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Abstract The completion of plant genome sequences and advances in DNA microarray technology have contributed to
the accumulation of a vast number of plant gene expression datasets. Co-expression analyses using such datasets can be
used to predict the functions of many plant genes. A network approach has been incorporated into co-expression analysis to
visualize gene-to-gene functional relatedness (co-expression network analysis). Applying of this analysis to plant gene
expression datasets has led to the accumulation of large quantities of information on plant gene function. Plant gene
expression datasets and genome-level information obtained using co-expression analyses in plants can be retrieved from
various types of databases. Here, we summarize practical approaches for detecting co-expressed genes in plants and review

recent progress in plant co-expression analyses.
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Since the completion of the Arabidopsis thaliana
genome sequence (Arabidopsis Genome Initiative 2000),
genome sequences of other plants have also been
extensively or completely decoded. Recent advances in
DNA microarray technologies allow for the application
of microarray analyses to the genes of such plants,
leading to the accumulation of datasets in public
databases such as Gene Expression Omnibus (GEO;
Barrett et al. 2006) and ArrayExpress (Parkinson et al.
2007). As of November 2008, the GEO and ArrayExpress
databases contained datasets based on Affymetrix
GeneChip microarray slides (or assays) of the following
plants: Arabidopsis thaliana (4186 and 7308 slides for
GEO and ArrayExpress, respectively), Glycine max (soy
bean; 2999 and 3083 slides), Hordeum vulgare (barley;
151 and 904 slides), Triticum aestivum (wheat; 309 and
724 slides), Zea mays (maize; 249 and 342 slides), Vitis
vinifera (grape; 104 and 131 slides), Medicago truncatula
(44 and 127 slides), Populus trichocarpa (black
cottonwood; 14 and 4 slides), Oryza sativa (rice; 230
slides in GEO), Solanum lycopersicum (tomato; 50 slides
in GEO), Saccharum officinarum (sugarcane; 20 slides in
GEO), and Citrus sinensis (orange; 12 slides in GEO).
The large number of microarray datasets can be used
for high-throughput prediction of co-expressed genes,
which show similar expression profiles throughout the
datasets (Shen-Orr et al. 2002; Wu et al. 2002). Co-
expression analysis is based on the hypothesis that co-
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expressed genes are functionally related to each other;
e.g., in metabolic pathways (Li 2002), transcriptional
regulation (Lee et al. 2002), protein-protein interactions
(Eisen et al. 1998; Ge et al. 2001; Fraser et al. 2004)
and biologic process (Eisen et al. 1998; Wen et al.
1998; Tavazoie et al. 1999). Tools and databases
that facilitate co-expression analyses for plant genes
have been comprehensively reviewed by Coulibaly
and Page (2008), Page and Coulibaly (2008), and
Suwabe and Yano (2008).

A network approach is a powerful tool for co-
expression analysis (Marcotte et al. 1999). A co-
expression network comprises vertices (or nodes),
representing genes, and vertex-to-vertex links (or edges),
representing co-expression relationships for gene pairs.
In the network, a group of tightly interconnected genes
is called a ‘co-expression module’ (also known as a
motif, cluster, subgraph, or subnetwork), in which
the genes represent functional relatedness based on
co-expression analysis. Thus, a challenging goal in co-
expression network analysis is to extract co-expression
modules from the whole network. The extraction
of co-expression modules requires that an adequate
threshold of gene-to-gene association is determined.
Luo et al. (2006) and Gupta et al. (2006) reported the
relationship between threshold setting and changes
in membership of co-expression modules. Various
indices used in network analysis have been introduced
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(D’haeseleer 2005; Dong and Horvath 2007). Co-
expression network analysis in plants are recently
reviewed by Aoki et al. (2007).

Co-expression analysis, in general, is accompanied
by false-positive (co-expressed, but with no effective
causality) and false-negative (not co-expressed, but with
effective causality) gene-to-gene association (Ge et al.
2003). Yanai et al. (2006) reported on the false-positive
association of genes that are expressed specifically in
different tissues. False-negative associations are thought
to arise from the non-transcriptional regulation, such
as post-transcriptional regulation (Saito et al. 2008).
Biases in gene expression datasets, e.g., due to the
unequal assembly of various datasets, may also create
false gene-to-gene associations.

To avoid such biases, a network approach is more
useful than methods that use an individual association
index for a pair of genes. An approach that eliminates
this bias is likely to improve the prediction of gene co-

Table 1. Approaches for co-expression network analyses in plants.

expression (e.g., the Confeito algorithm; submitted by
Y.O. et al.).

