
The Cucurbitaceae family comprises important crop
species, including melon (Cucumis melo L.), cucumber
(Cucumis sativus L.), watermelon (Citrulus lanatus
(Thunb.) Matsum. & Nakai), and squash (Cucurbita
pepo L., Cucurbita maxima Duch.). Members of the
Cucurbitaceae have several unique traits; these include a
lianous structure of the plant body, the development of
fleshy fruits, and a mode of sex determination that is not
found in other model plants for which comprehensive
genomics tools have been developed. Therefore, the
Cucurbitaceae are an important target for both plant
science and crop improvement. Following the first
workshop on Cucurbita genomics in Barcelona in 2005,
the International Cucurbit Genomics Initiative (ICuGI:
http://www.icugi.org/) was established at an academic
level, and melon became the Cucurbit model species
because of previously established genomic resources for
this species. The ICuGI is currently overseeing three
projects concerned with the development of research
tools for functional genomics in melon: sequencing of
ESTs, merging of existing melon genetic maps, and
development of an ICuGI webpage containing specific
genomic tools available to the cucurbit research
community.

Melon is a diploid species with 12 chromosomes
(2x�2n�24) and an estimated genome size of 450 

to 500 Mb (Arumuganathan and Earle 1991), which 
is half the size of the tomato genome (950 Mb)
(Arumuganathan and Earle 1991) and about three 
times the size of the Arabidopsis genome (125 Mb)
(Arabidopsis Genome Initiative 2001). The current
tomato model is excellent for studying fruit development
given the availability of comprehensive resources (e.g.,
Matsukura et al. 2008). Melon has significant potential 
to also become a model plant for the elucidation 
of key traits in fruit development, considering its
morphological, physiological, and biochemical diversity
in flavor development and textural changes during fruit
ripening (Kirkbride 1993; Liu et al. 2004; Nunez-
Palenius et al. 2008). Modern melon cultivars are
categorized into two types based on their fruit ripening
pattern, climacteric and non-climacteric. Elucidation of
fruit ripening is a major target of the study of fruit
development, and its diverse fruit ripening patterns make
melon a valuable model for these studies (Ezura and
Owino 2008). Comparative studies between climacteric
and non-climacteric melons have provided an
understanding of the molecular mechanisms of aroma
formation (Flores et al. 2002; Lucchetta et al. 2007;
Shalit et al. 2001) and cell wall disassembly (Bennett
2002; Nishiyama et al. 2007). Melon is also a useful
plant in which to study other aspects of plant systems
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such as the transportation of macromolecules through
vasculature (Gomez et al. 2005; Haritatos et al. 1996)
and sex determination (Boualem et al. 2008).

This review summarizes the current status of
functional genomics tools for the study of melon; these
include expressed sequence tag (EST) collections, an
“omics” database, genetic linkage maps, DNA markers,
bacterial artificial chromosome (BAC) libraries, a
mutation library, a targeted induced local lesions in
genomes (TILLING) platform for mutation screening,
and transformation techniques are being developed by
the ICuGI and the research community. Future directions
of genomic research on melon are also discussed.

ESTs and “omics” studies

ESTs have been used to select candidate genes
implicated in traits of interest. Microarrays for
identifying sets of plant genes expressed during different
developmental stages or in response to environmental
stimuli can be constructed using EST collections (Alba
et al. 2004; Rudd 2003). In addition, EST collections are
good sources of simple sequence repeats (SSRs) and
single nucleotide polymorphisms (SNPs) that can be
applied in the creation of saturated genetic maps
(Morgante et al. 2002; Rafalski 2002). EST collections
have been generated for many plant species; the most
comprehensive are those for Arabidopsis (Arabidopsis
Genomics Initiative 2001) and rice (Ouyang 2007). Fruit
crops have been less extensively surveyed, but important
collections are publicly available for several species,
including tomato (Fei et al. 2006), apple (Newcomb et al.
2006), grape (da Silva et al. 2005), and citrus (Forment
et al. 2005).

