
The ER stress response

Protein translation results in functional proteins, which
are capable of catalyzing various reactions in cellular
responses. After translation in the ribosome, nascent
proteins are further modified, folded correctly, and
assembled to function properly. If such maturation
processes fail, the resulting misfolded proteins may
aggregate causing serious damage to cells. To avoid such
situations, misfolded proteins are monitored, correctly
folded by various chaperones, or eventually degraded if
the correct structure is not achieved. The importance of
such quality control after translation has been recognized
and the molecular mechanism, the secretory pathway, for
regulating protein quality control has been extensively
studied, especially for the proteins synthesized in the
endoplasmic reticulum (ER).

Proteins for the secretory pathway (approximately one
third of total protein) are synthesized in the ER. Proper
folding and assembly necessary for their transportation
are ensured by the protein quality control in the ER.
Perturbations that alter ER homeostasis often disrupt
protein folding and lead to the accumulation of unfolded
proteins and protein aggregates that are detrimental to
cell survival. More specifically, disturbances in calcium
homeostasis or redox status in the ER, increased demand

for protein folding due to elevated synthesis of secretary
proteins, and lack of asparagine-linked glycans that
facilitate protein folding prevent the correct folding or
assembly of proteins. Such perturbations preventing
protein maturation have been referred to as ER stress.
The ER quality control process that alleviates ER stress
is called the ER stress response. In mammals, the ER
stress response consists of three major mechanisms;
attenuation of protein synthesis to prevent supplying
additional unfolded proteins, induction of chaperones
and folding enzymes to facilitate protein folding
(unfolded protein response; UPR), and degradation of
unfolded proteins in proteasomes after retrotranslocation
to the cytoplasm (ER-associated protein degradation;
ERAD) (Kaufman et al. 2002; Mori 2000; Patil and
Walter 2001; Rutkowski and Kaufman 2004). In yeast,
attenuation of protein synthesis has not been observed;
however, both UPR and ERAD mechanism are found to
be conserved, thereby suggesting their functions to be
similar to those in humans. In UPR, the gene expression
for ER-resident chaperones such as BiP, calreticulin
(CRT), calnexin (CNX), and protein disulfide isomerase
(PDI) was highly induced. In particular, the mRNA
induction of BiP, an ER-resident Hsp70, has been
considered an indication of UPR. Induction of these
genes implies the involvement of a signaling pathway
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from the ER where misfolded proteins are generated and
transported to the nucleus where gene expression occurs.

Studies conducted in yeast and mammalian cells have
shown that the ER stress response plays essential roles
not only under specific stresses but also under normal
growth conditions (Harding et al. 2001; Iwakoshi et al.
2003; Reimold et al. 2001; Scheuner et al. 2001). For
instance, an ER stress response is required for terminal
differentiation of B lymphoid cells to plasma cells, where
the ER compartment expands five fold to accommodate
the large increase in immunoglobulin synthesis.
Pancreatic b-cells are also reported to require proper
function of the ER stress response.

In plants, the ER stress response was observed in the
floury-2 endosperm mutant of maize (Boston et al. 1991;
Fontes et al. 1991). This mutant produces an aberrant
24 kDa a-zein storage protein with a defective signal
peptide processing site. As a result, the defective storage
protein accumulates as a membrane-anchored protein in
the ER and in ER-derived protein bodies. The seeds
show the ER stress response with dramatically increased
levels of BiP and other ER-resident chaperones
(Coleman et al. 1995; Gillikin et al. 1997). BiP
expression is also regulated during development and by
the environment. This regulation was observed during
seed development in soybean, rice, pumpkin and
Douglas fir, where high amounts of seed storage proteins
are folded and assembled in the ER (Forward and Misra
2000; Hatano et al. 1997; Kalinski et al. 1995; Muench
et al. 1997). It was also observed that this expression was
regulated by various environmental conditions such as
salt/osmotic stress (Koiwa et al. 2003). The induction of
BiP and other ER chaperones has also been observed in
the presence of an artificial stressor such as tunicamycin,

a potent inducer of ER stress that inhibits asparagine-
linked glycosylation (Vitale and Ceriotti 2004).
Treatment with tunicamycin stimulates the expression of
BiP and other ER-resident chaperones in several plant
systems (Cascardo et al. 2000; Denecke et al. 1991;
Koizumi 1996; Okushima et al. 1999; Wrobel et al.
1997). However, the significance of the ER stress
response in cellular processes remains to be clarified.

