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Abstract Eukaryotes have a mechanism of RNA-guided regulation of gene expression in which double-stranded RNA
inhibits the expression of genes with complementary nucleotide sequences. This mechanism plays a crucial role in many
processes including development, stability of the genome, and responses against invading genetic materials. These RNA-
guided pathways that control gene expression, collectively termed RNA silencing, are thought to have evolved as a form of
innate immunity against viruses. RNA silencing provides a mechanism for downregulating gene expression and a tool that is
suitable for analyzing gene function and engineering novel traits in organisms. The phenomenon of RNA silencing was
discovered in transgenic petunia plants that had altered patterns of flower color as a consequence of overexpression of the
chalcone synthase-A gene responsible for an essential enzyme to biosynthesize anthocyanins. After the “visual” discovery
of RNA silencing in petunia, visible phenotypes have played an important role in monitoring the silenced state of a gene in
various RNA silencing systems. In particular, a photobleached phenotype in leaf tissues is useful in optimizing a virus-
induced gene silencing system. Loss of pigmentation in plant tissues has also led to the detection of naturally occurring
RNA-silencing phenomena. Visual changes conferred by endogenous reporter genes provide highly informative assessments

of RNA silencing that can be applied to a wide spectrum of plant biotechnology.

Key words:

Biologists often use a reporter gene to monitor gene
expression and/or subsequent behavior of proteins in
cells. The availability of reporter genes, in combination
with efficient transformation methods, makes biological
processes with subtle or hidden phenotypes accessible
to forward genetic approaches. For example, the
identification of important genes involved in the
circadian system, hormone signaling pathways, and plant
responses to biotic and abiotic stresses have been
achieved by screening mutants with altered expression of
a reporter gene (reviewed by Page and Grossniklaus
2002). This elucidative potency of reporter genes is also
true in the studies of RNA silencing, in which genes
necessary for induction of RNA silencing have been
isolated by screening mutants that break the silent state
of the reporter transgene (Matzke et al. 2001; Page and
Grossniklaus 2002).

The discovery of RNA silencing was preceded by
reports of unexpected outcomes in experiments by plant
scientists in 1990 (Napoli et al. 1990; Van der Krol et al.
1990). In this case, the “reporters” were endogenous
genes. In an attempt to test whether the encoded enzyme
is rate limiting in anthocyanin biosynthesis, that is
manifested as particular flower colors, additional copies
of a gene encoding chalcone synthase (CHS) or
dihydroflavonol-4-reductase (DFR) were introduced into

Endogenous reporter gene, RNA interference, RNA silencing, virus-induced gene silencing.

petunia (Petunia hybrida) plants. The overexpressed gene
was expected to result in darker purple flowers, but
instead produced flowers with white sectors in purple
background or completely white flowers, indicating that
the activity of chalcone synthase had substantially
decreased (Figure 1A). Analysis of RNA indicated that
both the endogenous genes and the transgenes were
downregulated in the white sectors. The term co-
suppression was coined to refer to the phenomenon
(Napoli et al. 1990).

Similar phenomena were detected in plants transformed
with various genes. These include tomato plants
transformed with a construct transcribing a truncated
polygalacturonase gene (Smith et al. 1990) and tobacco
plants transformed with the gene for 3-1,3-glucanase (de
Carvalho et al. 1992), nopaline synthase (Goring et al.
1991), or nitrate reductase (Vaucheret 1993). A related
phenomenon termed quelling was also reported in the
fungus Neurospora crassa: an introduction of extra
copies of genes essential for biosynthesis of a carotenoid
pigment resulted in an unpigmented mould rather than a
more intense orange one (Cogoni and Macino 1997). The
inhibition of gene activity by the introduction of a
transgene into plants indicated that the inhibition took
place at the transcriptional level (transcriptional gene
silencing; TGS) (Matzke et al. 1989; Wassenegger et al.
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Figure 1.

Examples of visible phenotypic changes as a consequence of RNA silencing in plants. (A) Various flower color patterns of transgenic

