
ATP-binding cassette (ABC) proteins constitute one of
the largest families in plants, and they have various
functions including the transport of diverse substrates,
channel regulation and pathogen resistance. ABC
proteins share conserved amino acid sequence domains
designated nucleotide binding domains (NBDs). Each
NBD possess three characteristic motifs: a Walker A 
box [GX4GK(ST)], a Walker B box [(RK)X3GX3L
(hydrophobic)3] (Walker et al. 1982) and an ABC
signature [(LIVMFY)S(SG)GX3(RKA)(LIVMYA)X-
(LIVFM)(AG)] (Bairoch 1992) located between the two
Walker boxes. Most ABC proteins include one or two
transmembrane domains (TMDs) which contain 4–6
transmembrane a-helices. Several other ABC proteins
which lack TMDs are thought to be soluble proteins.
More than 120 members of the ABC family have been
identified in the Arabidopsis and rice genomes (Sanchez-
Fernandez et al. 2001; Garcia et al. 2004; Verrier et al.
2008), and 91 putative ABC proteins have been found in
Lotus japonicus (Sugiyama et al. 2006). Several plant
ABC proteins were recently characterized with respect to
auxin transport (Geisler et al. 2005; Lin and Wang 2005;
Terasaka et al. 2005), pathogen resistance (Kobae et al.
2006; Stein et al. 2006; Krattinger et al. 2009), heavy
metal detoxification (Lee et al. 2005; Kim et al. 2006;
Chen et al. 2007; Gaillard et al. 2008), and calcium
channel regulation (Klein et al. 2003; Suh et al. 2007).

These ABC proteins contain NBDs and TMDs (two
NBDs and two TMDs constitute a full size ABC protein,
and one NBD and one TMD constitute a half-size ABC
protein). The ABCE subfamily of soluble ABC proteins
is known as RNase L inhibitors, and these are implicated
in the suppression of RNA silencing (Braz et al. 2004;
Sarmiento et al. 2006). However, the function of another
group of soluble ABC proteins, the ABCF subfamily, has
not been analyzed in plants to date. The ABCF subfamily
has two NBDs and no TMD and is also called the GCN
(general control non-derepressible) subfamily. Yeast
GCN20, which belongs to the ABCF subfamily, is
involved in mediating activation of the eIF-2a kinase in
amino acid-starved cells (Vazquez de Aldana et al.
1995).

To investigate the expression patterns of the ABCF
subfamily in plants, we constructed promoter-GUS
fusion genes for Arabidopsis ABCF subfamily genes. 
In Arabidopsis, the ABCF subfamily consists of five
members, AtABCF1 (At1g60790), AtABCF2
(At5g09930), AtABCF3 (At1g64550), AtABCF4
(At3g54540) and AtABCF5 (At5g64840). The primer
sequences used for promoter amplification were as
follows: AtABCF1_Pro-f; GATCTCTAGATGCCAA-
CCCATGACATCAATGC, AtABCF1_Pro-r; AATTCC-
CGGGGACACCATCTTCAAATTATCTCC, AtABCF2_
Pro-f; GATCGTCGACTGCTTCTGTTGCAACGCTA-
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GAG, AtABCF2_Pro-r; GATCGGATCCTACCATTG-
TTGGTATAAAATG, AtABCF3_Pro-f; GATCGTCG-
ACAAGGTCTTCTATCTCCATGCCACTC, AtABCF3_
Pro-r; GATCGGATCCAGTCATAGCCAACACAGAA-
GCGACG, AtABCF4_Pro-f; GATCGTCGACATATTG-
TCCAGACTCGTGAGGTTGC, AtABCF4_Pro-r; GAT-
CGGATCCACCCATTTAAAACTGTACCTGACAT,
AtABCF5_Pro-f; GATCGTCGACTCTCTACAACTTC-
GAGAGGATG, AtABCF5_Pro-r; GATCGGATCCAC-
CCATGGTTATATGTAGCGATAG. Genomic fragments
of about 3.7 kb of the five ABCF subfamily members,
including putative promoter regions, 5� untranslated
regions and the first two codons (AtABCF1 promoter:
3736 bp, AtABCF2 promoter: 3741 bp, AtABCF3
promoter: 3716 bp, AtABCF4 promoter: 3866 bp,
AtABCF5 promoter: 3746 bp) were fused to the GUS
reporter gene of the vector pBI101, and these constructs
were introduced into wild type Arabidopsis. The T2
generations of transgenic lines were germinated on 0.8%
agar plates containing 0.5X B5 medium (pH 5.7), 1%
(w/v) sucrose and kanamycin (25 mg ml�1), and GUS
activity was analyzed in 20-day-old seedlings as
previously reported (Kato et al. 2007). After three more
weeks in the growth chamber, GUS activity in flowers
and siliques was also analyzed. In seedlings, GUS
activity was high in leaves of AtABCF1 promoter lines,
AtABCF4 promoter lines and AtABCF5 promoter lines
(Figure 1A, I, M), and was detected in young leaves of
AtABCF3 promoter lines (Figure 1E). GUS staining was
observed in roots of AtABCF1 promoter lines and
AtABCF4 promoter lines (Figure 1B, J), and GUS
activity was observed in several root tips of AtABCF3
promoter lines (Figure 1F) and in root epidermal cells of
AtABCF5 promoter lines (Figure 1N). In flowers, GUS
staining was seen in sepals of AtABCF1 promoter lines,
AtABCF4 promoter lines and AtABCF5 promoter lines
(Figure 1C, K, O), and in anthers of AtABCF1 promoter
lines, AtABCF2 promoter lines, AtABCF3 promoter lines
and AtABCF4 promoter lines (Figure 1C, G, K, Q). In
AtABCF2 promoter lines, GUS activity was detected
only in anthers (Figure 1Q). AtABCF1 promoter lines,
AtABCF4 promoter lines and AtABCF5 promoter lines
exhibited GUS staining in the upper part of carpels
(Figure 1C, K, O), and AtABCF3 promoter lines
exhibited GUS staining in ovules (Figure 1G). In
siliques, GUS activity was detected in valves of
AtABCF1 promoter lines, AtABCF4 promoter lines and
AtABCF5 promoter lines (Figure 1D, L, P), and GUS
activity was detected in seeds of AtABCF3 promoter
lines (Figure 1H). AtABCF4 promoter lines exhibited
GUS staining in replums (Figure 1L), and AtABCF5
promoter lines exhibited GUS staining in septums
(Figure 1P). The data obtained in this assay was
summarized in Table 1. These results demonstrate that
ABCF subfamily members are expressed in various