Molecular mechanisms of the ER stress
response

The mechanism of signal transduction for the ER stress
response has been extensively characterized in yeast and
mammalian cells (Figure 1). In yeast cells, IRE1, an ER
membrane-located protein kinase/ribonuclease, plays a
pivotal role in perception of ER stress (Cox et al. 1993;
Mori et al. 1993). Sensing ER stress, IRE1 dimerizes,
trans-autophosphorylates, and activates its ribonuclease
activity (Bertolotti et al. 2000; Shamu and Walter 1996).
Activated IRE1 catalyzes the spliceosome-independent
splicing of Hac1 mRNA, encoding a basic leucine zipper
(bZIP) transcription factor. HAC1 protein is efficiently
synthesized from spliced Hac1 mRNA and binds to a
cis-element, UPRE (CAGCGTG), resulting in induction
of downstream chaperone genes such as BiP (Kohno et
al. 1993; Mori et al. 1996; Mori et al. 1992).

Mammalian cells have multiple ER stress response
pathways in contrast to yeast cells, which have a linear
pathway consisting of IRE1, HAC1, UPRE, and
induction of chaperone genes. In mammals, at least two
bZIP transcription factors, XBP1 and ATF6, which
function in the ER stress response, have been identified.
The XBP1 mRNA is spliced by IRE1a through
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Figure 1. Overview of molecular mechanisms of the ER stress response among yeast, animals and plants. In yeast, IRE1 monitors ER stress and
transmits the signal by splicing of HAC1 mRNA that produces active form of HAC1 protein. HAC1 activates transcription of target genes such as ER
chaperone genes. In animals, IRE1 catalyzes splicing of XBP1 mRNA in similar with yeast. In addition, ATF6 anchored to the ER membrane
becomes active form by proteolysis. In plants, target of IRE1 has not been identified yet. AtbZIP60 is cleaved in response to ER stress converting to a
soluble and active transcription factor. It should be noted that Hac1, XBP1 and ATF6 are all bZIP transcription factors.



unconventional splicing, similarly to yeast Hac1
(Yoshida et al. 2001). This splicing removes 26
nucleotides from authentic XBP1 mRNA, resulting in a
frameshift. XBP1 protein, with an activation domain at
the C-terminus, is synthesized after splicing and
enhances target gene expression through the cis-elements
ERSE (CCAAT-N9-CCACG), ERSE-II (ATTGG-N-
CCACG), or XBP1-BS (GA-TGACGT-G(T/G))
(Kokame et al. 2001; Shen et al. 2001; Wang et al. 2000;
Yamamoto et al. 2004; Yoshida et al. 1998). Another
protein, ATF6, is a transmembrane protein located in the
ER membrane with a bZIP domain on the cytoplasmic
side. In response to ER stress, ATF6 protein is
translocated to the Golgi and processed by site 1 (S1P)
and site 2 (S2P) proteases in the transmembrane domain
(Haze et al. 1999; Lee et al. 2002). The processing
localizes the cytoplasmic bZIP domain to the nucleus
that activates downstream genes through ERSE or
ERSE-II cooperating with the NF-Y transcription factor
complex (Yoshida et al. 2000; Yoshida et al. 2001). The
active form of ATF6 is produced prior to that of XBP1 in
response to ER stress, since the former is derived from a
preexisting precursor protein, whereas the latter needs to
be newly translated from transcriptionally induced
mRNA and then processed by IRE1-dependent splicing
(Yoshida et al. 2003; Yoshida et al. 2001). Because XBP1
contains ERSE in its promoter, ER stress signaling can
be amplified through the transcription of XBP1 as long
as IRE1 is activated.

Plants also show a clear ER stress response (Boston et
al. 1991; Jelitto-Van Dooren et al. 1999; Koizumi 1996;
Koizumi et al. 1999; Leborgne-Castel et al. 1999;
Martinez and Chrispeels 2003), although knowledge of
the molecular mechanism for the response is limited.
Until date, IRE1 homologs have been isolated in
Arabidopsis thaliana and rice (Oryza sativa) (Koizumi 
et al. 2001; Okushima et al. 2002). A cis-element, P-
UPRE (plant UPR element), responsible for the ER
stress response was identified in the BiP2 (AGI 
code; At5g42020) promoter of Arabidopsis (Oh et al.
2003). Interestingly, P-UPRE consisted of two cis-
elements identified in the mammalian ER stress response,
ERSE-II and XBP1-BS. In addition to the BiP2
promoter, P-UPRE was found in the promoters of 
other ER-chaperone genes including BiP1 (AGI 
code; At5g28540). A transcriptomic approach using
microarrays showed that ERSEs were also found in
promoters of several genes induced by ER stress
(Martinez and Chrispeels 2003; Noh et al. 2003).
Further, the third BiP, BiP3 (AGI code; At1g09080) was
also found to contain two functional ERSEs, as a
mutation in ERSE in the BiP3 promoter abolishes
induction in response to ER stress (Noh et al. 2003).
Therefore, cis-elements are conserved between mammals
and plants. However, a database search for Arabidopsis