petunia as a consequence of CHS-A co-suppression. Nontransgenic plants of line V26 produce totally purple flowers (upper left), whereas
overexpression of the CHS-A gene causes the production of white sectors or completely white flowers in transformed plants (the others). The
transgene was integrated in the genome as an inverted repeat in the plant line with the totally white flowers (upper right), which probably accounts for
the stable RNA silencing in this line (Kanazawa et al. 2007). (B) Flowers of petunia ‘Red Star’ with a star-type, red and white bicolor pattern. The
formation of white sectors in this nontransgenic plant is caused by RNA silencing of the CHS-4 gene (Koseki et al. 2005). (C) N. benthamiana plant
with photobleached phenotype as a consequence of PDS VIGS. (D, E) Changes in GFP fluorescence by VIGS in leaf tissues of N. benthamiana.
Fluorescence of GFP produced by the expression of the transgene integrated in the genome is unchanged by infection with virus containing no insert
(D), but was lost by infection with virus containing a portion of the GFP-coding region (E) (Otagaki et al. 2006). The red color in the GFP-silenced
tissue comes from autofluorescence of chloroplasts, which is masked by GFP fluorescence when the GFP transgene is expressed. Similar results were
obtained when plants were infected with virus carrying a portion of the transgene-promoter (Otagaki et al. 2006). (F) Seeds of cultivated soybean and
wild soybean. Cultivated soybean consists of varieties that produce yellow (upper left), brown (upper right) or black seed coats, whereas the wild
ancestor of cultivated soybean exclusively produces pigmented seed coats (lower). The yellow seed coat color of cultivated soybean is caused by
RNA silencing of the CHS genes (Senda et al. 2004). A bar indicates 10 mm.

1994; Park et al. 1996), or at the posttranscriptional level
(posttranscriptional gene silencing; PTGS) (Napoli et al.
1990; van der Krol et al. 1990; Smith et al. 1990; de
Carvalho et al. 1992; van Blockland et al. 1994). Based
on the observation of the systemic spread of the loss of
fluorescence of green fluorescent protein (GFP) after
induction of GFP PTGS by Agrobacterium infiltration
(Voinnet and Baulcombe 1997) or the acquisition of the
chlorosis phenotype induced by nitrate reductase PTGS
through grafting (Palauqui et al. 1997), the occurrence of
systemic signaling of PTGS was assumed.

A similar unexpected phenomenon was observed in
studies of plant resistance to viral diseases. While plants
that expressed genes derived from a virus were known to
have enhanced resistance to viral infection (reviewed by

Wilson 1993; Baulcombe 1996a), plants carrying
noncoding viral RNA sequences also had similar levels
of protection (Smith et al. 1994; Mueller et al. 1995;
Sijen et al. 1996). Viral RNA produced by transgenes
was believed to inhibit viral replication via gene
silencing.

Prompted by the findings in plants, workers searched
for gene silencing phenomenon analogous to co-
suppression and actually detected it in Drosophila (Pal-
Bhadra et al. 1997). RNA-RNA pairing was considered
to be crucial for inducing RNA degradation based on the
studies of co-suppression in petunia (Metzlaff et al.
1997). A potent gene silencing effect (e.g., twitching
movement phenotype) was detected when double-
stranded RNA (dsRNA) was injected into cells in
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Caenorhabditis elegans (Fire et al. 1998), and the
phenomenon was called RNA interference (RNAi). An
unexpected gene silencing phenomenon induced by
sense RNA, instead of antisense RNA, had also been
reported in C. elegans (Guo and Kemphues 1995). The
inhibitory effect of sense RNA in this report was
presumed to be due to the joint effect of the sense RNA
with antisense RNA that may have co-existed in the
sense RNA preparation (Fire et al. 1998). It was also
shown in plants that dsRNA initiates PTGS (Waterhouse
et al. 1998) and that PTGS is correlated with the
production of a population of small RNAs that contain
both sense and antisense RNA (Hamilton and
Baulcombe 1999).

To understand the mechanisms of gene silencing,
researchers then isolated genes responsible for the
phenomena by screening mutants deficient in the
induction of gene silencing in N. crassa, C. elegans, and
Arabidopsis (reviewed by Matzke et al. 2001). In
combination with biochemical experiments using cellular
extracts of Drosophila, the degradation of target mRNA
was found to comprise primarily a two-step process:
(1) RNaselll-type dsRNA endonuclease activity that
processes dsRNA into short interfering RNA (siRNA) of
21 to 26 nucleotides long, and (2) cleavage (“slicing”) of
target RNA by RNA-induced silencing complexes
(RISCs) that contain a member of the Argonaute (Ago)
proteins. Ago proteins have an RNA-binding PAZ
domain and an endonucleolytic PIWI domain. In this
complex, the antisense siRNAs serve as guides for the
cleavage site (Matzke et al. 2001) (Figure 2).

