
Oxylipins are acyclic or cyclic oxidation products that
are formed during the catabolism of fatty acids. Among
them, jasmonic acid (JA) has been reported to be
involved in plant flowering. It has been shown that
mRNA of allene oxide cyclase, which catalyses the
conversion of allene oxide to cis(�)-12-oxophytodienoic
acid (OPDA), a crucial step in the biosynthesis of JA,
accumulates in flower buds of Licopersicon esculentum
(tomato) (Hause et al. 2000). Constitutive expression of
allene oxide cyclase in tomato caused a dramatic
elevation of the levels of JA and related oxylipins in
flower organs, but not in leaves (Miersch et al. 2004). JA
enhanced flower induction in Lemna minor under long-
day conditions, but prevented flower induction at higher
concentration under the same conditions (Krajncic et al.
2006).

Ives and Posner (1982) showed that in ammonium-free
medium, propranolol, a b-adrenergic blocking agent,
inhibited flowering of Lemna paucicostata 6746, and this
inhibition was completely overcome by epinephrine, l-
epinephrine, l-norepinephrine, and l-isoproterenol, which

substantially promoted flowering under short-day
conditions (Khurana et al. 1987).

The aqueous homogenate of L. paucicostata, strain
441, induces flowering of L. paucicostata, strain 151
(P151) (Takimoto et al. 1989; Takimoto and Kaihara.
1990). Two factors are involved in this flower-inducing
activity, one being (�)-norepinephrine (NE) (detected in
the supernatant after centrifugation of the plant
homogenate), and the other being the a-ketol type
oxylipin, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic
acid (KODA), which is induced by stresses, such as
drought, heat and osmotic stress (Takimoto et al, 1994;
Yokoyama et al, 2000). Neither alone was active, but
their mixture was active after incubation (Yokoyama et
al. 2000). We previously isolated two major reaction
products of KODA and NE, and determined their absolute
chemical structures as (9R)-11-{(2�R,8�R,10�S,11�S)-2�,8�-
dihydroxy-7�-oxo-11�-[(Z)-2-pentenyl]-9�-oxa-4�-
azatricyclo[6.3.1.01,5]dodec-5�-en-10�-yl}-9-hydroxy-10-
oxoundecanoic acid (FN1) and its C-9 epimer (FN2).
FN1 showed a strong flower-inducing activity per se
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(Yamaguchi et al. 2001). However, other active
components were also generated in smaller amounts in
the incubation mixture of KODA and NE (Yamaguchi et
al. 2001). Here we report the structures of two new
components of the mixture.

Materials and methods

Culture of Lemna paucicostata
Flower-inducing activity was measured as described previously
(Takimoto et al. 1994), using Lemna paucicostata (P151). The
plants were subcultured aseptically on half-strength Hutner’s
medium (Hutner 1953) containing 1% sucrose, under
continuous light provided by cool-white fluorescent tubes
(20 W m�2) at 25°C. For the assay, the plants were cultured
initially in the assay medium (one-tenth strength E medium
containing 1 mM benzyladenine, but no sucrose), and then in
the same medium, but in the presence of a reactant of KODA
and NE, or purified FN7 or FN10.

Analyses of FN7 and FN10
KODA was prepared using lipoxygenase from rice germ and
allene oxide synthase from flax seed (Yokoyama et al. 2000). In
order to obtain the reactants, KODA (6.45 mmol) in distilled
water (3.3 L) was added to NE (6.45 mmol in 645 mL of water)
in 1 M Tris-HCl buffer (pH 8.0, 320 mL) and the solution was
incubated for 160 hr at 25°C. The reaction mixture was
analyzed by means of HPLC with a UV (210 nm) detector and
a CAPCELLPAK C18 column (250 mm�4.6 mm I.D., Shiseido,
Tokyo, Japan). Elution was done with 50% acetonitrile [0.1%
trifluoroacetic acid (TFA)] at 1 ml/min. The following
instruments were used to obtain physical data: specific
rotations, SEPA-300 digital polarimeter (L�5 cm, Horiba,
Kyoto, Japan); UV spectra, UV-2200 spectrometer (Shimadzu,
Kyoto, Japan); IR spectra, FT/IR-5300 spectrometer (Jasco,
Tokyo, Japan); fast atom bombardment mass spectrometry
(FAB-MS) and high-resolution FAB-MS, MAT95Q mass
spectrometer (Finnigan MAT, MA, U.S.A.); 1H-nuclear magnetic
resonance (NMR) spectra, ECP-400 (400 MHz) spectrometer
(JEOL, Tokyo, Japan); 13C-NMR spectra, ECP-400 (100 MHz)
spectrometer (JEOL); HPLC, LC100 system (Yokogawa,
Tokyo, Japan) or NANOSPACE SI-1 chromatograph (Shiseido).

