membrane Na*/H™ anti-porter, which
has a long C-terminal tail, probably resided in the
cytoplasm (Zhu 2003; Zhang et al. 2004; Shabala et al.
2005).

In a majority of the mentioned processes, calcium has
a central role as a transducer and/or regulator of signals.

Moreover, the cytosolic calcium and pH homeostasis in
cells are closely linked (Bush 1995). Transient shifts in
intracellular and apoplastic pH are essential steps in sev-
eral transduction processes. The changes in pH are in-
volved in stress signaling either directly, or in cross talk
with plant hormones or Ca*>" (Gilroy and Trewavas 1994;
Ward et al. 1995; Blatt and Grabov1997; Roos 2000;
Felle 2001; Gao et al. 2004).

Calcium signaling in different parts of the plant
cell

An early response of plant cells to many types of
stresses, including salt stress, is an increase in cytosolic
calcium concentration, [Ca”]Cyt (Lynch et al. 1989; Bush
1995; Knight et al. 1997; Halfter et al. 2000; Knight
2000; Hasegawa et al. 2000; Gao et al. 2004). Kader et
al. (2007) evidenced changes in [Ca”]Cyt dynamics in
rice cells upon NaCl stress. Upon addition of 100 mM
NaCl a transient increase in [Ca”]cyt in rice cvs. BRRI
Dhan29 and Pokkali was obtained in the presence of
0.1mM extra cellular Ca®*. Moreover, a change in
calcium level can also occur in the apoplast (Gao et al.
2004). It was suggested by Han (2003) that extra cellular
calcium in guard cells also may act as a physiological
signal in plants, and that increases in cytosolic Ca*"
arise in response to activation of a cell surface receptor.
Organelles, such as mitochondria, chloroplasts and
nuclei also have possibilities to generate their own
calcium signals (Xiong et al. 2006). Changes in free
calcium concentration in an organelle may favor the
re-localization of proteins and regulatory components
and, thus, have an important influence on the integrated
functioning of the cell. Plant cells, therefore, have a high
flexibility to respond to different types of environmental
changes.

Increase in [Ca’*,] depends on extra-cellular influx
of Ca®>" and/or release from intracellular stores into the
cytosol (Sanders et al. 2002). However, in some cases
also a high salinity can cause a decrease in [Ca”cyt]
(Cramer and Jones 1996; Halperin et al. 2003). Thus, the
change in calcium is not uniform and may vary with
species, cell type or tissue type (Cramer and Jones
1996).

Alteration in [Ca”cyt] causes a signal transduction via
calcium-dependent protein kinases, inositol phosphate,
calmodulin and other Ca?*-controlled proteins (Knight
2000). The downstream responses lead to protection and
acclimation of the plant to the stress condition. Besides a
signaling function, calcium at higher external concentra-
tion than 0.5 mM has a direct effect by inhibiting the up-
take of Na™ into the cell by non-selective cation channels
(Amtmann and Sanders 1999, Schachtman and Liu 1999,
Demidchik and Tester 2002). Also cGMP, produced in
response to salt and osmotic stress may down-regulate
the Na*-influx by voltage-independent channels (Don-



aldson et al. 2004).

Calcium changes induced by ionic toxicity and
osmotic stress are different

Addition of 100 mM NaCl to intact roots of transgenic
Arabidopsis induced both increases in apoplastic
concentration of Ca**, [Ca**],,,,, and [Ca*"],, (Gao et al.
2004). Repeated periods of NaCl treatment induced
drastic transients and prolonged alteration in [Ca“]cyt.
Unlike the addition of mannitol, addition of NaCl
gradually increased the resting level of [Ca”]cyt. The
finding that [Ca”]cyt increases during NaCl stress is
in line with earlier observations using maize root
protoplasts (Lynch et al. 1989) and with experiments
using rice protoplasts (Kader et al. 2007). In the
experiments with rice protoplasts [Ca“]Cyt dynamics
were detected by use of fluorescence microscopy
and the calcium sensitive dye Fura 2-AM. Different
reactions were obtained in the salt-tolerant and -sensitive
rice cultivars and with different external calcium
concentrations (Kader et al. 2007). Addition of NaCl
in the presence of low external Ca®* concentration
(0.1 mM) induced a higher increase in [Ca”]Cyt in the
salt-tolerant cv. Pokkali than in the sensitive cv. BRRI
Dhan29. However, in the presence of 1mM external
Ca®* concentration there was an increase in [Ca”cyt]
only in cv. BRRI Dhan29, not in cv. Pokkali (Kader et al.
2007). The reason for this can be explained by the fact
that Na* does not enter into cells of cv. Pokkali in
the presence of high Ca*" concentration (Kader and
Lindberg 2005). Therefore, it is likely that Na* must
enter into the cytosol to elicit a [Ca“]Cyl signal.