In addition to the silencing of a specific gene via the
slicing and subsequent degradation of mRNA, the
production of siRNAs was also found to be associated
with induction of epigenetic changes in nuclei involving
cytosine methylation and changes in the state of histone
modifications (reviewed by Matzke et al. 2004).
Furthermore, like siRNAs, small RNAs called micro
RNAs (miRNAs) were found to negatively regulate the
expression of endogenous genes through either RNA
cleavage or the arrest of translation, which is another
pathway of RNA silencing (reviewed by Baulcombe
2004; Mallory and Vaucheret 2006). Based on these
findings, gene silencing phenomena that are induced by
nucleotide sequence-specific interactions mediated by
RNA are collectively called RNA silencing (Voinnet
2002; Matzke et al. 2004). The highly diverse pathways
of RNA silencing so far known have been reviewed in
detail elsewhere (Brodersen and Voinnet 2006; Vaucheret
2000).

Transgene-induced RNA silencing as a tool
for engineering metabolic pathways

The understanding of the general mechanisms of the
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RNAI process has prompted plant scientists to use RNAi
technology to modify various traits in plants. Although
the phenomenon of co-suppression was discovered in
petunia plants in which a transgene expressing sense
RNA was introduced, it became evident that efficient
production of dsRNA for a target gene is associated with
the efficient induction of RNAI. In fact, transgenes are
often integrated into the genome as an inverted repeat
structure, which may produce dsRNA when read-through
transcription occurs, in plants with co-suppression
(Cluster et al. 1996; Stam et al. 1998; Muskens et al.
2000).

While we can transform plants independently with
constructs that produce sense and antisense RNA and
then cross these sense and antisense plants to get
progeny that express both these RNAs and thus induce
RNAIi (Waterhouse et al. 1998), a widely used method to
produce dsRNA in plant cells is to transform plants with
a construct comprising an inverted repeat (IR) sequence
of the target gene, which forms dsRNA upon
transcription (IR-PTGS; Smith et al. 2000; Wesley et al.
2001; Helliwell and Waterhouse 2005). RNA silencing
induced by a transgene transcribing IR sequence involves
fewer factors than that by a transgene transcribing sense
RNA (Béclin et al. 2002) (Figure 2).

At present no definitive constraint for application of
RNAI technology to downregulate expression of a gene
has been reported as long as the source of dsRNA has
sufficient length and sequence identity with the target
RNA; hence, the method can potentially be used to
downregulate any genes. Various genes in metabolic
pathways in plants have been a target for engineering by
this approach. Such alterations include a reduction in the
content of specific compounds. In addition, accumulation
of useful compounds by targeting genes involved in the
downstream or branched steps of the pathway has also
been achieved. Various transformed plants have been
produced by utilizing co-suppression or IR-PTGS
(reviewed by Flavell 1994; Baulcombe 1996b; Mansoor
et al. 2006; Tang and Galili 2004). Recent examples of
plant engineering by IR-PTGS include a reduction in
caffeine by targeting genes involved in caffeine
biosynthetic pathway in coffee bean plant (Ogita et al.
2004), the accumulation of non-narcotic alkaloid by
targeting the codeine reductase gene in opium poppy
(Allen et al. 2008), the accumulation of reticuline by
targeting a berberine bridge enzyme gene in California
poppy (Fujii et al. 2007), the accumulation of lysine by
targeting a lysine degrading enzyme gene in maize
(Houmard et al. 2007), the production of gossypol toxin-
free oil by targeting a gene involved in its biosynthesis in
cotton (Sunilkumar et al. 2006), and the induction of
male sterility by targeting anther-specific genes in rice
(Moritoh et al. 2005).