Before the establishment of the ICuGI in 2005, fewer
than 4,000 cucurbit ESTs, primarily contributed by
Katzir and Giovannoni, were deposited in the publicly
accessible GenBank database. This is in sharp contrast to
the data available for families of other important food
crops such as the Solanaceae (1,064,706 sequences),
Fabaceae (2,794,198 sequences), Brassicaceae
(2,710,569 sequences), Vitaceae (381,631 sequences),
and Rosaceae (499,759 sequences). In more recent years,
Gonzalez-Ibeas et al. (2007) have reported 30,675 high-
quality ESTs sequenced from eight normalized melon
cDNA libraries and corresponding to different tissues
under different physiological conditions. The ESTs were
clustered into 16,637 non-redundant sequences or
unigenes, which comprised 6,023 tentative consensus
sequences (contigs), and 10,614 unclustered sequences
(singletons). Many potential molecular markers were
identified in the melon dataset; these included 1,052
potential SSRs and 356 SNPs. Among the melon
unigenes, 69% showed significant sequence similarity to
proteins in databases. The unigenes were functionally

classified according to a gene ontology scheme. In total,
9,402 unigenes were mapped to one or more ontologies.
The distributions of the melon and Arabidopsis unigenes
followed a similar tendency, suggesting that the melon
dataset represents the whole melon transcriptome.
Bioinformatic analyses focused primarily on potential
precursors of melon microRNAs in the melon dataset,
but many other genes potentially controlling disease
resistance and fruit quality traits were also identified.
The patterns of transcript accumulation for 20 of these
genes were characterized by real-time quantitative PCR.
Currently, the ICuGI is sequencing 100,000 ESTs, which
will be released as a publicly accessible database.

EST collections have contributed to the discovery of
genes responsible for the volatile sesquiterpene content
in melon rinds (Portnoy et al. 2008). Sesquiterpenes are
present mainly in the rinds of climacteric varieties and
show a great diversity of composition among varieties.
Melon EST database mining yielded two novel cDNAs,
termed CmTpsNY and CmTpsDul, that code for
members of the Tps gene family and are 43.2% similar
to each other. Heterologous expression of CmTpsNY in
E. coli produced primarily d-copaene, a-copaene, b-
caryophyllene, germacrene D, a-muurolene, g-cadinene,
d-cadinene, and a-cadinene, whereas CmTpsDul
produced a-farnesene only. CmTpsNY was mostly
expressed in ‘Noy Yizre’el’ rind, whereas CmTpsDul
expression was specific to ‘Dulce’ rind. None of these
genes was expressed in the rind of the non-climacteric
‘Tam Dew’ cultivar. These results indicate that different
sesquiterpene synthases encoded by different members
of the Tps gene family are active in different melon
varieties and that this specificity modulates the
accumulation of sesquiterpenes. The genes are
differentially and transcriptionally regulated during fruit
development and according to variety, and are likely to
be associated with chemical differences responsible for
the unique aromas of melon varieties.

A melon cDNA microarray (ver. 1.0) was designed
based on the melon unigene build (ver. 1.0) EST
collection. The array contains 9,216 spots; 12 spots are
negative controls consisting of only printing buffer, while
the remaining 9,204 spots represent 3068 unique genes,
each printed in triplicate on the array (ICuGI:
http://www.icugi.org/). This preliminary version of the
microarray is not widely used. After the completion of
EST sequencing by the ICuGI, a practical cDNA
microarray will be designed.

Recently, a metabolomics approach combining 1H
NMR and gas chromatography–electrospray ionization
time-of-flight mass spectrometry (GC-EI-TOFMS)
profiling was employed to characterize melon fruit 
(Biais et al. 2009). The data analyses revealed several
metabolite gradients related to differences in metabolism
in fruit flesh and demonstrated the suitability of
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multiblock hierarchical principal component analyses for
correlation of data from two metabolomics platforms.
The metabolomic approach combined with transcriptome
analysis will contribute to a comprehensive
understanding of melon fruit development.

Genetic linkage maps and DNA markers

Studies on the development of DNA markers and
construction of linkage maps of the Cucurbitaceae have
focused on melon, and a number of DNA markers and
linkage maps in melon have been published. Melon is an
economically important vegetable and is widely
distributed in temperate, subtropical, and tropical
climates. Given the high price of fruit and F1 hybrid seed,
there is a great demand for top-quality seed. Breeders
have high expectations of DNA markers applicable to F1

seed purity testing and marker-assisted selection (MAS).
Recently, an attempt to sequence the whole melon
genome was begun (Gonzalez et al. Plant & Animal
Genomes 2009). A complete genome sequence of the
closely related cucumber (Cucumis sativus L.) has been
built and will be published soon (Huang et al. Plant &
Animal Genomes 2009). Substantial progress in genomic
studies of the Cucurbitaceae is imminent.