From inhibitor analyses it was concluded that internal
stores for calcium appear to be major source for increase
in [Ca”]Cyt in cv. Pokkali, although the apoplast, or ex-
ternal medium, is more important in cv. BRRI Dhan29
(Kader et al. 2007). Some investigations show that salt
stress induces a rapid increase in inositol-(1,4,5)-
triphospate (IP,) and that this compound can further in-
crease [Ca2+cyt]’ by opening of IP;-regulated channels in
the tonoplast (Sanders et al. 2002). It is likely that pro-
longed elevation of [Ca”]wt depends on the activation of
these channels. Also in experiments with single proto-
plasts from the extremely salt-tolerant quince, Cydonia
oblonga cv. Mill, NaCl addition caused transient
increases in [Ca”]cyt, of which amplitude increased
with added NaCl concentration (unpublished results by
C. D’Onofrio and S. Lindberg). The sharp spikes in
[Ca“]Cyt obtained in experiments with intact plants have
not been found in measurement with a single protoplast.
One reason may be the lack of cell walls. A specific reac-
tion in the apoplast might be necessary for the spikes to
emerge in the cytosol. On the other hand, the prolonged
and early [Cal“]cyt elevation found in protoplasts of
quince and the salt-tolerant rice cv. Pokkali, is probably
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necessary for activation of adaptive responses.

The osmotic effect, mimicked by addition of sorbitol,
caused a different reaction in rice protoplasts than addi-
tion of NaCl. In both the salt-sensitive cv. BRRI Dhan29
and the tolerant cv. Pokkali, [Ca”]Cyt decreased upon ad-
dition of 200mM sorbitol (Kader et al. 2007). On the
other hand, addition of sorbitol to protoplasts from the
halo-tolerant species quince did not affect [Cal”]Cyt (un-
published results by C. D’Onofrio and S. Lindberg).
Moreover, a low concentration of sorbitol (100 mM) did
not have an effect on [Ca”]Cyt levels in Arabidopsis, al-
though iso-osmotic concentration of Na* did so (Donald-
son et al. 2004). It can be concluded that [Ca”]Cyt
changes induced by osmotic stress are different from
those induced by Na®. They do not only depend on
species, cell type or tissue type (Cramer and Jones
1996), but also on pre-exposure to stress (Knight et al.
1997) and rate of stress development (Plieth et al. 1999).