TGS can also be induced by producing dsRNA
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Figure 2. Pathways of RNA silencing used in the engineering of novel traits in plants. Posttranscriptional gene silencing triggered by sense RNA
(S-PTGS; from upper right) involves the production of dsRNA from aberrant RNA lacking 5’ capping and/or polyA tail structures via the function of
RNA-dependent RNA polymerase RDR6 (Dalmay et al. 2000; Mourrain et al. 2000). SGS3, a protein with a coiled-coil motif and an RNA-
stabilizing function (Mourrain et al. 2003), and SDE3, a DEAD-box RNA helicase (Dalmay et al. 2001), are also involved in this process. The
dsRNA is processed by a Dicer-like (DCL) protein, possibly DCL4 (Brodersen and Voinnet 2006), producing siRNAs of 21 nt in size, which is then
methylated by HUA ENHANCERI (HEN1; Boutet et al. 2003), a plant specific methyltransferase. The siRNAs are involved in the cleavage of target
mRNA with RISCs that contain AGO1 (Fagard et al. 2000; Morel et al. 2002), which subsequently leads to the degradation of the cleaved mRNA.
The cleaved mRNA can be further used as a source of dsRNA production. When PTGS is triggered by a transgene transcribing an inverted repeat
sequence that can form dsRNA (IR-PTGS; from upper left toward right), RDR6, SGS3, and SDE3 are not required (Béclin et al. 2002), and the
siRNAs are produced from the dsSRNA by DCL4 (Dunoyer et al. 2005). Both S-PTGS and IR-PTGS may account for co-suppression; IR-PTGS can
be induced by read-through transcription over duplicated copies of a transgene if the transgene is integrated in the genome as a form of an inverted
repeat. Viral RNA is known to be processed by DCL2 and DCL4, in which the processing activity of DCL2 is subordinate to that of DCL4 (Deleris
et al. 20006; from lower left to right). The siRNAs in the VIGS pathway are probably produced by these enzymes and used for the endonucleolytic
cleavage of mRNA with RISCs. VIGS is abolished in the dc/2-dcl4 double mutant (Deleris et al. 2006). The following pathways, which are assigned
to different DCL proteins, are also known. DCLI, together with dsRNA-binding protein HYL1, processes fold-back precursors to release miRNAs in
nucleus, which are exported to cytoplasm by HASTY (HST) and subsequently lead to endonucleolytic cleavage of homologous mRNA with AGO1-
loaded RISCs or inhibition of translation (reviewed by Mallory and Vaucheret 2006; not shown in this figure). DCL3 produces 24-nt siRNAs that
guide RADM and changes in the state of histone modification, which involves the functions of RDR2, AGO4, Pol IVa, Pol IVb, DNA
methyltransferases (MET1, CMT3, and DRM1/2), histone deacetylase HDA6, histone methyltransferase KYP (SUVH4), and chromatin-remodeling
factor DRD1 (reviewed by Matzke et al. 2004; Matzke and Birchler 2005; from upper or lower left to left). DCL4 is also involved in the processing of
dsRNA produced by RDR6 subsequent to the endonucleolytic cleavage of precursor RNAs with miRNAs, which results in the production of a species
of siRNA called transacting siRNAs (ta-siRNAs; Peragine et al. 2004; Vazquez et al. 2004; not shown in this figure) that guide cleavage of
homologous mRNA, once incorporated into AGO1-loaded RISCs. All known classes of short RNA in plants are methylated by HEN1 (right). All
protein names in this figure are those in Arabidopsis, identified by screening mutants deficient in the pathways of RNA silencing.
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corresponding to a promoter sequence via an induction
of DNA methylation, a phenomenon called RNA-
directed DNA methylation (RdDM) and/or via changes
in the state of histone modification. Using a transgene
that transcribes the IR sequence of a promoter, scientists
have induced TGS of transgenes (Mette et al. 1999,
2000) or endogenous genes such as the petunia DFR
gene (Sijen et al. 2001), the maize male fertility gene
Ms45 (Cigan et al. 2005), the potate granule-bound
starch synthase I gene (Heilersig et al. 2006), and the
rice Se5 gene (Okano et al. 2008).

In addition, a recently introduced approach in plants is
the use of artificial miRNAs (amiRNAs; also called
synthetic miRNAs; reviewed by Ossowski et al. 2008).
This approach involves modification of plant miRNA
sequence to target specific transcripts, originally not
under miRNA control, and downregulation of gene
expression via specific cleavage of the target RNA. This
method has been applied to target viral RNA (Niu et al.
2006) and transcripts of endogenous genes in plants
(Schwab et al. 2006; Alvarez et al. 2006).

Virus-induced gene silencing: utilization of
RNA-mediated defense mechanism against
virus

Several lines of research indicated that RNA silencing is
a general antiviral mechanism in plants. The effects of
gene silencing in plants were first used to develop
resistance to viral diseases, even though the mechanism
was not clear at the time. Resistance to virus was
achieved by transforming plants with genes or segments
of genes derived from viruses and was referred to as
pathogen-derived resistance (reviewed by Wilson 1993;
Baulcombe 1996a; Prins and Goldbach 1996; Goldbach
et al. 2003). Transgenic tobacco plants expressing genes
from Tobacco etch virus (Linbdo et al. 1993; Dougherty
et al. 1994), Potato virus Y (Smith et al. 1994), Potato
virus X (Mueller et al. 1995), or Cowpea mosaic virus
(Sijen et al. 1996) acquired immunity, and the resistance
did not need protein translated from the transgene (Smith
et al. 1994; Mueller et al. 1995; Sijen et al. 1996), which
led to the understanding that RNA is the factor that
conferred resistance to the plants. Use of transgene-
induced RNAI technology for plants to acquire resistance
against virus has been reported for various combinations
of plants and viruses (reviewed by Baulcombe 1996a;
Mansoor et al. 2006; Goldbach et al. 2003).