Until the early 2000s, DNA markers used in melon
genetic research were mainly restriction fragment length
polymorphism (RFLP), random amplified polymorphic
DNA (RAPD), and amplified fragment length
polymorphism (AFLP) markers. RFLP analysis has been
a valuable tool in mapping the genomes of various
species, but it is laborious, cumbersome, and not
available to all laboratories. In addition, the level of
polymorphism by RFLP analysis is low in melon
(Shattuck-Eidens et al. 1990). RAPD, AFLP, and inter-
simple sequence repeat (ISSR) markers are easy to use
and reveal large sets of genetic loci, but they are
dominant markers and cannot be readily transferred to
other populations. Recently, SSR markers and SNP-
based genetic markers have attracted significant
attention. They are hypervariable, multiallelic,
codominant, locus-specific, and evenly distributed
throughout the genome. Therefore, they are widely used
for applications such as cultivar identification, hybrid
seed purity testing, and linkage map construction. At
present, more than 2,000 melon SSR markers are
available (Chiba et al. 2003; Danin-Poleg et al. 2000;
Fukino et al. 2007; Gonzalo et al. 2005; International
Cucurbit Genomics Initiative database, http://www.icugi.
org/; Kong et al. 2007; Ritschel et al. 2004).

A genetic linkage map is a prerequisite to the study of
inheritance of both qualitative and quantitative traits and
to integration of the molecular information necessary for
MAS and map-based gene cloning techniques (Morgante
and Salamini 2003). In melon, a number of genetic

linkage maps have been produced based on a range of
marker types, including RFLPs, RAPDs, AFLPs, ISSRs,
and SSRs (Baudracco-Arnas and Pitrat, 1996; Cuevas et
al. 2008; Fukino et al. 2008b; Gonzalo et al. 2005; Oliver
et al. 2001; Périn et al. 2002; Pitrat 1991; Wang et al.
1997). Several genes and quantitative trait loci (QTLs),
most of which confer resistance to diseases and pests,
have been mapped to those linkage maps. Construction
of a higher density map is desirable in order to expand
the application of the genetic map to a larger group of
breeding populations, but it is costly and laborious. A
strategy for improving the efficiency of genetic mapping
saturation (bin mapping) by reducing the size of the
mapping population was proposed. This strategy has
recently been applied to melon by Fernandez-Silva et al.
(2008), and its implementation for efficient and accurate
map saturation has been demonstrated. A survey of
published linkage maps, including the genes and QTLs
mapped to them, are summarized in Table 1.

Although various linkage maps of melon are rapidly
being developed, molecular information from the various
genotypic maps must be integrated to allow their
efficient use. In accordance with one of its objectives, the
ICuGI has begun merging the existing melon genetic
maps. Owing to the demonstrated usefulness of SSR-
based linkage maps for the alignment of different genetic
maps in melon (Gonzalo et al. 2005) and other species
(Wu and Huang 2006), SSR markers were selected as
anchor markers localized in common to different maps.
The maps being used for construction of a consensus
map are those developed by research groups in Israel,
Japan, Spain, USA, France, and China. The consensus
map and relevant information will be available on the
ICuGI webpage.

BAC libraries

Bacterial artificial chromosome (BAC) libraries are
useful tools in plant genomic studies for constructing
linkage maps, sequencing whole genomes, identifying
molecular markers, performing map-based cloning, and
analyzing microsynteny (Budiman et al. 2000; Cregan et
al. 1999; Morales et al. 2005; Morishige et al. 2002;
Nam et al. 2005; Sasaki et al. 2005).

Two BAC libraries for the multi-disease resistant
melon line MR-1 were the first BAC libraries constructed
from members of the Cucurbitaceae family (Luo et al.
2001). The HindIII library consists of 177 microtiter
plates in a 384-well format; approximately 95.6% of the
HindIII library clones contain nuclear DNA inserts
(average size, 118 kb), providing coverage of 15.4
genome equivalents. Similarly, 96% of the clones in the
EcoRI library, which consists of 222 microtiter plates,
contain nuclear DNA inserts (average size, 114 kb),
accounting for 18.7 genome equivalents. The MR-1 BAC
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libraries are currently available from the BAC/EST
Resource Center, Genomics Institute, Clemson
University (http://www.genome.clemson.edu/, 2009.04.
20).

