
The oxygen dilemma of nitrogen fixation

N2 fixation is catalyzed by the enzyme nitrogenase which
is highly sensitive to O2 and can only function in an O2-
free environment. For aerobic bacteria like rhizobia and
Frankia strains, this leads to the so-called oxygen
dilemma of nitrogen fixation: a high O2 flux to the
respiratory chain is required adjacent to a vanishingly
low O2 concentration at the sites of N2 fixation. In order
to solve this problem, external O2 barriers are combined
with high O2 utilization at the nitrogenase site to obtain a
steep O2 gradient. Only a few prokaryotes can create
their own O2 diffusion barrier that enables them to
perform N2 fixation in air. This group includes Frankia
strains which produce specialized vesicles whose cell
walls show high O2 diffusion resistance. Rhizobia rely on
the plant host to provide oxygen protection for
nitrogenase. Legume nodules are stem-like organs with
peripheral vascular bundles in the so-called nodule
cortex and the rhizobia-containing cells in the inner
tissue. The nodule endodermis, a part of the nodule
cortex that is interrupted at the nodule apex, forms the
O2 diffusion barrier, protecting the bacteria-containing
tissue while leaving the vascular system well aerated. O2

concentrations in the inner tissue are very low, in the
range of 50 nM (Bergersen 1996; Hunt and Layzell
1993). In order to provide a high O2 flux for respiration,
an O2-binding protein, leghemoglobin (Lb), is formed in
the infected cells in mM concentrations (Appleby 1984;
Hargrove et al. 1997). Lb facilitates O2 diffusion to the
N2 fixing bacteria (bacteroids) and plant mitochondria
(Wittenberg et al. 1974).

Plant hemoglobins

There are three classes of plant hemoglobins (Hbs). The
symbiotic Lbs of legumes belong to class II; members of
this class are not present in all plant genera, and no
function could be assigned to non-symbiotic class II
hemoglobins (Trevaskis et al. 1997). Class I Hbs are
spread throughout the plant kingdom and differ from
class II in that their affinity to O2 is very high due to a
very low dissociation constant (Trevaskis et al. 1997).
Their function seems to lay in modulating levels of nitric
oxide (NO), an inhibitor of mitochondrial electron
transport that is also an important second messenger in
plants, involved in a broad range of developmental
processes and in pathogen defense signaling (Lamattina
et al. 2003). Class I Hbs are supposed to be involved not
only in NO scavenging, but also in connecting NO
turnover and the maintenance of the redox balance in the
plant cell (Igamberdiev et al. 2004; Hebelstrup et al.
2007). The sequence of reactions required for NO
scavenging under hypoxic conditions has been defined as
the Hb/NO cycle (Igamberdiev and Hill 2004; Figure 1).
The third class of plant Hbs is represented by
homologues of microbial truncated Hbs (2-on-2 Hbs;
reviewed by Wittenberg et al. 2002) which seem to have
evolved independently of class I and class II Hbs
(Garrocho-Villegas et al. 2007). Their function has been
suggested to be linked to NO scavenging as well (Milani
et al. 2003; Vieweg et al. 2005), but proof has yet to be
provided. Truncated hemoglobins are formed in infected
cells of legume nodules (Vieweg et al. 2005).

Interestingly, Parasponia, the only non-legume genus
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whose members can enter a root nodule symbiosis with
rhizobia, contains a class I hemoglobin that is present at
high levels in infected cells, if also at low levels in roots,
and has the oxygen binding kinetics of symbiotic, i.e.
class II hemoglobins (Appleby et al. 1983; Wittenberg 
et al. 1986; Bogusz et al. 1988; Trinick et al. 1989).
Since class II hemoglobins are not present in all higher
plants, it seems that here a class I hemoglobin was
recruited for the function of facilitation of O2 diffusion.
The activity of the promoter of the class I hemoglobin
from P. andersonii was examined in transgenic legumes
(Andersson et al. 1997) and non-symbiotic plants (Bogusz
et al. 1990) and found to resemble that of non-symbiotic
class I hemoglobins. Hence, it seems likely that the
Parasponia class I Hb can fulfill both functions,
facilitation of O2 diffusion and NO detoxification.
However, since the NO detoxification function of class 
I hemoglobins was not known when the Parasponia Hb
was discovered, this was never analysed.