Although transgenes expressing a virus-derived gene
or gene segment confer enhanced resistance against virus
via a mechanism analogous to that involved in co-
suppression, plants intrinsically have the ability to cope
with viruses. When plants are infected with an RNA
virus, dsSRNA of the viral genome is degraded by the
infected plants (Covey et al. 1997; Al-Kaff et al. 1998).

A. Kanazawa

The dsRNA in the virus-infected cells is thought to be
the replication intermediate of the viral RNA (Lu et al.
2003). A recent report suggests that the single-stranded
RNA of the viral genome forms the secondary structure
(Molnar et al. 2005). The viral genomic RNA can be
processed into siRNAs, then targeted by the siRNA/
RNase complex. In this scenario, if a nonviral segment is
inserted in the viral genome, siRNAs would also be
produced from the segment. Therefore, if the insert
corresponds to a sequence of the gene encoded in the
host plant, infection by the virus results in the production
of siRNAs corresponding to the plant gene and
subsequently induces loss of function of the gene
product. This fact led to the use of virus vector as a
source to induce silencing of a specific gene in the plant
genome, which is referred to as virus-induced gene
silencing (VIGS; Kumagai et al. 1995; Ruiz et al. 1998).

The role of outward phenotypes in
establishing a VIGS system

To monitor successful induction of VIGS, a reporter
transgene expressed stably in plants has often been used
(Figure 1D, 1E). With regard to the VIGS of an
endogenous gene encoded by the plant genome, the gene
for phytoene desaturase (PDS) is often chosen as a target
because loss of function of this gene is manifested as a
photobleached phenotype (Figure 1C). VIGS of these
“visible” genes revealed that the extent of the induction
of silencing is not equivalent between different portions
of virus-infected plants because induction of the
silencing is associated with propagation of virus in the
host plants. This conditional nature of VIGS may have
both positive and negative aspects in terms of using the
technology for functional genomics. The instability may
be a negative aspect of VIGS. However, this in turn may
be an advantage by allowing observation of phenotypic
changes caused by dysfunction of a gene whose
complete loss of expression is lethal to the plant (Lu
et al. 2003). In fact, phenotypic changes have been
induced by VIGS of the gene for proliferating cell
nuclear antigen (Peele et al. 2001) and RNA polymerase
II (Gosselé et al. 2002), for which null mutants cannot be
retrieved by conventional or insertional mutagenesis
approaches.

When VIGS is used to analyze the function of a gene,
viral infection itself might be a problem depending on
the target gene. Symptoms of virus infection indicate
that gene expression in the infected cells has been
affected. If a gene with expression affected by viral
infection is chosen as the target of VIGS, the effect of
VIGS might not appear as a specific effect caused by the
sequence-specific degradation of the RNA, but a
nonspecific effect of the viral infection might also be
involved. Accordingly, efforts are sometimes needed to

Copyright © 2008 The Japanese Society for Plant Cell and Molecular Biology

427



428

RNA silencing manifested as visibly altered phenotypes in plants

reduce the extent of nonspecific effects of viral infection
and simultaneously establish efficient induction of VIGS.
In this respect, Nicotiana benthamiana is the plant
species most frequently used for VIGS experiment. This
plant, sometimes referred to as a model plant for plant
virus study, is suitable for induction of VIGS because of
the large exclusion limit through its plasmodesmata (Lu
et al. 2003). It has also been suggested that this plant
lacks an active salicylic acid- and virus-inducible RNA-
dependent RNA polymerase (RdRP) and thus is
hypersusceptible to viruses whose accumulation is
normally limited by this RARP (Yang et al. 2004). In
contrast, when a new combination of plant species and
virus vector is used, it is often necessary to control the
efficiency of viral infection and symptom production to
optimize the induction of VIGS. On such occasions,
genes such as PDS whose silencing is manifested as an
altered visible phenotype are chosen as the target of
VIGS (Table 1). Once the system is established in the
plant, the method can be applied to various genes.
Applications of virus-induced gene silencing have been
reviewed elsewhere (Lu et al. 2003; Burch-Smith et al.
2004). A comprehensive list of VIGS vectors and the
plants and genes to which VIGS have been applied so far
is given in Table 1. VIGS that accompanies neither
severe viral symptoms nor phenotypic changes has been
achieved, for example, by targeting the flavonoid 3’-
hydroxylase (F3’H) gene in soybean, in which
symptomless infection of virus is established by the use
of a pseudorecombinant virus, and the flavonoid content
was successfully modified by VIGS (Nagamatsu et al.
2007).