Fom-2 is the gene responsible for resistance to
Fusarium wilt, which is one of the most destructive
diseases in melon production worldwide. Two PCR-
based codominant DNA markers (AM, AFLP marker;
FM, Fusarium marker) that cosegregate with Fom-2 were

previously identified by Wang et al. (2000), who used 
the two markers to screen the HindIII BAC library
mentioned above (Wang et al. 2002). Fingerprinting
analysis showed that clones identified by each marker
assembled into two separate contigs at high stringency.
GenBank searches using the end-sequencing results for
the identified clones produced matches to leucine-rich
repeats (LRRs) of resistance genes (R genes); to
retroelements and cellulose synthase in clones identified
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Table 1. Survey of published linkage maps in melon.

Type of Number Total 
Parents the of the Markersa length Genes QTL Reference

population individuals (cM)

Védrantais �
RIL 163

346 AFLP
PI161375 113 IMA

1,411
disease resistance, 

233 AFLP andromonoecious,
— Périn et al. 2002

Védrantais � 65 ISSR green flesh color,

PI414723
RIL 63

5 SSR
1,180 and so on

2 RFLP

465 AFLP andromonoecious, 
downy mildew 

PI124112 �
RIL 120 17 SSR 1,150 Papaya ringspot

resistance, Perchepied et al. 
Védrantais 

virus resistance
powdery mildew 2005a

26 ISSR
resistance

Fusarium
Isabelle �

RIL 120 AFLP, ISSR, SSR — —
oxysporum Perchepied et al. 

Védrantais melonis 2005b
resistance

41 RFLP
andromonoecious,

PI414723 �
74 RAPD

seed-coat color,
F2 113 3 ISSR 1,421

Aphis gossypii
— Silberstein et al. 2003

TopMark
16 SSR

resistance
42 AFLP

Piel de Sapo �
F2 93

52 SSR

Gonzalo et al. PI 161375 235 RFLP
1,240

Melon necrotic spot fruit quality
2005, Monforte90 SSR traits

DHL 77 79 RFLP 1,223
virus resistance

et al. 2004

3 SNP

DHL (bin 
80 RFLP

Melon necrotic spot Fernandez-Silva
mapping)

14 212 SSR 1,261
virus resistance

—
et al. 2008

3 SNP

yield-related Zalapa et al. 
114 RAPD traits 2007
43 SSR 1,116 andromonoecious

fruit quality Paris et al. 

USDA 846-1 �
RIL 81

32 AFLP
traits 2008

Top Mark 104 SSR
quantity of beta-7 CAPS

4 SNP
1,180 andromonoecious Cuevas et al. 2008

140 other
carotene in fruit

Melon 
94 SSR

Chukanbohon 
F2 94 2 CAPS 700

— short lateral Fukino et al. 
Nou 4 Gou �

18 AFLP
branching 2008a

Harukei 3

Aphis gossypii
AR 5 �

RIL 93
157 SSR

877
resistance, flesh color, Powdery mildew Fukino et al. 

Harukei 3 7 SCAR/CAPS Melon necrotic spot resistance 2008b
virus resistance

a SCAR, sequence characterized amplified region; CAPS, cleaved amplified polymorphic sequences.



by FM; and to nucleotide-binding sites (NBSs) of R
genes, retroelements, and cytochrome P-450 in clones
identified by AM. A 6.5-kb fragment containing both
NBS and LRR sequences was found to share high
sequence similarity to the Toll-interleukin-1 receptor
(TIR)/NBS/LRR class of R genes such as the N gene,
exhibiting 42% identity and 58% similarity with the
TIR–NBS and LRR regions, respectively.