organs of Arabidopsis at different developmental stages.
To gain more insight into the function of the ABCF

subfamily, we screened for knockout lines of the ABCF
genes from our Arabidopsis T-DNA-tagged lines (Kato et
al. 2007). We made primers for each gene to screen for
knockout lines (AtABCF1-f; AGATCTACAGATCTC-
CCGAATC, AtABCF1-r; CTTAGCATGTGACCCCAA-
TCTG, AtABCF2-f; ACCAACAATGGTATTAACG-
ACG, AtABCF2-r; AGCTATGTGTGAACTGTGAAGC,
AtABCF3-f; TTGGTAAGTAACCATTCGCAGC,
AtABCE3-r; TGCTCGATTCGAAGATTTGGG,
AtABCF4-f; ATGGGTAAGAAGAAGTCAGACG,
AtABCF4-r; AACTTCACTCATCAACTTCTGC,
AtABCF5-f; TCGAGGGTTTCTTACTCTGCTG,
AtABCF5-r; TGTTCAGTTCCATCTCTTGGAG). PCR
reactions were carried out with one of the above primers
and a T-DNA vector primer (LB; AAGAAAATGCC-
GATACTTCATTGGC, or RB; CTACAGGACGTAACA-
TAAGGGACTG) using DNA pools containing genomic
DNAs derived from the T-DNA-tagged lines. We isolated
knockout lines for four out of the five ABCF subfamily
members (Figure 2). The T2 generations of the knockout
lines were germinated on 0.8% agar plates containing
0.5X B5 medium (pH 5.7), 1% (w/v) sucrose and
hygromycin B (10 mg ml�1), and the phenotypes of 20-
day-old seedlings were analyzed. The plants were grown
for five more weeks, and their phenotypes were again
analyzed. One knockout mutant, in which the AtABCF3
gene was disrupted, exhibited a visible phenotype. We
obtained four different mutant lines of AtABCF3
(KE3890, KG10570, KG15581, KG37852). T3 seeds
with these mutant lines were germinated on 0.8% agar
plates containing 0.5X B5 medium (pH 5.7) and 1%
(w/v) sucrose, and the root growth of the seedlings was
compared to that of wild type plants. The root growth
rate of all mutant lines was retarded compared to that of
wild type plants (Figure 3). Elongated cells were seen in
longitudinal section of the mutant roots (Figure 4), and
regions composed of small and dense cells in the mutant
roots were shorter than those in wild type roots (Figure
4). These phenotypes suggest that the shorter roots could
be a result of fewer cell divisions. The growth rates of
whole plants with the mutant lines were also reduced
relative to that of wild type plants, although the mutants
eventually grew to the same height as wild type plants.
The mutant lines were almost fertile. Our T-DNA-tagged
lines are gene and enhancer trap lines (Kato et al. 2007),
and we detected GUS activity in root tips of one mutant
(KG10570, Figure 5 and Table 1). Although AtABCF3
promoter lines showed GUS activity in flowers and
siliques (Figure 1G, H), GUS staining was only seen in
root tips in KG10570. We do not know why AtABCF3
promoter lines and gene trap lines having AtABCF-GUS
fusion proteins have different expression patterns. One
possible explanation is that the AtABCF3 proteins might
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affect GUS expression in gene trap lines, because the
AtABCF-GUS fusion proteins in gene trap lines contain
676 out of 715 amino acids of the AtABCF3 protein.
Another possibility is that the introns of the AtABCF3
gene, which are present in gene trap lines but not in
promoter-GUS lines, might affect expression of the
AtABCF3-GUS fusion genes. GUS activity was observed