It should also be noted that a virus vector carrying a
promoter sequence can induce transcriptional silencing
of a target gene through RdADM of the promoter of
transgene integrated in the plant genome. This case has
been achieved with Potato virus X (Jones et al. 1999),
Tobacco rattle virus (Jones et al. 2001) and Cucumber
mosaic virus (Otagaki et al. 2006) by targeting the
CaMV 358 promoter integrated in the genome upstream
of the GFP gene that allows detection of changes in
promoter activity. In contrast to VIGS causing mRNA
degradation, the silenced state of the transgene induced
by the transcriptional VIGS can be heritable in the
progeny to which no virus is transmitted. However, no
plant has so far been produced that harbors a silenced
endogenous gene by promoter-targeting VIGS, which
reflects the difficulty in inducing epigenetic changes in
an endogenous gene and restricts the practical
application of this method.

Use of viral suppressor protein in the study
of RNA silencing

Another interesting aspect of the use of viruses for the

study of gene silencing in plants is the function of a
virus-encoded suppressor protein of RNA silencing.
These suppressor proteins affect viral accumulation in
plants: whether a virus accumulates at a high level
depends on the ability of the suppressor protein. The
ability of the suppressor protein to allow viral
accumulation is due to its inhibition of RNA silencing
by preventing the incorporation of siRNAs into RISCs or
by interfering with RISCs (reviewed by Silhavy and
Burgyan 2004). Using the function of viral suppressor
protein, we can “diagnose” whether an observed
phenotypic change in a plant is caused by RNA silencing
(described later). Viral suppressor protein can also be
used to obtain a high level of gene expression in a
transient expression system by preventing the onset of
PTGS (Voinnet et al. 2003).

Naturally occurring RNA silencing and its
phenotypes

Artificially induced RNA silencing is not the only
biological phenomenon for which visual phenotypes had
played an important role in increasing our understanding.
Naturally occurring RNA silencing, involving mRNA
degradation induced as a consequence of certain genetic
changes, has been detected based on phenotypic
changes. Most commercial varieties of soybean produce
yellow seeds due to loss of pigmentation in seed coats,
and this phenotype has been shown to be due to PTGS of
the CHS genes (Senda et al. 2004). In cultivated soybean
(Glycine max), there are varieties producing seeds with
yellow seed coats and those producing seeds with brown
or black seed coats in which anthocyanin and
proanthocyanidin accumulate (Figure 1F). In contrast,
wild soybeans (Glycine soja), an ancestor of the
cultivated soybean, have exclusively produced seeds with
pigmented seed coats (Figure 1F) in thousands of
accessions from natural populations in East Asia that
we have screened (unpublished data). Thus, the
nonpigmented seed coat phenotype was probably
generated after domestication of soybean, and humans
have maintained the plant lines that have CHS RNA
silencing. The genetic change that induced CHS RNA
silencing has been attributed to a structural change in the
CHS gene cluster, which allows production of inverted
repeat CHS RNA (Kasai et al. 2007). A similar
association between structural changes in DNA and the
occurrence of RNA silencing that leads to changes in
pigmentation of plant tissues has also been reported for
the CHS genes in maize (Della Vedova et al. 2005).
Petunia ‘Red Star’ is a variety with flowers having a
star-type red and white bicolor pattern (Figure 1B). The
star-type pattern resembles the flower-color patterns
observed in transgenic petunias with co-suppression of
the CHS genes (Jorgensen 1995), and in fact, the
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Table 1. VIGS vectors
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Virus Plant species Target gene Reference
RNA virus
™V N. benthamiana PDS Kumagai et al. 1995
PDS, GFP Lacomme et al. 2003
PVX N. benthamiana PDS, GFP Ruiz et al. 1998
rbeS, GFP Jones et al. 1999
CesA Burton et al. 2000
CDPK Romeis et al. 2001
FtsH Saitoh and Terauchi 2002
WIPK, SIPK Sharma et al. 2003
Randomly chosen 4992 genes Lu et al. 2003
RARP Yang et al. 2004
Potato PDS Faivre-Rampant et al. 2004
TRV N. benthamiana GFP, GUS, Leafy Ratcliff et al. 2001
PDS, pathogen responsive genes Liu et al. 2002b
Tomato PDS, rbcsS, Liu et al. 2002a
ethylene responsive genes, etc
Pepper PDS, rbcS Chung et al. 2004
Petunia PDS, CHS, ACO Chen et al. 2004
Four species in the genus Solanum PDS, disease resistance genes Brigneti et al. 2004
N. benthamiana PDS, 20S proteasome subunit gene, Ryu et al. 2004
Chl H
Tomato
Pepper
Tobacco
Potato
Petunia
N. benthamiana Genes expressed in roots Valentine et al. 2004
Arabidopsis
Tomato
Tomato Ethylene responsive genes, Fu et al. 2005
fruit ripening genes
Opium poppy PDS Hileman et al. 2005
Arabidopsis PDS, CH42, GFP, CULI, Burch-Smith et al. 2006
disease resistance genes
Arabidopsis PDS, disease resistance genes Cai et al. 2006
N. benthamiana Stress responsive genes Senthil-Kumar et al. 2007a
STMV Tobacco PDS, CHS, rbcS, tk, CesA, als, pol 11, Gosselé et al. 2002
cat, etc
TBSV N. benthamiana GFP Qiu et al. 2002
BSMV Barley PDS Holzberg et al. 2002
PDS Lacomme et al. 2003
PDS, disease resistance genes Hein et al. 2005
Wheat PDS, disease resistance genes Scofield et al. 2005
PEBV Pea PDS, UNIFOLIATA, KORRIGAN1 Constantin et al. 2004
ToMV N. benthamiana PDS Hori et al. 2004
PMT Takizawa et al. 2007
BPMV Soybean PDS Zhang and Ghabrial 2006
CMV N. benthamiana GFP Otagaki et al. 2006
Soybean CHS, F3'H Nagamatsu et al. 2007
BMV Barley PDS, actin Ding et al. 2006
Rice
Wheat
DNA virus
TYDV Petunia CHS Atkinson et al. 1998
TGMV N. benthamiana su, LUC Kjemtrup et al. 1998
su, GFP, PCNA Pecle et al. 2001
CbLCV Arabidopsis PDS, CH42 Turnage et al. 2002
ACMV Cassava PDS, su, CYP79 Fofana et al. 2004
TYLCCNV N. benthamiana PDS, su, PCNA, GFP Tao and Zhou 2004