Apart from class I and class II Hbs, Hb sequences
similar to microbial so-called truncated (2-on-2) Hbs
were found in plants (trHbs; Watts et al. 2001;
Wittenberg et al. 2002). Their sequences are highly
conserved, and phylogenetic analysis has shown that they
evolved through a lineage independent of that of class I
and class II Hbs (reviewed by Garrocho-Villegas et al.
2007). TrHbs have been found in vegetative and
embryonic plant organs as well as in nodules. 

Nodule oxygen protection mechanisms lead 
to oxidative stress and NO production

In spite of their relevance for O2 transport, class II Hbs
are generally believed to contribute to oxidative stress in
nodules, i.e., to the production of reactive oxygen species
(ROS) like superoxide anions (O2

�) and hydrogen
peroxide (H2O2; Becana et al. 1998; 2000). This has
recently been confirmed by Ott et al. (2005) who showed
that RNAi inhibition of leghemoglobin (lb) gene
transcription in nodules of L. japonicus led not only to an
increase in free O2 and the loss of nitrogenase and
nitrogen fixation in nodules, but also to reduced H2O2

contents (Günther et al. 2007). The mechanism of ROS
production by symbiotic hemoglobins is as follows: Lb
(Fe2�) that has bound O2 can undergo spontaenous
autooxidation to inactive Lb (Fe3�) (Becana et al. 2000),
while the O2 molecules are reduced and released as O2

�.
Lb (Fe2�) is then regenerated by the action of ferric-Lb
reductase (Ji et al. 1992). O2

� is used by superoxide
dismutase (SOD; Rubio et al. 2004) to form O2 and
hydrogen peroxide (H2O2). ROS like O2

� and H2O2, while
serving also as second messengers (Torres and Dangl
2005), can cause oxidative damage to membranes and
various other cellular components and have to be
detoxified quickly. The main pathway for ROS

detoxification in plant tissues including nodules, is the
ascorbate-glutathione cycle (Figure 1; Noctor and Foyer
1998; Matamoros et al. 2003). Ascorbate levels, the
activities of enzymes of the ascorbate-glutathione
pathway, or both use to be enhanced in legume nodules
compared to roots (summarized by Günther et al. 2007).

Class II Hbs are not the only source of ROS in
nodules. Due to the O2 diffusion barrier, the inner tissue
of legume nodules is hypoxic, i.e. respiratory activity
will easily exceed O2 availability. Plant mitochondria
react to hypoxia with the production of ROS (Fukao and
Bailey-Serres 2004). Furthermore, O2 can be reduced
directly by nitrogenase, hydrogenase and ferredoxin in
the bacteroids (Dalton 1995). Not surprisingly, legume
nodules contain high activities of the ascorbate-
glutathione cycle enzymes (Matamoros et al. 1999a;
2003) and millimolar concentrations of ascorbate
(Matamoros et al. 1999b).

Hypoxia also leads to the production of NO (Neill 
et al. 2008). Baudouin et al. (2006) have shown that NO
is produced in rhizobia-containing cells of nodules of the
legume Medicago truncatula. Consistent with their
function of lowering internal NO levels, class I
hemoglobins are formed in the infected cells of Lotus
japonicus nodules (Uchiumi et al. 2002; Shimoda et al.
2005). The reconstitution of class I Hb after NO
scavenging requires the oxidation of ascorbate (Figure
1). So the detoxification of ROS and NO is linked via
ascorbate.