Practical co-expression network approaches in
plants

In this section, we discuss practical approaches for
predicting co-expressed genes in plants are categorized
(Table 1). The URLs and publications of databases and
tools for these approaches are listed in Table 2.

Basic approaches using web-browsing
databases

To detect co-expressed genes in plants, a user can browse
such genes in public databases for co-expression network
analysis. When a user selects one or several gene(s) for
this purpose, the genes that are co-expressed with the
selected gene(s) can be extracted from databases such as
ACT, ATTED-II, and CoP. In the databases, the user

Items of interest Repository

Data processing Analysis

Basic approaches using web-browsing databases
One or several genes
A specific biologic process
Advanced approaches using stand-alone tools
Specific experiment(s) Selection of an expression
dataset
Acquisition of datasets from
GEO and ArrayExpress
Acquisition of correlation data
from ATTED-II
Acquisition of datasets from
GEO and ArrayExpress

General (unselected) items
General (unselected) items
General (unselected) items

Metabolic pathway(s)

Inquiry using gene name(s) or identifier(s) in ACT, ATTED-II, CoP
Inquiry using a name or Gene Ontology identifier in CoP

Depiction of a network using
Cytoscape and Pajek
Extraction of co-expression
modules using DP-Clus
Extraction of co-expression
modules using DP-Clus
Extraction of co-expression
modules using ARACNE

Calculation of gene-to-gene
correlation coefficients
Calculation of gene-to-gene
correlation coefficients

Not applicable

Not applicable

Overlay of co-expression links onto metabolic pathways using KaPPA-View 3

Each row in the Items of interest column represents an individual approach.

Table 2. The URLSs and publications of public databases and tools.
Types Database names and URLs Organisms Slides
. GEO (Gene Expression Omnibus; Barrett et al. 2008)
Repository http://ncbi.nlm.nih.gov/geo/ 12 plants 8368
. ArrayExpress (Parkinson et al. 2008)
Repository http://ebi.ac.uk/microarray-as/ae/ 10 plants 12759
. KaPPA-View 3 (Tokimatsu et al. 2005)
Viewer http://kpv.kazusa.or.jp/kappa-view3/ 3 plants 1388
Viewer Cytoscape (Shannon et al. 2003) B B
http://cytoscape.org/
Viewer Pajek (Batagelj and Mrval 1998) B B
http://vlabo.fmf.uni-lj.si/pub/networks/pajek/
. ACT (Manfield et al. 2006) . . .
Retrieval http://www.arabidopsis.leeds.ac.uk/act/ Arabidopsis thaliana 322
Retrieval ATTED-II (‘Obayashl et al. 2009) Arabidopsis thaliana 1388
http://atted.jp/
Retrieval CoP (Co-expressed blolqglcal processes) Arabidopsis thaliana 3654
http://pmnedo.kazusa.or.jp/kagiana/coexprocess
Computation ARACNE (Margolin et al. 2006) An 3
omputatio http://amdec-bioinfo.cu-genome.org/html/ARACNE.htm Y
. DP-Clus (Altaf-Ul-Amin et al. 2006)
Computation Any -

http://kanaya.naist.jp/DPClus/

The slides column represents the number of datasets based on Affymetrix GeneChip slides in each database.



queries gene identifier(s) or name(s) to obtain a list of
co-expressed genes. In the ACT database, the user has a
choice of gene expression datasets. ATTED-II provides a
co-expression network view of a query gene and its
co-expressed genes.

When a user selects a specific biologic process for co-
expression analysis, the CoP database allows the user to
retrieve co-expressed genes involved in the process on
the basis of co-expression network analysis. In this
database, the user queries a name or Gene Ontology
identifier (The Gene Ontology Consortium 2000) of
a biologic process to obtain a list of genes involved in
the queried process. Then, by clicking a gene identifier
(e.g., an AGI code for an Arabidopsis gene) in the list,
a list of co-expressed genes is displayed.

Advanced approaches using stand-alone tools
While databases for co-expression network analysis
provide a basic approach to detect co-expressed genes, a
detailed co-expression analysis can also be executable
using stand-alone tools. When a user searches genes co-
expressed in specific experiments for a practical purpose,
a practical approach is as follows. The user 1) extracts
genes that are specifically expressed in the experiments
using a scatter plot to compare the experimental data
with the control data; 2) calculates pairwise Pearson
correlation coefficients between the extracted genes; and
3) depicts the co-expression network, in which a gene is
connected to other genes on the basis of a selected
threshold value of the coefficient (e.g., 0.6). Freeware
tools such as Cytoscape and Pajek are available for
visualizing a network. Datasets for this approach can
also be obtained from public databases of expression
datasets such as GEO and ArrayExpress.