genomic information did not succeed in finding possible
homologs of XBP1 or ATF6.

AtbZIP60 was identified as a bZIP transcription factor
in Arabidopsis that caused an increase in transcripts
when treated with tunicamycin (Iwata and Koizumi
2005). Since three representative transcription factors,
HAC1 in yeast and XBP1 and ATF6 in animals, are bZIP,
it is interesting whether plants also have bZIP
transcription factors functioning in the ER stress
response pathway. AtbZIP60 (295 amino acids) contains
a bZIP domain followed by a putative transmembrane
domain (TMD: 218–240 amino acids). Thus, it was
presumed that AtbZIP60 protein might be activated in
the ER stress response by an activation mechanism
similar to that of ATF6, namely proteolysis. In fact, a
truncated form of AtbZIP60 (AtbZIP60DC: 1-216 amino
acids) that lacked a C-terminal region including TMD
was localized to the nucleus when it was fused with GFP
and transiently expressed in Arabidopsis protoplasts. In
transient assay of protoplasts using luciferase as a
reporter, AtbZIP60DC activated promoters of BiP and
calnexin genes that are induced under the ER stress
response. It also indicated that AtbZIP60DC increased
reporter activities driven by P-UPRE and ERSE
suggesting activation of BiP and calnexin promoters
through such cis-elements. The transcription of
AtbZIP60 is activated by tunicamycin as described above
and the promoter of AtbZIP60 contains an ERSE-like
sequence essential for activation of the AtbZIP60
promoter by AtbZIP60DC in transient assay. Based on
these findings, it has been hypothesized that the
AtbZIP60 protein localizes to the ER membrane under
unstressed conditions and it is cleaved by a specific
protease under ER stress. The cleaved form, probably
similar to AtbZIP60DC, is thought to be translocated to
the nucleus and activate the transcription of target genes
such as BiP and AtbZIP60 itself. In fact, protein
cleavage and translocation of AtbZIP60 was confirmed
using a specific antibody against AtbZIP60DC (Iwata et
al. unpublished result).

Regulated intramembrane proteolysis

Regulated intramembrane proteolysis (RIP) is one of the
posttranslational modifications in proteins by which
membrane anchored proteins are released from
membranes to become active forms. Proteolysis of
membrane anchored transcription factors regulated by
RIP on specific stimuli has been reported (Brown et al.
2000; Hoppe et al. 2001). The cleaved forms of
transcription factors translocate to the nucleus and
activate the transcription of target genes. The first
digestion of such transcription factors occurs at the
luminal or extracellular side of the protein near the TMD
sensing signals. Subsequently the second digestion takes
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place in the TMD, namely in the lipid bilayer, releasing
the cytoplasmic domain of the transcription factor from
the membrane (Figure 2). A considerable number of
transcription factors and RIP proteases have been
identified to date for which the molecular mechanisms
and physiological functions have been clarified.
Representative RIP regulated transcription factors in
eukaryotes are shown in Table 1.

SREBP involved in lipid metabolism was first
identified as a transcription factor regulated by RIP
(Sakai et al. 1996). The molecular mechanism of RIP
regulation has been extensively analyzed in SREBP
(Brown and Goldstein 1997, Brown and Goldstein 1999,
Goldstein et al. 2006). SREBP has two TMD and
localizes to the ER membrane showing a hairpin
structure in which both the N- and C-termini are in the
cytoplasmic region. The N-terminal domain of SREBP is
a transcription factor and the C-terminal domain is
bound to the SREBP cleavage-activating protein (SCAP)

that is a sensor protein for levels of membrane sterols.
When levels of membrane sterols decrease, SCAP binds
to COPII proteins resulting in translocation of SREBP to
the Golgi apparatus. SREBP translocated to the Golgi
apparatus is digested on the luminal side by S1P in the
Golgi membrane (Sakai et al. 1998) and then in TMD by
S2P (Zelenski et al. 1999). The released N-terminal
domain translocates to the nucleus as a transcription
factor that induces genes involved in lipid metabolism.