Limitations of legume nodule research

Understanding the role of oxidative stress in nodules is
of critical importance since it seems to be responsible for
the drought-induced inhibition of nitrognenase in legume
nodules. Research is hampered by the fact that the roles
of the different components of this complex system
cannot easily be disentangled in vivo. While nodules of
L. japonicus deficient in Lb displayed reduced H2O2

contents (Günther et al. 2007), it was not clear in how far
the lack of nitrogenase activity, Lb protein and reduced
respiratory activities as denoted by a two- to threefold
decrease in the ATP/ADP ratio compared to wild type
nodules, contributed to this reduction in oxidative stress.
Hence, in understanding the contribution of the different
compounds of the oxygen protection system to oxidative
stress in legume root nodules, comparison between root
nodule types where nitrogen-fixation does not involve the
production of a plant hemoglobin, would be helpful.

Oxygen protection of nitrogenase in 
actinorhizal nodules

In actinorhizal root nodules, oxygen protection
mechanisms are far more diverse than in legumes, which
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is probably a reflection of the diversity of plant families
entering a root nodule symbiosis with Frankia.
Furthermore, as mentioned above, Frankia strains can
perform oxygen protection of nitrogenase themselves by
forming specialized cells, vesicles, surrounded by
multilayered envelopes containing bacterial steroid lipids
(hopanoids) at the ends of hyphae or short side branches,
where nitrogenase can be active under aerobic conditions
(Berry et al. 1993). The thickness of the envelope
depends on the oxygen tension (Harris and Silvester
1992). Vesicles are always round and septate in culture,
but in symbiosis, their shape and their location inside the
infected cell depends on the host plant species (Silvester
et al. 1990). 

In contrast to legume nodules (Figure 2A),
actinorhizal nodules are coralloid organs consisting of
multiple modified lateral roots with central vascular
tissue and infected cells in the expanded cortex (Figure
2B–2F). They are surrounded by a superficial periderm
which can be interrupted by lenticels (Alnus, Datisca,
Coriaria) to allow gas access or, in case of species often
exposed to flooding, upward growing roots with large air
spaces in the cortex, so-called nodule roots (Casuarina,
Myrica, Datisca). In actinorhizal nodules, an O2

diffusion barrier surrounding the entire infected tissue as
found in legume nodules, would cut off the central
vascular system from O2 supply. Nevertheless, one
actinorhizal symbiosis exists where oxygen protection
mechanisms resemble those found in legumes: in
nodules of Casuarina glauca, a class II hemoglobin is
present in high concentrations in infected cells (Fleming
et al. 1987; Jacobsen-Lyon et al. 1995), and Frankia does
not form vesicles (Berg and McDowell 1988). O2-
microelectrode analysis has shown that the infected cells
of C. glauca nodules are in a low O2 environment
(Tjepkema 1979), presumably due to the fact that their
cell walls, and the walls of adjacent uninfected cells, are

impregnated with a very hydrophobic lignin (Berg and
McDowell 1987).

The situation in Myrica nodules appears similar on
first view: they are aerated by nodule roots, the walls of
nodule cortical cells become lignified upon infection
(Tjepkema and Asa 1987), and this modification, while
not examined in detail as for C. glauca nodules, is likely
to play a role in slowing the diffusion of O2 into the
infected cells which show low pO2 (Zeng and Tjepkema
1994) and are not penetrated by India ink. However, in
contrast with C. glauca, apart from the pockets of
infected cells the cortex seems well-aerated, and Frankia
does form vesicles in Myrica nodules (Tjepkema 1979;
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Figure 1. Detoxification of H2O2 in the ascorbate-glutathione cycle
and detoxification of NO via class I Hb in the Hb/NO cycle. H2O2

is produced from the superoxide anion, O2
�, by superoxide 

dismutase (not shown). Asc, ascorbate; APX, ascorbate peroxidase;
DHA, dehydroascorbate; DHAR, dehydroascorbate reductase; 
fLbR, ferric-Lb reductase; GR, glutathione reductase; GSH,
glutathione; metHb, methemoglobin; oxyHb, oxyhemoglobin; MDHA,
monodehydroascorbate; MDHAR, monodehydroascorbate reductase.
Ascorbate serves as electron donor for the detoxification of H2O2 via
APX and for the reconstitution of oxyHb from metHb formed during
detoxification of NO. Based on Gossett et al. (1996) and Igamberdiev
et al. (2006).