lonic toxicity and osmotic stress also induce
different pH-changes
Upon a change in [Ca2+cyt]> cells are challenged also
with the excess of monovalent ions, like H® in the
cytosol (Plieth et al. 1997, 1999; Gao et al. 2004).
Transient shifts in both intracellular and apoplastic pH
are suggested to be essential steps in several signal
transduction processes (Gilroy and Trewavas 1994; Ward
et al. 1995; Blatt and Grabov 1997; Roos 2000; Felle
2001; Gao et al. 2004). The changes in intracellular pH
due to salt stress were reported in many plant species.
Rice protoplasts from the salt-tolerant and -sensitive
cultivars of rice, loaded with the pH-senstive dye
BCECF-AM, responded differently upon NaCl addition
(Kader et al. 2007). In protoplasts from the sensitive cv.
BRRI Dhan29, [pH],, decreased, similar to intact Ara-
bidopsis, but in protoplasts from the tolerant cv. Pokkali,
[pH],, increased (Gao et al. 2004; Kader et al. 2007). By
use of the vacuole-specific dye 6-CFDA it was shown
that the pH in vacuoles of cv. Pokkali decreased after
5-10min, although there was a slight increase in cv.
BRRI dhan29 (Kader at al. 2007). The results suggest
that salt addition causes transport of H from cytosol
into the vacuole in cv. Pokkali, probably as a result of ac-
tivated H"-ATPase. This was also confirmed by expres-
sion analyses of the tonoplast H"-ATPase (Kader et al
2006, 2007). When protoplasts from cv. Pokkali were
pretreated with NH,NO;, an inhibitor of vacuolar H*-
ATPase, before NaCl addition, the increase in [pH],,, was
less than for control protoplasts. On the other hand,
NH,NO; did not affect the [pH],,, change in cv. BRRI
Dhan29, but the NaCl-induced decrease in [pH],, was
very low when the protoplasts were pretreated with
NH,VOs;, an inhibitor of the plasma membrane H*-AT-
Pase. It is, therefore, likely that proton movement instead
occurs mainly within the apoplast and cytosol in cv.
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Figure 1. A model for perception of Na® stress and subsequent
changes in [Ca”]cy( and [pH],,, and vacuolar pH for the adaptation of
Na* homeostasis in cytosol of rice cv. Pokkali. As shown in Kader et al
(2006), Na* is possibly sensed inside the cytosol and the sensing alters
cytosolic Ca** and pH and vacuolar pH to activate the SOS pathway.
The SOS pathway then may down-regulate K* selective channels and
transporters like OsHKT1 (Horie et al. 2001, 2007; Golldack et al.
2002; Kader et al. 2006) and OsAKT1 (Golldack et al. 2003) to restrict
Na® entry into the cytosol. For maintaining cytosolic Na* homeostasis,
the SOS pathway may also induce OsHKT2 (Kader et al. 2006) for
increased K* uptake and OsNHX1 (Fukuda et al. 2004; Chen et al.
2007) for vacuolar compartmentalization of cytosolic Na*.

BRRI Dhan29 (Figure 1; Kader et al. 2007).

In yeast cells (Saccharomyces cerevisiae) cytosolic
acidification caused by salt-stress is proposed to be in-
volved in activation of the Na*/H"' antiporter in the
plasma membrane (Kinclova et al. 2001). Therefore, it is
likely that the cytosolic acidification in BRRIDhan29, in
a similar way, could cause an activation of the plasma
membrane Na®/H™ antiporter (Kader et al. 2007). On the
other hand, an increase in [pH],, in the salt-tolerant cv.
Pokkali is consistent with salt-induced cytosolic alkalin-
ization in £ oxysporum, where cytosolic alkalinity acti-
vates PacC, a transcription factor for Na*-ATPase
(Caracuel et al. 2003). It is, therefore, likely that the con-
temporary increases in [Cchyt] and [pH].,, and de-
crease in vacuolar pH, are important mechanisms to
induce adaptive mechanisms in the salt-tolerant rice
Pokkali.

In intact Arabidopsis roots, mannitol neither affected
[pH],y, nor apoplastic pH, although addition of NaCl to
the same roots caused a decline in both pHs (Gao et al.
2004). Moreover, in protoplasts from both rice and

quince, sorbitiol did not change pH_,, (Kader et al. 2007,
unpublished results C. D’Onofrio and S. Lindberg).
Thus, also the pH-changes are different when induced by
Na* or osmotic stress.