Abbreviations of virus names: TMV, Tobacco mosaic virus; PVX, Potato virus X; TRV, Tobacco rattle virus, STMV, Satellite tobacco mosaic
virus; TBSYV, Tomato bushy stunt virus; BSMV, Barley stripe mosaic virus; PEBV, Pea early browning virus; ToMV, Tomato mosaic virus; BPMV,
Bean pod mottle virus; CMV, Cucumber mosaic virus; BMV, Brome mosaic virus; TYDV, Tobacco yellow dwarf virus; TGMYV, Tomato golden mosaic
virus; CbLCV, Cabbage leaf curl virus; ACMV, African cassava mosaic virus; TYLCCNYV, Tomato yellow leaf curl China virus.

Abbreviations of gene names: PDS, phytoene desaturase; GFP, green fluorescent protein; rbcS, small subunit of ribulose-bisphosphate
carboxylase/oxygenase; CesA, cellulose synthase A; CDPK, calcium-dependent protein kinase; FtsH, FtsH protease; WIPK, wound-induced protein
kinase; SIPK, salicylic acid-induced protein kinase; RARP, RNA-dependent RNA polymerase; GUS, B-glucuronidase; CHS, chalcone synthase; ACO,
I-aminocyclopropane-1-carboxylate oxidase; Chl H, Mg-protoporphyrin chelatase; CH42, Chlorata 42; CUL1, Cullin 1; tk, plastid transketolase; als,
acetolactate synthase; pol II, RNA polymerase II; cat, catalase; PMT, putrescine N-methyltransferase; F3'H, flavonoid 3’-hydroxylase; su, sulfur;
LUC, luciferase; PCNA, proliferating cell nuclear antigen; CYP79, cytochrome P-450 CYP79.
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phenotype was demonstrated to be due to RNA silencing
of the CHS genes in the white sectors (Koseki et al.
2005). Breeding of petunia was launched in the 1830s by
crossing among wild species. The generation of the star-
type petunia plants as a consequence of hybridizations
between plant lines suggests that RNA silencing ability
can be conferred via shuffling of genomes that are
slightly different from each other.

The silencing phenomena in soybean, maize, and
petunia all involve RNA silencing of the CHS genes and
consequently changes in pigmentation of plant tissues. In
the analyses of these processes, the function of the viral
suppressor protein was used to visually demonstrate the
occurrence of RNA silencing of plant endogenous genes
(Senda et al. 2004; Della Vedova et al. 2005; Koseki
et al. 2005). These phenomena also resemble the RNA
silencing in a seed storage protein gene in rice, which is
associated with a structural change in the gene region
induced by mutagenesis (Kusaba et al. 2003), a case of
RNA silencing in nontransgenic plants.

Visible RNA silencing as a tool to uncover
regulatory mechanisms underlying the
visible phenotypes

Because of its very high applicability, RNA silencing is
suitable for knocking down a variety of genes. Large
functional genomics projects that involve the systematic
application of RNAI to plants are in progress (Hilson
et al. 2004; McGinnis et al. 2005). In addition, RNA
silencing of a particular gene is useful for analyzing
biological phenomena, in particular those involving the
effect of a difference in the mRNA level of the gene.