When a user extracts co-expression modules from
a genome-wide network using a large number of
microarray datasets, the user 1) obtains the datasets
from databases such as GEO and ArrayExpress; 2)
calculates Pearson correlation coefficients between all
pairs of genes; and 3) extracts co-expression modules
using co-expression network analysis tools such as
ARACNE, for which the second step is skipped, and
DP-Clus. To skip the first and second steps for DP-Clus,
the gene-to-gene correlation dataset based on 1388
microarray datasets is available at ATTED-II. To
evaluate the relationships between co-expressed genes
and metabolic pathways, the KaPPA-View 3 tool allows
users to overlay co-expression links onto metabolic
pathways of interest.

Co-expression analysis using a large
expression dataset

Using a large number of microarray datasets, co-
expression analysis enables the genome-wide prediction
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of gene function (Boutros and Okey 2005; Hasegawa
2006; Michalak 2008). Such co-expression analyses
have been merged with ‘omics’ datasets such as
genome (genes as a whole), proteome (proteins), and
metabolome (metabolites) to reveal relationships
between genes, proteins, and metabolites. Using large-
scale gene expression data for plants, co-expression
is associated with similarity in the genome sequence
in cis-elements (Haberer et al. 2006), in a gene family
(Nijhawan et al. 2008), or interspecies (Ma et al. 2005;
Ren et al. 2007; Krom and Ramakrishna 2008). Williams
and Bowles (2004) reported high co-expression of
neighboring genes of Arabidopsis. Schmid et al. (2005)
and Hirai et al. (2007) reported similar expression levels
between transcription factor genes and metabolic genes
in Arabidopsis. Mentzen and Wurtele (2008) predicted
998 sets of co-regulated genes using 963 microarray
datasets. Information on gene expression and protein-
protein interactions is frequently combined to predict
the relationship between co-expression and such
interactions (Geisler-Lee et al. 2007). Wienkoop et al.
(2008) proposed an approach to integrate complex
molecular data including transcripts, proteins, and
metabolites. Co-expressed genes may be mapped onto
a specific metabolic pathway (Li 2002). To evaluate the
effects of genes that encode transcription factors and
enzymes on the biosynthesis of metabolites, microarray
analysis for plant genes has been integrated with mass
spectrometry (Rischer et al. 2006, Yonekura-Sakakibara
et al. 2008).

Combining various experimental datasets may lead
to biased expression profiles. To alleviate such a
bias, Schreiber et al. (2008) and Fukushima et al.
(2008) recommended performing the ‘singular value
decomposition’ for expression datasets. To minimize
the bias in microarray analysis, it is important to
use an expression dataset that was collected with the
proper control for a particular purpose. Co-expression
relationships that are predicted on the basis of a
large-scale microarray analysis that includes a variety
of experimental datasets are likely to represent a
coexistence or co-absence of genes, not necessarily
their functional relatedness. For example, Booth et al.
(2005) reported an unexpected correlation between the
expression and function of genes involved in various
aspects of chemotaxis. To associate co-expressed genes
by their functional relatedness, knowledge about their
functions and localization may be required.

Perspectives for high-throughput co-
expression analysis

Co-expression analysis using large DNA microarray
datasets that are available in public databases have been
used to predict gene function, as reviewed here.
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Moreover, recent advances in whole-genome tiling array
technology, which covers the whole genome sequence of
an organism with a single chip, allows for the analysis of
not only mRNA but also small interfering RNAs and
microRNAs (Jones-Rhoades et al. 2007; Gregory et
al. 2008). Therefore, co-expression analyses with the
new technology will provide new insights into the
relationships between mRNA and such previously
undetected RNA species. High-throughput sequencing
technology, such as 454 sequencing (454 Life Sciences,
Branford, CT), [llumina Sequencing (Illumina Inc., San
Diego, CA), and SOLiD System Sequencing (Applied
Biosystems Inc., Foster City, CA) have recently emerged.
The sequencers can be used for large-scale quantification
of transcripts as cDNA species (Jones-Rhoades et al.
2007; Hicks et al. 2008; Sittka et al. 2008; Heisel et al.
2008). Therefore, if cost of sequencing becomes as low
as that of microarrays, co-expression analysis using such
high-throughput sequencing will begin to replace co-
expression analysis based on DNA microarray analysis,
even for plants for which little genomic information is
available.
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