Adaptive mechanisms for Na* and K*
homeostasis

A lower Na*-influx into the cytosol correlates with
salt tolerance level

Under saline condition, the ability to keep a low
cytosolic Na™-concentration appears to be an important
trait of salt-tolerant plants (Maathuis and Sanders 2001;
Flowers and Hajibagheri 2001; Carden et al. 2003;
Golldack et al. 2003; Kader and Lindberg 2005; Anil et
al. 2007). Plant cells can maintain a low cytosolic Na*-
concentration, either by restricting Na™ influx into the
cell, or by extruding cytosolic Na* into the apoplast/
vacuole, or by both. Although the mechanisms by which
rice roots takes up Na® is not yet clarified, there are
several studies showing that the accumulation of Na™ in
the cytosol differs between salt-sensitive and salt-tolerant
rice cultivars. The salt-tolerant rice cv. Pokkali can
maintain a low cytosolic Na™ by reducing Na*-uptake
into the cytosol, and also by extruding Na® from the
cytosol into the vacuole. This cultivar only transiently
takes up Na™ into the cytosol, and takes up less Na™ than
the salt-sensitive cvs. IR29 or BRRI Dhan29 (Golldack
et al. 2003; Kader and Lindberg 2005). Anil et al. (2007)
reported less permeability of plasma membrane to Na*
in the salt-tolerant rice cv. Pokkali compared to that in
salt-sensitive rice cv. Jaya.

Transport proteins mediate Na* influx into the
cytosol in different ways in sensitive and tolerant
plant species and cultivars

Sodium ion, like any other mineral nutrients to be taken
up by cells, may pass the plasma membrane either in the
root epidermal cells or cortical cells. In plant cells,
plasma membrane potential is negative inside (~—120 to
—200mV). Therefore, an increase in positively charged
extra cellular Na* develops a large electrochemical
potential gradient for Na® that favours Na' to be
transported passively from the environment into the
cytosol. Transport proteins involved in mediating passive
Na'*-influx include high-affinity potassium transporter
(HKT), low-affinity cation transporter (LCT1) and non-
selective cation channels (NSCCs).

Non-selective cation channels (NSCCs) are proposed
to be the dominant pathways for Na*-influx into many
plant species including rice (Davenport and Tester 2000;
Demidchik and Tester 2002; Demidchik et al. 2002;
Kader and Lindberg 2005), though their molecular iden-
tity is still elusive. Using inhibitors for NSCCs and K*-
selective channels and transporters we showed that



NSCCs mediate Na-influx in both salt-sensitive rice cv.
BRRI Dhan29 as well as salt-tolerant rice cv. Pokkali
(Kader and Lindberg 2005). However, K'-selective
channels and transporters play differential roles in these
two rice cultivars with varying salt-tolerance capacity.
Along with NSCCs, K"-selective channels and trans-
porters contribute to the total Na*-influx in cv. BRRI
Dhan29, but not in cv. Pokkali. Consistently we also have
found that OsHKT2;1 is down-regulated in the salt-toler-
ant rice cv. Pokkali under salt stress but not in the sensi-
tive cv. BRRI Dhan29 (Kader et al. 2006). In response to
salt stress a down-regulation of OsHKT2;lwas also
shown by Horie et al. (2001; 2007) and Golldack et al.
(2002) and of OsAKT expression in cv. Pokkali by Goll-
dack et al. (2003).

High-affinity potassium transporters (HKTs) are sug-
gested to mediate a substantial Na'-influx in many
species (Uozumi et al. 2000; Horie et al. 2001; Golldack
et al. 2002; Miser et al. 2002; Garciadeblas et al.
2003). In rice, nine HKT homologues are identified
(Garciadeblas et al. 2003). Except one, they encode pro-
teins with distinct transport activities, which might be
expressed in various tissues and/or organs. Horie et al.
(2001) suggested that OsHKT2;1 encodes a Na*-trans-
porter and OsHKT2;2 a Na*/K"-coupled transporter.
Garciadeblas et al. (2003) showed that OsHKT2;1 could
be a high-affinity Na*-transporter and OsHKT1;1 (previ-
ous name OsHKT4) a low-affinity Na®-transporter.
OsHKT1;5 (previous name OsHKTS) has recently been
shown to be a Na*-transporter, but contributing to the in-
creased ability of salt-tolerance through re-circulating of
Na* from xylem sap, and thus, by maintaining shoot K"
homeostasis under salt stress (Ren et al. 2005; Rus et al.
2005). The Na-transport activity of this protein was
found higher in the salt-tolerant cultivar Nona Bokra
than in salt-sensitive japonica rice variety Koshihikari
(Lin et al. 2004; Gao et al. 2007). This is analogous to
the function of AtHKT1 gene in Arabidopsis, which is a
Na " -transporter, and interestingly, plays a very important
role in controlling the cytosolic Na®™ detoxification
(Berthomieu et al. 2003; Rus et al. 2004; Sunarpi et al.
2005). AtHKT1;1 (previous name AtHKT1) functions in
mediating tolerance to salt stress by unloading Na* from
xylem vessels to xylem parenchyma cells and thus, pro-
tecting the plant leaves from salt stress (Sunarpi et al.
2005). This transporter might also be responsible for un-
loading of Na® from the phloem (Berthomieu et al.
2003). Therefore, it is very likely that the HKT gene
family in rice has an important role for plant ion home-
ostasis, even though some of the members evidently
transport Na™. Apart from these NSCCs and HKTs,
other transport proteins that might be involved in mediat-
ing Na® transport under salinity stress are HAK/KT/
KUP-type transporters, inward-rectifying potassium
channels, and low-affinity cation transporters of the LCT-
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1 type (Schachtman et al. 1992, 1997; Maathuis et al.
1997; Amtmann and Sanders 1999; Golldack et al.
2003).