Physico-chemical properties
FN7-1:
FAB-MS: m/z 494 [M�H]� (positive), m/z 492 [M�H]�

(negative), HR-FAB-MS m/z 494.2751 (found), (�0.3 mmu)
494.2754 (calc. for C26H40O8N) [M�H]�; (positive). UV lmax
(MeOH, nm) 295 nm.

1H-NMR (400 MHz, DMSO-d6): d 0.99 (3H, t, J�7.3, 5�-
H3), 1.25–1.46 (8H, 4,5,6,7-H2), 1.25, 1.46 (both 1H, m, 3-
H2),1.40, 1.89 (both 1H, m, 8-H2), 1.50 (1H, m, 11�-H), 1.94,
1.98 (both 1H, m, 12�-H2), 2.09 (2H, m, 4�-H2), 2.12 (2H, t-
like, J�7.3, 2-H2), 2.13, 2.50 (both 1H, m, 1�-H2), 3.00 (1H, m,
9�-H), 3.18 (1H, m), 3.63 (1H, dd, J�3.4, 12.0, 3�-H2), 4.08
(1H, dd, J�4.3, 7.8, 9-H), 4.12 (1H, d, J�3.4, 2�-H), 4.23 (1H,
m, 10�-H), 4.98 (1H, s, 6�-H), 5.27 (1H, m, 2�-H), 5.30 (1H, m,
3�-H), 8.11 (1H, s, NH).

13C-NMR (100 MHz, DMSO-d6) dc: 13.9 (C-5�), 20.2 (C-
4�), 22.6 (C-1�), 24.5 (C-3), 25.0 (C-7), 28.5, 28.7, 28.8 (C-
4,5,6), 31.7 (C-8), 33.7 (C-2), 35.5 (C-12�), 42.0 (C-11�), 53.6
(C-3�), 55.3 (C-9�), 55.4 (C-1�), 67.3 (C-10�), 71.0 (C-2�), 74.4
(C-8�), 77.9 (C-9), 91.9 (C-6�), 130.2 (C-3�), 131.0 (C-2�),
173.1 (C-5�), 174.5 (C-1), 192.0 (C-7�), 211.4 (C-10).

FN7-2:
FAB-MS: m/z 494 [M�H]� (positive), m/z 492 [M�H]�

(negative), HR-FAB-MS m/z 494.2746 (found), (�0.8 mmu)
494.2754 (calc. for C26H40O8N) [M�H]�; (positive). UV lmax
(MeOH, nm) 295 nm.

1H-NMR (400 MHz, DMSO-d6): d 0.95 (3H, t, J�7.3, 5�-
H3), 1.22-1.48 (8H, 4,5,6,7-H2), 1.30, 1.50 (both 1H, m, 3-H2),
1.48, 1.88 (both 1H, m, 8-H2), 1.60 (1H, m, 11�-H), 1.94, 1.99
(both 1H, m, 12�-H2), 2.09 (2H, m, 4�-H2), 2.18 (2H, t-like,
J�7.3, 2-H2), 2.10, 2.50 (both 1H, m, 1�-H2), 3.27 (1H, m, 9�-
H), 3.34 (1H, m), 3.62 (1H, dd, J�3.4, 12.0) (3�-H2), 3.79(1H,
dd, J�4.3, 7.8, 9-H), 4.13 (1H, d, J�3.4, 2�-H), 4.19 (1H, m,
10�-H), 4.99 (1H, s, 6�-H), 5.28 (1H, m, 2�-H), 5.30 (1H, m, 3�-
H), 8.08 (1H, s, NH).

13C-NMR (100 MHz, DMSO-d6) dc: 13.9 (C-5�), 20.2 (C-
4�), 22.5 (C-1�), 24.5 (C-3), 24.8 (C-7), 28.5(C-5), 28.7 (C-6,
7), 31.7 (C-8), 33.6 (C-2), 34.6 (C-12�), 42.2 (C-11�), 53.4 (C-
3�), 54.2 (C-9�), 55.1 (C-1�), 67.9 (C-10�), 71.0 (C-2�), 74.5 (C-
8�), 77.4 (C-9), 91.5 (C-6�), 130.0 (C-3�), 131.0 (C-2�), 171.1
(C-5�), 174.4 (C-1), 191.7 (C-7�), 212.4 (C-10).