in root tips of both AtABCF3 promoter lines and gene
trap lines, indicating that disruption of AtABCF3 in the
root tips of the mutants impaired root growth. Expression
of the AtABCF3 gene and analyses of knockout mutants
suggested that AtABCF3 contributes to root growth and
development.

The knockout lines of other 3 members (AtABCF1,
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Figure 1. GUS expression patterns of the promoter-GUS transgenic lines. (A–D) AtABCF1 promoter lines. (E–H) AtABCF3 promoter lines. (I–L)
AtABCF4 promoter lines. (M–P) AtABCF5 promoter lines. (Q) AtABCF2 promoter lines. T2 seeds were germinated on agar plates containing
kanamycin, and leaves (A, E, I, M) and roots (B, F, J, N) of 20-day-old seedlings were stained with X-Gluc. The plants were grown for three more
weeks, and flowers (C, G, K, O, Q) and siliques (D, H, L, P) were stained with X-Gluc. The staining patterns of the plants were examined by
microscopy. Scale bars�10 mm (A, I, J, M), 3 mm (B, E, F), 2 mm (N), 1 mm (C, G, K, O, Q), 200 mm (D, H, L, P).



AtABCF2 and AtABCF5) did not exhibit visible
phenotypes in the present study. The AtABCF2 and
AtABCF5 genes exist in the duplicated region of
chromosome 5 in the Arabidopsis genome (AtABCF2: 3
Mb region of chromosome 5, AtABCF5: 25 Mb region of
chromosome 5. Arabidopsis Genome Initiative 2000).
Therefore these two genes may have redundant
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Figure 2. Gene structures of ABCF subfamily members and T-DNA
insertion sites. Genomic organizations of the AtABCF1 (At5g60790),
AtABCF2 (At5g09930), AtABCF3 (At1g64550), AtABCF4
(At3g54540) and AtABCF5 (At5g64840) are shown. Exons are
represented by boxes. The 5� and 3� untranslated regions are shown in
black. Protein coding regions are shown in gray. Triangles indicate the
locations of T-DNA insertions. KG lines (gene trap lines) have pGTAC-
LUS vectors (Kato et al. 2007), and KE lines (enhancer trap lines) have
pETAC-LUS vectors in which a 35S minimal promoter replaces the
first intron of the Arabidopsis rbcS3B gene in the vector pGTAC-LUS.

Figure 4. Longitudinal section of 14-day-old roots of wild type (A)
and AtABCF3 knockout line (B). Roots were fixed in formaldehyde
acetic acid containing 37% (w/v) formaldehyde, glacial acetic acid, and
70% (v/v) ethanol (5 : 5 : 90; [v/v/v]). Samples were then dehydrated
through an ethanol series of up to 100% ethanol, and embedded in
Technovit 7100 resin (Kulzer). Sections (3 mm) were cut, mounted on
glass slides, stained with 0.5% toluidine blue, and examined by
microscopy. Scale bar�100 mm.

Figure 5. GUS expression pattern of the gene trap line KG10570. T2
seeds were germinated on agar plates containing hygromycin B, and
20-day-old seedlings were stained with X-Gluc. The staining patterns
of the plants were examined by microscopy. Scale bar�10 mm.

Figure 3. Root growth of wild type and T-DNA knockout lines of the AtABCF3 gene (KE3890, KG10570, KG15581, KG37852). T3 seeds were
germinated on agar plates, and the root growth of 20-day-old seedlings was photographed.



functions. Expression patterns of the AtABCF1 gene are
similar to that of the AtABCF4 gene, and the function of
the two genes may also be redundant. Producing double
knockout mutants might cause visible defects. Another
possibility is that defects in the knockout lines may be
visible under different conditions, for example under
biotic or abiotic stress conditions. Further analyses will
be needed to understand the functions of the ABCF
subfamily in detail.
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Table 1. GUS expression of Arabidopsis ABCF promoter lines and gene trap line.
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anther � � � � � �

cerpel � � � � � �

ovule � � � � � �

Silique
seed � � � � � �

valve � � � � � �

replum � � � � � �

septum � � � � � �

�; GUS staining was observed., �; GUS staining was not observed.
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