Excess cytosolic Na™ is differentially dealt with in
salt-sensitive and -tolerant rice cultivars

Like other plants, rice can deal with the internal Na™ by
sequestering it into the apoplast or vacuole to maintain
a low level of cytosolic Na®. Salt-tolerant rice cv.
Pokkali takes up Na' into the cytosol only transiently
and compartmentalizes it into the vacuole immediately
(Kader and Lindberg 2005). Recently Anil et al. (2007)
also reported effective sequestration of cytosolic Na* in
the intracellular compartments in the salt-tolerant rice cv.
Pokkali. OsNHXI, a tonoplast Na*/H" antiporter in
rice, plays an important role in compartmentalization of
cytosolic Na* into the vacuole, and its over-expression
improves the salt tolerance of transgenic rice (Fukuda et
al. 2004; Chen et al. 2007). An induction of OsVHA, an
energizer for OsNHX1, in the salt-tolerant cv. Pokkali
correlates with its ability to compartmentalize cytosolic
Na*' into the vacuole (Kader et al. 2006). Vacuolar
compartmentalization of cytosolic Na™ is very low in the
salt-sensitive rice cv. BRRI Dhan29, instead this cultivar
sequesters a portion of cytosolic Na* back into the
apoplast. Apoplastic sequestration of cytosolic Na™ is,
however, not an efficient strategy for salt tolerance in
rice, since it is shown previously, that most of the Na* in
rice leaves comes through apoplastic streaming (Yeo et
al. 1999). Kawasaki et al. (2001) reported a large-scale
gene expression profile in salt-tolerant rice cv. Pokkali as
well as in salt-sensitive cv. IR29 under controlled high-
salt conditions. Under salt treatment many transcripts
that were up-regulated in the tolerant cultivar responded
more slowly in the sensitive cultivar.

At salt stress, the ratio of cytosolic Na*/K™ is dis-
rupted in many higher plants, since the concentration of
Na* is much higher than at normal condition. Apart
from the high cytosolic Na*, plants also suffer from high
cytosolic Na*/K* ratio. Therefore, apart from dealing
with excess cytosolic Na*, plant cells can also handle
this unfavourable high Na®/K™ ratio by increasing the
concentration of cytosolic K*-level. However, the cy-
tosolic K*-level may also be harmful for cells when it
exceeds the normal range (Greenway and Osmond
1972). We recently suggested that OsHKT2;2, the only
HKT member in rice supposed to be involved with K*
transport, plays an important role in the salt tolerance in
the salt-tolerant cv. Pokkali by increasing cytosolic K*
level (Kader et al. 2006). We found a substantial induc-
tion of OsHKT2;2 in shoots of salt-tolerant cv. Pokkali,
and to a lesser extent in roots of the same cultivar, but
not in the salt-sensitive cv. BRRI Dhan29. Although
OsHKT2;2 (K"-Na™ coupled transporter) does not medi-
ate K*-influx from a high K* solution in the absence of
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Na*, it confers tolerance to salinity under high Na*,
probably by increased ability of K*-uptake, as shown in
S. cerevisiae (Horie et al. 2001). The induction of
OsHKT?2;2 in epidermis, exodermis and vascular tissue
in roots in our study might indicate its involvement in
K" -uptake. Furthermore, the expression of OsHKT2;2 in
the phloem and the transition from phloem to mesophyll
cells, along with mesophyll cells, may indicate its in-
volvement in the recirculation of K within the meso-
phyll cells through the phloem.