Presenilin, a representative RIP protease, was
identified as a product of a gene where mutation causes
Alzheimer’s disease and has been extensively
characterized (see review Landman and Kim 2004; 
Koo and Kopan 2004; Tabaton and Tamagno 2007).
Presenilin is a component of the g-secretase complex
that catalyzes intramembrane digestion of the amyloid b
precursor protein (APP) where mutation may also result
in Alzheimer’s disease. APP is a type I membrane
protein that has the C-terminal domain in cytoplasm and
is sequentially digested by b-secretase and g-secretase
releasing amyloid b . If presenilin has mutated, abnormal
amyloid b aggregates causing apoptosis of nerve cells,
although the physiological function of authentic amyloid
b has not been elucidated. Presenilin also digests Notch,
a type I membrane protein localized to the plasma
membrane with a TMD. If ligands bind to the receptor
domain of Notch, it is digested sequentially by
metalloproteases and by presenilin in the g-secretase
complex. The cytoplasmic domain of released Notch
functions in the nervous system.

The ER stress response controlled by RIP

ATF6 was isolated to interact with ERSE and then
demonstrated to be processed at the protein level to
function in induction of UPR related genes (Yoshida et
al. 1998). It was shown that ATF6 was processed by S1P
and S2P as same as SREBP. From this finding, RXXL, a
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Figure 2. Schematic presentation of regulated intramembrane
proteolysis (RIP). Many of proteins digested by RIP proteases are type
II membrane proteins as shown. The first digestion of protein occurs in
extracellular or luminal side. The second digestion occurs in the
membrane domain releasing cytoplasmic domain.

Table 1. Transcription or co-transcription factors controlled by RIP.

Factors 1st protease 2nd (RIP) protease Related phenomenon

Animals
SREBP S1P S2P Cholesterol homeostasis
APP b-secretase Pserenilin-1 Alzheimer’s disease
Notch metalloprotease Pserenilin-1 Neurogenesis etc.
ATF6 S1P S2P ER stress response
OASIS S1P S2P ER stress response
CREB-H S1P S2P acute phase response

/ER stress response
CREB4 S1P S2P ER stress response
Luman S1P S2P ER stress response
BBF2H7 S1P S2P ER stress response

Plants
AtbZIP60 not identified not identified ER stress response
NTM1 not identified not identified Inhibition of cell growth
NTL8 not identified not identified Late flowering
AtbZIP17 not identified not identified Salt stress response



consensus sequence of S1P recognition, was determined
(Ye et al. 2000). However, the recognition mechanism of
the stimulus differs between ATF6 and SREBP. ATF6
protein lacking the C-terminal luminal domain
associated with BiP was constitutively translocated to the
Golgi apparatus. This experiment suggested that ATF6
localizes into the ER membrane under unstressed
conditions and it is translocated to the Golgi by the ER
stress. The Golgi localization signal in the luminal
domain of ATF6 is considered to be masked by BiP
under unstressed conditions and to become active by ER
stresses since BiP dissociates from ATF6 (Shen et al.
2002).

Transcription factors regulated by RIP in a similar
manner as ATF6 have been recently reported to be
involved in the ER stress response in animal cells
(Kondo et al. 2005; DenBoer et al. 2005; Nagamori et al.
2005; Stirling et al. 2006; Zhang et al. 2006; Liang et al.
2006; Kondo et al. 2007). Relations of these factors with
the ER stress response have been studied since their
protein structure is similar to ATF6. Namely, all of them
are type II membrane proteins having a bZIP domain in
the cytoplasmic N-terminal region, as does ATF6. In
addition, they have the S1P recognition sequence RXXL
or RXL near the transmembrane domain.

OASIS is one of these transcription factors. Sensitivity
to ER stress differs among various cell types in the
nervous system and astrocytes show stronger resistance
to ER stress than neurons. OASIS is structurally similar
to ATF6 and is specifically expressed in astrocytes. It 
is processed by ER stress, translocated to the nucleus,
and it activates the BiP promoter. Cultured cells
overexpressing OASIS showed stronger resistance to ER
stress while knock down of OASIS by RNAi showed
promotion of cell death. From these observations, OASIS
is considered to suppress ER stress-dependent apoptosis
in astrocytes (Kondo et al. 2005).