A BAC library from the dihaploid melon line PIT92
was constructed, with six-fold coverage of the haploid
melon genome and an average insert size of 139 kb (van
Leeuwen et al. 2003). Using this BAC library, a contig of
four BACs around the MRGH63 (Garcia-Mas et al.
2001) resistance gene homolog fragment was created
(van Leeuwen et al. 2005). A detailed analysis of four
regions of the melon genome, including two sequenced
BACs, identified 14 TIR/NBS/LRR genes, which appear
to be clustered in the melon genome. They contain all 
the conserved motifs previously described for their
counterparts in other species, although differences were
also detected. These and similar results may contribute to
a better understanding of the variability, genomic
distribution, and evolution of this group of resistance
gene homologs.

In melon, andromonoecy is controlled by the identity
of the alleles at the andromonoecious (a) locus
(Kenigsbuch and Cohen 1990). The a locus was cloned
by constructing high-resolution genetic and physical
maps, using chromosome walking to construct a BAC
contig anchored to the genetic map (Boualem et 
al. 2008). Cloning of the a gene revealed that
andromonoecy results from a mutation in the active site
of 1-aminocyclopropane-1-carboxylic acid synthase.
Expression of the active enzyme inhibits the
development of the male organs and is not required for
carpel development. A causal SNP associated with
andromonoecy was identified, which suggests that the a
allele has been under recent positive selection and may
be linked to the evolution of this sexual system.

BAC libraries are powerful tools for functional
genomics in melon.

Mutation libraries and TILLING

Large collections of induced mutations in a common
genetic background are designated as mutation libraries,
and mutants isolated from plant mutation libraries have
made major contributions to both basic and agricultural
research (Ahloowalia et al. 2004). Recently, technologies
such as TILLING that allow high-throughput mutant
isolation have been developed (Henikoff et al. 2004),
increasing the value of mutation libraries for functional
genomics in plants.

Ethyl methanesulfonate (EMS) is a widely employed
chemical mutagen with high mutagenicity, low mortality,

and simple application. EMS treatment causes primarily
G/C to A/T transitions in DNA, which ultimately may
result in an amino acid change or transcription
termination. Mutation libraries established by EMS
treatment have been reported for several important plant
species, including tomato (cv M82, Menda et al. 2004;
cv. Micro-Tom, Saito et al. 2009), wheat (Slade et al.
2005), sorghum (Xin et al. 2008), and soybean (Cooper
et al. 2008). These mutation libraries have subsequently
used for TILLING.

The production of a melon mutation library was first
reported by Israeli researchers (Tadmor et al. 2007).
Although melon is a diploid species (2n�24) with a
small genome size of 450 Mb, it exhibits relatively high
levels of sequence and fruit shape polymorphism. Seeds
of ‘Noy Yizre’el’, a Galia-type melon parental line, were
treated with the EMS, and the resulting M-1 plants were
self-pollinated to produce about 3,000 M-2 families.
Phenotypic analyses revealed newly induced variation,
mostly governed by single recessive mutations; different
plant organs, including cotyledon, leaves, flowers, and
fruit, were affected at different growth stages, from
emergence to mature fruit. Several mutations showed
phenotypic similarities to mutations found in other plant
species. This melon mutation library is a valuable source
of new traits. Moreover, it also serves as an essential
infrastructure for the discovery of important genes (map-
based cloning), the annotation of unknown sequences
(TILLING), and the comparison of phenotypic and
genetic characteristics among plant mutation libraries.

Spanish research groups have also initiated the
establishment of a mutant collection and a TILLING
platform (Puigdomènech et al. 2007). In the ‘Piel de
Sapo’ M62-113 line, 20,000 melon seeds were
mutagenized by 0.5 to 1.5% EMS, resulting in a
collection of 5,000 M2 mutant families. DNA bulks
prepared from these families will be examined for allelic
variation.

Japanese researchers have begun preliminary studies
to establish a melon mutation library and a TILLING
platform (Ezura et al. unpublished results). We used
‘Earl’s Favourite (Harukei 3)’, a Japanese cultivar that is
an important breeding material for netted melon cultivars
in Japan. The seeds were tested for EMS response, and
the appropriate mutagenizing concentration was
estimated at 0.5 to 1% based on mortality and deformity.
Currently, a collection of approximately 600 M2 families
has been obtained and will be evaluated by TILLING 
for mutation frequency. As a preliminary study 
for establishing a TILLING platform in melon,
EcoTILLING, which allows the identification of allelic
variants within natural populations, has been performed.
In the first attempt at EcoTILLING in melon (Nieto et al.
2007), a collection of Cucumis spp. was characterized
for susceptibility to Melon necrotic spot virus (MNSV)
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in order to identify new allelic variants of eukaryotic
translation initiation factor 4E (eIF4E). A single point
mutation in melon eIF4E controls resistance to MNSV. A
high conservation of eIF4E exonic regions was found,
with six polymorphic sites identified by EcoTILLING
113 accessions.