FN10-1:
FAB-MS: m/z 494 [M�H]� (positive), m/z 492 [M�H]�

(negative), HR-FAB-MS m/z 494.2738 (found), (�1.6 mmu)
494.2754 (calc. for C26H40O8N) [M�H]�; (positive). (FN10-1,
2 mix). UV lmax (MeOH, nm) 293 nm.

1H-NMR (400 MHz, DMSO-d6): d 0.93 (3H, t, J�7.3, 5�-
H3), 1.20, 1.45 (both 1H, m, 3-H2), 1.29-1.40 (8H, 4,5,6,7-H2),
1.35, 1.63 (both 1H, m, 8-H2), 1.36 (1H, m, 11�-H), 1.79, 1.85
(both 1H, d, J�12, 12�-H2), 2.02, 2.20 (both 1H, m, 1�-H2),
2.10 (2H, m, 4�-H 2), 2.17 (2H, t-like, J�7.3, 2-H2), 2.42 (2H,
m, 11-H2), 3.25 (1H, d, J�12.2), 3.72 (1H, dd, J�3.4, 12.2)
(3�-H2), 3.82 (1H, dd, J�4.3, 7.8, 9-H), 4.15 (1H, d, J�3.4, 2�-
H), 4.17 (1H, m, 10�-H), 5.19 (1H, s, 6�-H), 5.20 (1H, m, 2�-
H), 5.25 (1H, m, 3�-H), 8.58 (1H, s, NH).

13C-NMR (100 MHz, DMSO-d6) dc: 13.7 (C-5�), 20.3 (C-
4�), 22.7 (C-1�), 23.5 (C-4), 24.4 (C-3), 28.4, 28.5, 28.6 (C-
5,6,7), 31.9 (C-12�), 33.6 (C-8), 36.5 (C-2), 38.4 (C-11�), 40.1
(C-11), 53.7 (C-3�), 56.2 (C-1�), 69.0 (C-10�), 71.4 (C-2�), 73.1
(C-9), 92.3 (C-6�), 93.1 (C-8�), 129.8 (C-2�), 130.8 (C-3�),
174.4 (C-1), 174.4 (C-5�), 185.6 (C-7�), 212.9 (C-10).

FN10-2:
1H-NMR (400 MHz, DMSO-d6): d 0.91 (3H, t, J�7.3, 5�-H3),
1.20, 1.45 (both 1H, m, 3-H2), 1.29-1.40 (8H, 4,5,6,7-H2), 1.35,
1.63 (both 1H, m, 8-H2), 1.36 (1H, m, 11�-H), 1.79, 1.85 (both
1H, d, J�12, 12�-H2), 2.02, 2.20 (both 1H, m, 1�-H2), 2.10 (2H,
m, 4�-H 2), 2.18 (2H, t-like, J�7.3, 2-H2), 2.42 (2H, m, 11-H2),
3.25 (1H, d, J�12.2), 3.72 (1H, dd, J�3.4, 12.2) (3�-H2), 3.82
(1H, dd, J�4.3, 7.8, 9-H), 4.15 (1H, d, J�3.4, 2�-H), 4.17 (1H,
m, 10�-H), 5.19 (1H, s, 6�-H), 5.20 (1H, m, 2�-H), 5.25 (1H, m,
3�-H), 8.58 (1H, s, NH).

13C-NMR (100 MHz, DMSO-d6) dc: 13.7 (C-5�), 20.4 (C-
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4�), 22.7 (C-1�), 23.4 (C-4), 24.4 (C-3), 28.4, 28.5, 28.6 (C-
5,6,7), 31.7 (C-12�), 33.6 (C-8), 36.0 (C-2), 38.4 (C-11�), 39.9
(C-11), 53.7 (C-3�), 56.2 (C-1�), 69.1 (C-10�), 71.4 (C-2�), 72.7
(C-9), 92.3 (C-6�), 92.9 (C-8�), 129.7 (C-2�), 131.1 (C-3�),
173.6 (C-1), 174.4 (C-5�), 185.5 (C-7�), 214.0 (C-10).