Figure 2. Schematic cross sections through (A) legume nodule and actinorhizal nodule lobes from (B) Alnus, (C) Casuarina, (D) Myrica, (E)
Datisca and (F) Coriaria and description of the vesicles formed by the N2-fixing microsymbionts in B–F. Vascular bundles are depicted in black,
oxygen diffusion barriers (nodule endodermis in legume nodule, periderm in actinorhizal nodules, around infected cells in Casuarina and
hypothetically in Myrica) in dark grey. Infected cells are depicted in grey; infected cells containing a class II Hb are hatched. le, Lenticel; nr, nodule
root. The arrows in (F) point at the narrow areas where O2 has to diffuse through in order to reach the infected cells.



Tjepkema 1983) with envelopes of similar thickness as
in the well-aerated nodules of Alnus (Berg 1994).
Furthermore, while Myrica nodules, like C. glauca
nodules, contain high concentrations of a hemoglobin
(Pathirana and Tjepkema 1995), this is not a class II
hemoglobin (Heckmann et al. 2006).

In contrast, actinorhizal nodules of Alnus, Datisca and
Coriaria are well aerated with continuous air spaces
leading from lenticels in the surrounding periderm to the
surfaces of infected cells as shown by O2-microelectrode
analysis and India-ink infiltration (Silvester and Harris
1989; Tjepkema 1979; Tjepkema et al. 1988). In Alnus
nodules, Frankia forms spherical septate vesicles with
thick envelopes at the periphery of the infected cells, in
form similar to the vesicles formed in the free-living
state (Newcomb and Wood 1987). In nodules of Datisca
and Coriaria, Frankia forms lanceolate vesicles oriented
towards the cell center, positioned in around the central
vacuole in radial orientation (Newcomb and Pankhurst
1982; Hafeez et al. 1984). The tight packaging of these
vesicles leads to a very low surface exposure (Silvester 
et al. 1999). Plant mitochondria are clustered at the
vesicle base, presumably to contribute to oxygen
scavenging by plant respiration (Silvester et al. 1999). In
spite of the well aerated nodule cortex, the thin vesicle
envelopes indicate that they exist in a low oxygen
environment.

Oxidative stress and NO in actinorhizal 
nodules

While a class II hemoglobin has only been found in
nodules of the actinorhizal genus Casuarina, two close
relatives of Casuarina contain elevated amounts of a
class I hemoglobin in their nodules. Hemoglobins were
purified from the nodules of Alnus glutinosa (Suharjo
and Tjepkema 1995) and Myrica gale (Pathirana and
Tjepkema 1995). The Alnus hemoglobin was not present
in nodules in amounts comparable to that of the
symbiotic hemoglobin from Casuarina nodules, but the
Myrica hemoglobin was. Cloning of the corresponding
genes from A. firma (Sasakura et al. 2006) and M. gale
(Heckmann et al. 2006) revealed that both proteins
represented class I hemoglobins, and for the A. firma
hemoglobin a function in NO scavenging could be
demonstrated experimentally. 

The hbI gene of M. gale was expressed at high levels
in nodules and at low levels in non-symbiotic organs, and
the expression pattern of a promoter-GUS fusion in
Arabidopsis had similarities with those of the
endogenous class I and class II hemoglobin genes
(Heckmann et al. 2006). It was induced by hypoxia and
by ethylene. The A. firma HbI gene, however, was
induced by nitrate, nitrite and NO and also by cold stress,
but not by hypoxia (Sasakura et al. 2006).