We also performed Eco-TILLING experiments using
50 melon varieties with different phenotypes for fruit
shelf life (Ezura et al. unpublished results). We designed
several PCR primers for EcoTILLING the melon
ethylene receptor gene Cm-ETR1, which is expressed
during fruit maturation and may be responsible for melon
fruit ripening (Sato-Nara et al. 1999). Significant allelic
variations in Cm-ETR1 were identified among the melon
varieties tested (Figure 1).

These results demonstrate that EcoTILLING and
TILLING are applicable to melon and will be useful in
screening melon mutation libraries for genes of interest.

Genetic transformation

Genetic transformation is an alternative technique for
characterizing the functions of genes of interest. Various
transformation procedures have been reported for melon
(reviewed by Guis et al. 1998), and an Agrobacterium-
mediated procedure has been found to be practical for
the production of transgenic melon plants. The first
successful Agrobacterium-mediated transformation
conferred kanamycin resistance to melon by the
introduction of the NPT-II (Fang and Grumet 1990) and
GUS genes (Dong et al. 1991; Valles and Lasa 1994).

These early studies revealed two difficulties in melon

transformation. First, many transgenic melon plants were
found to be tetraploid. In response, Guis et al. (2000)
developed a simple and efficient regeneration system that
facilitated the production of diploid transformants at a
high rate. Second, the frequency of transformation events
was low due to the occurrence of “escapes” (Guis et al.
1998). In initial studies, transgenic plants were generated
via adventitious shoot organogenesis. To reduce the
frequency of escapes, an alternative regeneration system
was needed. Several groups reported the production of
somatic embryos from melon cell suspension cultures
(e.g., Oridate and Oosawa, 1986). Although somatic
embryogenesis can lead to problems such as abnormal
embryos and hyperhydricity, the liquid-culture system is
useful for the efficient selection of transformed tissues.
Akasaka-Kennedy et al. (2004) reported an efficient
transformation and plant regeneration system using
somatic embryogenesis. With their protocol, transgenic
plants were successfully produced at a rate greater than
2.3%, which was sufficient for practical use.

Other approaches for improving the frequency of
transformation events have been proposed. Galperin et
al. (2003) screened melon genotypes for ease of
transformation and regeneration, and noted a variation of
between 0.4 to 1.5 transgenic shoots per explant. Ezura
et al. (2000) observed that during Agrobacterium
inoculation, explants produced ethylene. By adding an
ethylene biosynthesis inhibitor, AVG, to the co-
cultivation medium, they reduced ethylene production by
the explants, resulting in increased transformation
efficiency. Nonaka et al. (2008a) demonstrated that the
ethylene evolved from a plant inoculated with 
A. tumefaciens inhibited vir gene expression in 
A. tumefaciens via ethylene signal transduction in 
the plant, consequently inhibiting genetic transformation.
To suppress ethylene evolution, they introduced 1-
aminocyclopropane-1-carboxylate (ACC) deaminase into
A. tumefaciens (Nonaka et al. 2008b). The enzyme
cleaves ACC (the immediate precursor to ethylene) to a-
ketobutyrate and ammonia, and as a result, ethylene
levels are decreased. Agrobacterium tumefaciens with
ACC deaminase activity, named Super-Agrobacterium,
has shown a reduction in ethylene evolution and
enhanced gene transfer into melon explants.