Results

Isolation of FN7 and FN10
The HPLC profile of the reaction products of KODA and
NE is shown in Figure 1. Fractions were collected at 5-
minute intervals and assayed for flower-inducing activity;
every fraction showed distinct activity (Yamaguchi et al.
2001). We planned to isolate the components in peaks
FN6, FN7, and FN10, in addition to FN1, because they
seemed to show the highest activities. The whole
reaction mixture was lyophilized and divided into 5
fractions by chromatography with on a reverse-phase
silica gel column (Chromatorex DM1020T, Fuji Silysia
Chemical, Aichi, Japan) (Fr. 1: 100% H2O, Fr. 2: 20%
MeOH, Fr. 3: 40% MeOH, Fr. 4: 60% MeOH, Fr. 5: 100
% MeOH). Fr. 3 (2 g) was further subjected to normal-
phase chromatography (Silica gel 60, Kanto Chemical,
Tokyo, Japan) [CHCl3-methanol-H2O (8:3:1 lower layer)]
and then purified by HPLC on an ODS column
[CAPCELLPAK C18, 250 mm�10 mm I.D. with 25%
CH3CN (0.1% TFA), Shiseido, Tokyo, Japan] to give
FN10 (8.1 mg). The fraction containing FN7 was further
separated by HPLC on an ODS column [identical with
the one described above, except for the use of 30%
CH3CN (0.1% TFA)], affording two epimers, FN7-1
(5.4 mg) and FN7-2 (1.6 mg). FN7-1 showed molecular-
related ion peaks at m/z 506 (M�H)� and 508 (M�H)�

in negative and positive FAB-MS, respectively, and its
molecular formula was established as C26H37O9N
through high-resolution MS analysis of (M�H)�. The
UV spectrum was similar to that of FN1, showing an
absorption maximum at 295 nm. Comparison of the 1H-

and 13C-NMR spectra of FN7-1 with those of FN1
revealed that the C-9� carbon is that of a methine group
(d3.08, dc55.3) instead of methylene (C-11 of FN1). The
correlation between C-8� and C-9� suggested that the
pyran ring of FN1 has been replaced with a cyclohexane
ring. The coupling constant between 9�-H and 10�-H was
J�11.0 Hz, and the 10�-H signal was a double doublet.
In addition, NOE was observed between 9�-H and 12�-H,
3�-H and 11�-H. Thus, the structure of FN7-1 was
presumed to be as shown in Figure 2. In order to identify
the epimers of FN7, 9R- and 9S-KODA, isolated on a
Chiralcel OD-R column (Daicel Chemical Industries,
Ltd, Tokyo) (Yamaguchi et al. 2001), were separately
reacted with NE. Reverse-phase HPLC (30% CH3CN,
0.1% TFA) comparison of the products with the epimers
of FN7 indicated that FN7-1 is the 9R-epimer and FN7-2
is the 9S-epimer. FN10 showed the same molecular

weight as FN1 (493), with molecular-related ion peaks at
m/z 492 (M�H)� and 494 (M�H)�. The molecular
formula was C26H39NO8, based on high-resolution MS
analysis. The UV spectrum was similar to that of FN1,
with an absorption maximum at 293 nm. The 1H and 13C-
NMR spectra indicated that FN10 is a mixture of
components with the same molecular formula in a ratio
of about 1 : 1. The acetylation product of FN10 showed 2
peaks upon HPLC. These data suggested that FN10 is an
enantiomeric mixture. The 1H and 13C-NMR spectra of
FN10 were very similar to those of FN1 and FN2, except
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Figure 2. Structures of FN7-1 and 2, FN10-1 and 2, compared with
those of FN1 and 2.

Figure 1. HPLC profile of the products of the reaction between
KODA and NE. A mixture of KODA and NE was incubated at pH 8 for
160 h, extracted with chloroform and evaporated to dryness. Reversed-
phase HPLC was performed with 25% acetonitrile (containing 0.1%
TFA), monitored at 300 nm. Peaks of FN6, 7 and 10 showed high
activities, as did that of FN1. The structures and properties of FN1 and
2 have already been reported (Yamaguchi et al. 2001).



for the signals of the ring structure. The NOESY
spectrum was also analyzed, and finally, FN10-1 and -2
were concluded to be isomers of FN1 and FN2, with the
tricyclic part linked to the C18 chain at a different
position (Figure 2). We could not isolate FN6 because of
its instability: the HPLC profile of the peak changed
readily during the purification process, although the
FN6-containing fraction showed stronger activity than
FN7 or FN10, and FN6 also seemed to be composed of
stereoisomers, judging from the HPLC profile.