So in two close relatives of Casuarina, class I
hemoglobins were present at enhanced levels in nodules
compared to roots. Since the kinetic properties of both
hemoglobins were not examined, it cannot be excluded
that they have, or one of them has, acquired a function in
the facilitation of O2 diffusion, comparable to the class I
hemoglobins of Parasponia sp., but it would be quite
surprising if within one phylogenetic branch of
actinorhizal plants that presumably goes back to a
common ancestor (Swensen and Mullin 1997), different
hemoglobins were recruited for the O2 diffusion
facilitation function. In legumes, class II hemoglobins
have been found in nodules throughout, although it is not
clear how often the symbiotic syndrome evolved
independently within the legume family (Doyle and
Luckow 2003). However, it is possible that the common
symbiotic ancestor of Casuarina, Alnus and Myrica had
a symbiosis where Frankia was solely responsible for O2

protection of nitrogenase within the nodule, and that
hemoglobins were recruited at a later step. This would
not have been possible in legumes since rhizobia cannot
fix nitrogen aerobically. 

The other explanation for the presence of elevated
levels of class I hemoglobins in nodules of Alnus and
Myrica would be that they are not involved in the
facilitation of O2 diffusion, but in modulating NO levels
(Igamberdiev et al. 2004; Hebelstrup et al. 2007). The
ascorbate-glutathione pathway has not been examined in
actinorhizal nodules, except that ascorbate peroxidase
(APX) levels were analysed in Alnus rubra and found to
be at least an order of magnitude higher than in legume
nodules (Dalton et al. 1987). Glutathione reductase (GR)
levels, however, were similar in A. rubra and legume
nodules. The high APX activities in A. rubra nodules
might indicate a high turnover of metHb in the
detoxification of NO, reflecting the high concentrations
of a class I hemoglobin in these nodules (Figure 1).

Truncated hemoglobins in nodules

The functions of microbial truncated hemoglobins
(TrHbs; three subgroups, TrHbOs, TrHbNs and TrHbPs)
seem to be diverse and to include the detoxification of
NO (TrHbN; Ouellet et al. 2002) and the facilitation of
oxygen diffusion (TrHbO; Liu et al. 2004). One
organism can contain trHbs of more than one group, but
all plant trHbs represent one subgroup of TrHbNs
(Wittenberg et al. 2002; Vuletich and Lecomte 2006).
Truncated hemoglobins of the TrHbO and TrHbN type
have been found in rhizobia and also in Frankia
(summarized by Pawlowski et al. 2007).

In the legume M. truncatula, two trHb genes were
found to be expressed at elevated levels in nodules
compared to roots, one of them specifically in infected
cells (Vieweg et al. 2005). Expression of plant trHb
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genes in nodules could also be shown in other legume
species (Phaseolus vulgaris, GenBank accession
CV537139; soybean, GenBank accession no. AI988677).
Elevated plant trHb gene expression was also found in
actinorhizal nodules from Datisca glomerata where their
expression was confined to the infected cells (Pawlowski
et al. 2007). Frankia trHbO was found to be expressed
during symbiosis with D. glomerata nodules (Pawlowski
et al. 2007), but no data are available about the
expression microsymbiont trHb genes in other root
nodule symbioses.

The function of rhizobial and Frankia trHbO and
trHbN genes has not yet been determined unequivocally.
However, studies on oxygen dissociation rates and
regulation of gene expression in culture have been
performed (Beckwith et al. 2002; Schwintzer and
Tjepkema 2005), and for Frankia trHbO, a role in the
facilitation of oxygen diffusion has been suggested based
on nodule oximetry data (Pawlowski et al. 2007). Earlier
studies on CO-reactive heme contents of actinorhizal
nodules demonstrate that if a class I hemoglobin is
present in D. glomerata nodules as shown for A. firma
(Sasakura et al. 2006) and M. gale (Heckmann et al.
2006), it is only present at extremely low levels. 

Conclusions

When comparing the presence of the three different
types of hemoglobins in root nodules, and particularly in
infected cells, from legumes and actinorhizal plants
(Table 1), it becomes obvious that nodules that contain
elevated levels of a TrHb compared to roots, do not
contain significant amounts of a class I Hb. Two

functions have been suggested for TrHbs from plants:
NO detoxification (Vieweg et al. 2005) similar to that of
class I Hbs, and a function in O2 transport (Garrocho-
Villegas et al. 2007). 