Another RIP-regulated transcription factor CREB-H is
a member of the CREB/ATF family and specifically
expresses in liver cells (Omori et al. 2001; Chin et al.
2005). It has been reported that CREB-H is digested by
S1P and S2P in the ER stress dependent manner and is
translocated to the nucleus where it activates
transcription of target genes through the cis-element
responsible for the ER stress response. In addition,
CREB-H activates genes expressed in the acute phase
response by inflammatory cytokine or ER stresses,
indicating linkage of the ER stress and inflammatory
responses (Zhang et al. 2006).

RIP in plants

Until very recently, there has been no report of RIP in
plants. In addition to presenilin and S2P, the signal
peptide peptidase (SPP) and rhomboid families are

known to be RIP proteases in prokaryotes and eukaryotes
(Weihofen and Martoglio 2003). Similar genes for each
family are found in the Arabidopsis genome but most of
them have not been functionally characterized. It has
been shown that the product of Rhomboid-like 2
(AtRBL2) digested Spits and Keren, substrates of
Drosophila Rhomboid (Rho1), in animal cultured cells.
This is the first report showing that plants also have RIP
protease activity (Kanaoka et al. 2005). RIP is observed
in both prokaryotes and eukaryotes, but the RIP-
regulated transcription factor has been mostly studied in
animals. Recently, RIP-regulated transcription factors
have been reported in plants (table 1).

NAC with transmembrane motif 1 (NTM1) was a
NAC-type transcription factor identified in Arabidopsis
mutant ntm1-D that shows an abnormal developmental
pattern (Kim et al. 2006). NTM1 protein contains a NAC
domain in the N-terminal region followed by a TMD. In
ntm1-D, translation of NTM1 terminates before a TMD
resulting in production of truncated NTM1 that lacks the
C-terminal domain (NTM1DC). Since genes for
inhibition of cyclin-dependent kinases were up-regulated
in ntm1-D, NTM1 was considered to negatively regulate
cell division. Both full length and truncated NTM1
proteins are constitutively observed and cytokinin
increases their stability. Taken together, it was
hypothesized that cytokinin keeps the balance of cell
growth by promoting cell division and by negatively
regulating cell division through NTM1 at same time
(Kim et al. 2006).

Besides NTM1, a NAC type transcription factor NTL
(NTM1-like) 8 with a TMD has been reported to be
regulated by RIP (Kim et al. 2007a). Expression of
NTL8 increases under salt stress and decreases
expression of FT. Overexpression of NTL8DC
suppressed flowering genes such as FT, and flowering
time was delayed. These results indicated that NTL8
affects flowering time under salt stress conditions by
suppressing expression of FT (Kim et al. 2007a; Kim et
al. 2007b).

It was recently shown that an Arabidopsis knock out
mutant of a gene similar to S1P is more sensitive to salt
stress (Liu et al. 2007). They postulated that RIP-
regulated transcription factors are involved in the
induction of genes for salt resistance. From an analogy
with mammalian transcription factors, bZIP-type
transcription factors with TMD in the C-terminal region
were analyzed as possible targets of S1P. Among three
such bZIPs containing a TMD with RXXL S1P
recognition sequence in Arabidopsis, AtbZIP17 was
digested by S1P in vitro and in vivo. In addition,
atbzip17 a null mutant of AtbZIP17 showed a sensitive
phenotype to salt stress similar to s1p. AtbZIP17 protein
localizes to the ER without stress and translocates to 
the nucleus by salt stress with protein processing.
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Microarray analysis showed that induction of several
genes by salt stress was suppressed in s1p as opposed to
the wild type. Induction of these genes was also
suppressed in atbzip17. These results indicated salt
specific proteolysis of AtbZIP17 by S1P and induction of
salt resistance related genes by the processed AtbZIP17
(Liu et al. 2007).

The first report of possible RIP regulation of
transcription factors in plants is AtbZIP60. As described
above, AtbZIP17 is involved in the salt stress response.
In contrast to AtbZIP17, AtbZIP60 does not contain the
S1P recognition sequence. Moreover, the luminal domain
of AtbZIP60 is much smaller than that of ATF6. Thus, a
different molecular mechanism from the S1P/S2P system
may operate processing of AtbZIP60. The discovery of
RIP protease processing of AtbZIP60 would provide a
better understanding of ER stress response and RIP
regulation in plants.
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