Biological activities of FN7 and FN10
The flower-inducing activities of FN7-1, FN7-2 and
FN10 (as an epimeric mixture) were examined. FN7-1
and FN10 were active, while FN7-2 (9S-epimer) showed
no activity, like FN2 (9S-epimer) (Figure 3). At lower
concentration, FN10 had the strongest activity of them
all (including FN1). The activities were in the order of
FN10�FN1�FN7-1.

Discussion

KODA is an oxylipin that is common in green plants
(Vick and Zimmerman. 1987). It is formed from
linolenic acid by 9-specific lipoxygenase; this is different
from the pathway to jasmonic acid, which involves a 13-
specific lipoxygenase (Howe and Schilmiller. 2002). The
total structure of KODA, including the a-ketol,
carboxylic acid and two cis-olefin moieties, is strictly
required for flower-inducing activity in Lemna
(Yokoyama et al. 2000). In this report, we showed that
two other reactants of KODA and norepinephrine, which
also exhibit flower-inducing activity, retain the essential
structure of KODA. The structures of FN7 and FN10
resemble that of FN1, but, in FN7, the oxide of NE,
noradrenochrome, does not bond at the C12 double bond
of KODA. As KODA is rather unstable, especially under
alkaline conditions, our present findings are consistent
with the idea that the KODA structure is required for

flower-inducing activity and that its degradation results
in loss of the activity.

Catecholamine structure is also important for flower-
inducing activity in Lemna (Yamaguchi et al. 2001).
Catecholamines are widespread in the plant kingdom, as
well as in mammals (Smith 1977). Catecholamine was
confirmed to be involved in flowering in Lemna in an
experiment using a catecholamine pathway-blocking
agent, propranolol (Khurana and Tamot 1987).
Catecholamine also has other activities, such as ethylene
production, nitrogen fixation, and defense against
herbivores and injury (Dai et al. 1993; Kuklin and
Conger 1995). Recently, it was established that
catecholamine synthesis is activated in potato leaves
under stress, through induction of gene expression of
synthetic enzymes, such as tyrosine decarboxylase, when
the plant is exposed to high salt, drought or UV
irradiation (Swiedrych et al. 2004). Catecholamines are
proposed to exert their activities through DoH-CB
proteins, which retain the cytochrome b561 domain (CB)
and the catecholamine-binding regulatory domain of
dopamine-b-hydroxylase (DoH) (Verelst and Asard
2004). Cytochrome b561 catalyses ascorbate-mediated
trans-membrane electron transport, and hence may be
involved in ascorbate regeneration (Wakefield et al.
1986; Asard et al. 1998). These facts imply that
catecholamines may be involved in ascorbate
regeneration. We have observed that catecholamines,
such as epinephrine and norepinephrine, and not only
KODA, are released when Lemna is exposed to drought
stress (unpublished data). Thus, both KODA and
catecholamine appear to be stress-induced substances
that react to generate compounds that directly induce
flowering in L. paucicostata. We have tried to detect
adducts such as FN1, FN7 and FN10 in L. paucicostata
by means of LC-MS analysis, but so far without success.
Based on the observed activity of the reactants of KODA
and NE, the effective concentrations of these adducts in
vivo could be at picomolar levels, and this may be the

550 Identification of reaction products of KODA and norepinephrine that strongly induce flowering in Lemna

Copyright © 2008 The Japanese Society for Plant Cell and Molecular Biology

Figure 3. Flower-inducing activity of FN1, FN7-1 and 2, and FN10. FN1, FN7-1 and 2, and FN10 at 3, 10 or 30 mM were added to the assay
medium at 1,000-fold dilution (3, 10 or 30 nM), and the flowering response of Lemna was examined (A). The flower-inducing activity of FN10 was
compared with that of FN1 at 1 and 3 nM in another experiment (B). Data are percentage of flowering. The standard deviation was within 15% in all
cases.



reason why they were not detected. However, we can not
rule out the possibility that compounds other than FN1,
FN7 or FN10 are the active agents in L. paucicostata in
vivo. Other active adducts may be generated by the
reactions of other catecholamines, such as dopamine and
epinephrine (Yamaguchi et al. 2001). Structure-activity
analyses of many adducts reveal the essential structural
requirements for flowering-inducing activity in L.
paucicostata in nature, and thereby provide clues as to
the mechanism involved and the development of a
flower-regulating agent.
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