Assuming a function of TrHbs in NO detoxification, it
appears plausible that either class I Hbs or TrHbs could
be recruited for NO scavenging in nodules since NO is
formed during N2 fixation (Cueto et al. 1996). The fact
that even relatively closely related legumes, M.
truncatula and L. japonicus, differ in which NO-
scavenger is formed in their infected cells (Uchiumi et al.
2002; Vieweg et al. 2005), suggests that the need for NO
scavenging was not a basal feature in the evolution of
root nodules. Maybe in the beginning, microsymbiont
NO scavenging systems (TrHbN?) were sufficient. In this
context, it is not surprising that plants from closely
related actinorhizal genera, namely Casuarina, Alnus
and Myrica, should also differ with regard to their type
of NO-scavenger. 

It also appears that in nodules where the infected cells
are located in a well-aerated environment, as is the case
for Alnus, Myrica and Datisca, the need for NO
scavenging—i.e., the concentrations of the class I Hb or
TrHb—is higher than in nodules where the infected cells
are in a microaerobic environment (legumes, Casuarina).
This is not consistent with the fact that hypoxia increases
NO production and that the transcription of many plant
class I hb genes, e.g., the one from M. gale, is induced by
hypoxia (Heckmann et al. 2006). Yet, it would be
consistent with the fact that the transcription of the
Arabidopsis trHb gene, encoding another putative NO
scavenger, is reduced by hypoxia (Watts et al. 2001). On
the other hand, assuming a function of trHbs in O2
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Table 1. D121ifferent types of plant hemoglobins in root nodules from legumes and actinorhizal plants. Plants with infected cells with well-aerated
infected cells are shaded in grey. ‘High levels’ or ‘low levels’ refers to gene expression levels or protein levels, depending on the type of analysis
performed in the cited paper.

Medicago truncatula Lotus japonicus Alnus glutinosa Casuarina glauca Myrica gale Datisca glomerata

class I 
Hb

class II
Hb

2-on-2
Hb

not expressed
in nodules
(www.tigr.org)

yes,
low levels,

cellular

localization

unknown

(Uchiumi et al.

2002)

yes,
relatively high

levels

(Sasakura et al.

2006)

yes,
low levels, 

not in infected

cells (Jacobsen-

Lyon et al. 1995)

yes,
high levels, 

cell-specific

localization

unknown

(Heckmann et al.

2006)

(no)
possible only at

extremely low

levels (Asa and

Tjepkema 1987)

yes,
high levels,

infected cells

(Carvalho et al.

2003)

yes,
high levels,

infected cells

(Kapranov et al.

1997)

no
(Suharjo and

Tjepkema 1995;

Sasakura et al.

2006)

yes,
high levels,

infected cells

(Jacobsen-Lyon

1995)

no
(Pathirana and

Tjepkema 1995;

Heckmann et al.

2006)

(no)
possible only at

extremely low

levels (Asa and

Tjepkema 1987)

yes,
low levels,

infected cells and

vascular system

(Vieweg et al.

2005)

not expressed
in nodules
(www.tigr.org)

unknown unknown unknown yes,
high levels,

infected cells

(Pawlowski et al.

2007)



transport instead of NO detoxification, it would seem
that there is no plant NO scavenging system in nodules
of M. truncatula and of D. glomerata. Furthermore, there
would be no plant NO scavenging system in infected
cells of C. glauca. Altogether, a function of plant trHbs
in NO scavenging seems to fit better with the available
data. 

In seeds, NO has been suggested to mediate the
integration of O2 uptake, respiratory control and ATP
availability (Borisjuk et al. 2007). Even well-aerated
nodules, like roots, will be frequently challenged with
limited O2 supply (Drew 1997). It seems plausible that
the basic levels of NO required for the integration of O2

uptake and respiratory control are higher in a well
aerated tissue than in an microaerobic tissue, and that
these higher basic levels of NO also necessitate a higher
capacity of the NO scavenging system.

Altogether, we are still far from understanding the
interplay of oxygen protection of nitrogenase and ROS
control in root nodules. An aspect that deserves further
examination is the presence and function of bacterial
Trhbs in symbiosis.
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