The following is an example of the use of VIGS as a
tool to understand the regulatory mechanisms of
pigmentation in soybean pubescence. VIGS of the F3'H
gene, whose function is necessary for pigmentation of
soybean pubescence, did not result in lack of pigmentation
when plants were grown in normal greenhouse
conditions, but resulted in lack of pigmentation when
plants were grown in controlled conditions; the steady-
state mRNA level of the F3’H gene was reduced to
approximately 5% of that of greenhouse-grown plants
(Nagamatsu et al. 2008). The VIGS in the controlled
conditions resulted in a further decrease in the mRNA
level, which led to the discovery of a threshold mRNA
level of the F3’H gene associated with the occurrence of
pigmented pubescence (Nagamatsu et al. 2008).

Such a threshold mRNA level for pigmentation can
also be recognized in plant tissues that undergo RNA
silencing, such as in soybean seed coats (Senda et al.
2004) and flower petals of transgenic (Metzlaff et al.
1997) and nontransgenic (Koseki et al. 2005) petunias, in
which a low level of mRNA was detected, despite the
occurrence of mMRNA degradation that leads to

nonpigmented phenotypes. An increase in the CHS
mRNA level in flower petals with CHS co-suppression at
5% to 9% of the level in purple control petals resulted in
a change from white to purple petals when CHS gene
silencing was inhibited by a viral suppressor protein
(Goto et al. 2007). These also serve as an example of the
use of RNA silencing system to detect cellular regulatory
mechanisms of pigmentation associated with the mRNA
level of a gene.

A perspective on the application of RNA
silencing in plant biotechnology

In an overview of the history behind our understanding
of the principle of RNA silencing and its applications in
genetic engineering, we need to recognize that RNA
silencing manifesting as an altered visible phenotype has
significantly contributed to our understanding of the
phenomenon. Because the method to induce RNA
silencing has already been established, we should be able
to induce silencing of any genes by a routine method.
However, much remains to be studied to establish RNA
silencing as a more reliable tool in biotechnology.

One thing that needs to be examined may be the off-
target effects of siRNA that might silence nontarget
genes (reviewed by Mansoor et al. 2006; Small 2007).
Such off-target effects have mainly been reported in
large-scale analyses in animals, whereas no systematic
studies have been completed in plants (Small 2007).
Similarly, silencing of nontarget genes by “transitive
silencing,” which involves the spread of RNA
degradation of the target gene to related genes (Bleys et
al. 2006a, b; Petersen and Albrechtsen 2005), might also
be a problem. This phenomenon has been detected in
plants, nematodes, and fungi, but what conditions the
occurrence of this phenomenon still remains to be
examined. In addition, the stability of the induced state
of RNA silencing also needs to be examined extensively.
A recent report indicated that epigenetic changes
including methylation of transgene promoter occurred in
a petunia line that has CHS-A4 co-suppression, and these
changes interfere with the initiation of transgene
transcription. These changes led to a reversion of the
silenced phenotype, and the resultant plant has a flower
color completely identical to that of nontransgenic plants
(Kanazawa et al. 2007). A similar change in a transgene
conferring drug resistance was observed in a long-term
tobacco callus culture (Fojtova et al. 2003). It is tempting
to speculate that the progression from PTGS to TGS seen
in these transgenic plants reflects the genome’s natural
gene silencing responses in which cells acquire a more
stable tool to inactivate foreign DNA by a transition from
PTGS to TGS.

These unexpected and/or destabilized silencing
phenomena might limit the use of RNA silencing as a
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tool for plant biotechnology. Because these phenomena
may occur in limited cells rather than in a whole plant, a
sensitive method that allows detection of tissue-specific
changes in gene expression is absolutely required to
understand the mechanism(s) underlying the instability
of RNA silencing. In this regard, there is an advantage in
using plant endogenous genes whose changes in mRNA
level are manifested as an altered visible phenotype.
Most typically, the petunia CHS silencing system allows
visual detection of RNA degradation in a very small
number of cells. Similarly, the PDS gene has proved
useful in visually and quantitatively assessing the effect
of VIGS (Senthil-Kumar et al. 2007b).

Plant science has been playing a leading part in the
study of RNA silencing. Reports of involvement of RNA
silencing pathways in various biological phenomena in
plants have been increasing rapidly. It is not surprising
that an epoch-making discovery that answers these
questions and improves efficacy of RNA silencing in
biotechnology will come from unmasking natural
mechanisms governing visible phenotypes in plants.
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