In addition to metabolites such as sugars, minerals and
salts, such as phosphate, also can use the phloem path-
way to be redistributed from old source leaves towards
young and expanding sink leaves (Sondergaard et al.
2004). Ren et al. (2005) proposed a model showing re-
distribution of cytosolic Na* from mesophyll cells to
phloem as an adaptation to maintain cellular K* nutrient
status. Thus, the induction of OsHKT?2;2 in the salt-toler-
ant cv. Pokkali might confer salt tolerance by increasing
its expression in leaves, through contributing to a low cy-
tosolic Na™/K™ ratio, as suggested by Horie et al. (2001).

The up-regulation of K*-transporter genes upon salt
stress possibly reflects the plants ability to maintain cer-
tain cytosolic K* levels to survive under salt stress (Su et
al. 2001, 2002; Pilot et al. 2003; Maathuis, 2006). Since
K™, at a high concentration, also is inhibitory for enzy-
matic functions in the cytosol (Greenway and Osmond
1972), the induction of OsHKT2;2 in Pokkali shoot de-
creased after some stress period. In a recent study Obata
et al. (2007) reported enhanced salt tolerance and in-
creased cellular K* content in rice (cv. ‘Nipponbare’)
cells over-expressing OsKAT1, which encodes a K*
channel protein, and suggested that OsKAT1 is involved
in salt tolerance of rice by participating in maintenance
of cytosolic cation homeostasis during salt stress.

Conclusion

Salt-tolerant cultivars of rice, like halophytic plants, are
able to maintain a low cytosolic Na* or/and a low
cytosolic Na*™/K* ratio under excess of external Na*. As
shown in the model in Figure 1, restricting Na* entry
into the cytosol by down-regulation of some of the Na*-
transporters and compartmentalization of cytosolic Na™
into the vacuole by the induction of tonoplast Na*/H*
antiporter play a very vital role in this process. An
induction of some of the K*-transporters may also help
maintain correct cytosolic Na™/K™ ratio. At laboratory
conditions salt-tolerant transgenic crops with an over-
expression of the tonoplast Na'/H"-antiporter were
reported for many plants like Arabidopsis (Apse et al.
1999), tomato (Zhang and Blumwald 2001), wheat (Xue
et al. 2004), maize (Yin et al. 2004) and rice (Fukuda et
al. 2004; Chen et al. 2007). However, tolerance for
environmental stresses in plants is controlled at the

transcriptional level by a complicated gene regulatory
network (Chen and Zhu 2005; Sreenivasulu et al. 2007).
Since salt-tolerance in plants is a multigenic trait with
many quantitative trait loci (QTLs), plants need to
possess a wide range of adaptations for osmotic stress, as
well as ionic toxicity (for Na, Cl etc.), to be tolerant
under high salt at field condition. This multigenic trait
of salt tolerance, in turn, makes plant breeder’s job
challenging. That’s why the effort from last ten year’s
research using transgenic plants to improve salt-tolerance
has not yet been established in the field (Flowers 2004).
Nevertheless, a very important goal for salt stress research
in rice over the years is to understand how plants sense
salt stress, and how cellular and physiological changes
allow plants to be adept at dealing salt stress. It’s very
important that different components of salt stress
adaptations in rice like sensing the stress, signaling
cascade, downstream responses for ionic homeostasis
and osmotic adjustments and the components for cross
talk with other stresses etc. are becoming available. These
components will obviously deliver the most significant
platform to materialize plant breeder’s challenge to
develop salt-tolerant rice cultivars of high yield
potentiality.
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