Agrobacterium-mediated genetic transformation has
been used to validate the functions of isolated melon
genes (Pitrat, personal communication). Three genes,
Vat, Nsv, and Fom-2, which are responsible for major
disease resistance in melon, have been isolated by map-
based cloning. Vat confers a double resistance: resistance
to plant colonization by an important pest, the
melon/cotton aphid Aphis gossypii, and resistance to
virus transmission by A. gossypii (Pauquet et al. 2004).
The second gene, Nsv, confers resistance to MNSV
(Garcia-Mas et al. 2004), a single-stranded RNA virus
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Figure 1 Detection of polymorphisms in melon ethylene receptor
gene Cm-ETR1. Gel images from LI-COR analyzer. Each lane displays
the 900 bp amplified PCR product of transmembrane regions digested
with endonuclease Cel1. Heteroduplexes were produced after melting
and anniling PCR products with the DNA of the reference genotype
(culivar Harukei 3). Cleaved products, indicated by boxes, correspond
to sequence polymorphisms. True polymorphisms should give rise to
two complementary bands.



that infects cucurbits grown under glass. Fom-2 confers
resistance to races 0 and 1 of the soil-borne fungal
pathogen Fusarium oxysporum f. sp. melonis (Joobeur et
al. 2004), which causes significant losses in cultivated
melon. Functional validation was obtained by the stable
transformation of susceptible melons with these genes.

Another major fungal pathogen, Pseudoperonospora
cubensis, is the causal agent of downy mildew in
cucurbits (i.e., cucumber, melon, watermelon, and
squash) and can be controlled through transgenic
manipulation. The wild melon line PI 124111F is highly
resistant to P. cubensis owing to its enhanced expression
of the resistance genes At1 and At2, which encode
glyoxylate aminotransferases. These enzymes are
important in photorespiration. Transgenic melon plants
overexpressing either At1 or At2 displayed enhanced
glyoxylate aminotransferase activity and remarkable
resistance against P. cubensis (Taler et al. 2004),
demonstrating the function of these genes.

Genetic transformation is a significant tool for melon
functional genomics studies, as evidenced by the
foregoing examples. The accumulation of sequence
information in melon will allow the identification of
unique melon genes with unknown functions. The
elucidation of their functions should provide a
comprehensive understanding of melon development.
However, in a recent study (Nieto et al. 2006), to confirm
the function of the Cm-eIF4E gene, which was expected
to confer resistance to MNSV in melon, the gene was
transiently expressed in melon plants or stably expressed
in a heterologous plant species, Nicotiana benthamiana.
This suggests that the production of stable transgenic
melon plants expressing target genes is a bottleneck for
melon functional genomics studies. We are trying to
improve the Super-Agrobacterium with ACC deaminase
activity and will establish a reproducible transformation
protocol for melon functional genomics study.

Perspectives

Fleshy fruit development is a fundamental process that
evolved with higher plants. Currently, tomato is the
primary model species for studying fleshy fruit
development owing to the availability of comprehensive
resources for functional genomics approaches (Ezura,
2009; Matsukura et al. 2008). Although resources and
tools for functional genomics studies in melon are not
yet adequate, melon will provide an alternative model
species for studying fleshy fruit development through the
accumulation of comprehensive genomics resources and
development of functional genomics tools.

The ICuGI will soon release more than 100,000 ESTs
of melon, and transcriptomic analysis of melon using a
next-generation sequencer is in progress (Katir N.,
personal communication). These activities should

provide a collection of ESTs suitable for further studies.
A cucumber genomics study is in progress, and the
information will be adaptable to melon because of the
high similarity between the cDNA sequences of both
species. Comparisons of ESTs between melon and other
model plant species will enable the selection of genes
unique to melon. Elucidation of the functions of these
melon-specific genes will contribute to our knowledge of
unique Cucurbitaceae traits and will allow the
application of the information for Cucurbitaceae
improvement.

There are two obstacles to using melon as a model
plant for fruit development. One is the inefficiency of
genetic transformation techniques, although several
methods have previously been reported. The
establishment of efficient and reproducible methods for
genetic transformation has a profound effect on research
activities, as demonstrated for Arabidopsis (Clough and
Bent 1998), rice (Toki et al. 2006), and tomato (Sun et al.
2006). Similarly, genetic transformation methods should
be developed in melon; the super-Agrobacterium
described above may have great potential in this regard.
A second obstacle is the relative lack of mutation
libraries and mutant collections for melon. Mutants are
essential tools for elucidating the molecular mechanisms
of target traits and the functions of target genes.
Although preliminary studies on the production of
mutation libraries have been conducted in melon, only
one study has been reported (Tadmor et al. 2007). The
cucurbit research community must establish publicly
available mutation libraries and mutant databases, similar
to those that exist for other model plants.
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