
Recently, metabolomics has emerged as a new omics
field that aims to measure all metabolites in living
organisms, and metabolome analyses have been applied
in various research fields (Hall 2006). However, there are
various technical problems in comprehensive analysis of
whole metabolite profiles of living organisms. The
accumulation of metabolomics data is therefore limited
to a smaller scale than other omics fields such as
genomics and transcriptomics (Kind et al. 2009; Tohge
and Fernie 2009). Many tools and systems for
metabolome analysis have been developed to improve
various analytical processes for gas chromatography-
mass spectrometry (GC-MS; Duran et al. 2003; Jonsson
et al. 2005; Tikunov et al. 2005; Broeckling et al. 2006;
Bunk et al. 2006; Luedemann et al. 2008; Neuweger et
al. 2008; Hiller et al. 2009; Oishi et al. 2009), liquid
chromatography-mass spectrometry (LC-MS; Katajamaa
et al. 2006; Smith et al. 2006; Sturm et al. 2008) and
capillary electrophoresis-mass spectrometry (CE-MS;
Baran et al. 2006; Morohashi et al. 2007). However,
throughput of comparative analysis of metabolome data,
especially for quantitative differential analysis, is very

low since there are many time-consuming processes. For
example, analytical processes such as noise filtering,
peak deconvolution, multiple alignments, annotation of
metabolite names, and selection of peaks for statistical
analysis require many manual correction steps with the
help of experts to produce reliable biological hypotheses.
Moreover, the number of parameters to optimize these
processes is enormous, and there are also computational
limitations such as data transaction speed and treatable
data size, since the size of metabolomics datasets is
extremely large (�100 megabytes/run). A few cases have
been reported that have addressed these issues, including
large-scale metabolome data analysis, comprehensive
and large-scale parameter estimation, and improvement
of biological hypothesis generation efficiency (van den
Berg et al. 2006; Lu et al. 2008; Peters et al. 2009). It is
essential to solve these problems for high-throughput
generation of biological hypotheses from large-scale
metabolome datasets.

In the current study, we developed a program to
automate a reliable peak selection process (such as
removal of outlier and estimation of missing peak values)
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Abstract Recent advances in metabolomics technology have enabled large-scale comprehensive analyses of metabolites,
but the throughput of data processing of non-targeted, quantitative differential analyses is very low. It is crucial to solve this
problem to generate biological hypotheses from a large-scale dataset. To improve the analysis of metabolite data, we
focused on the processing of quantitative differential analysis after multiple peak alignment. We have developed a program
named FAQuant that automatically selects reliable peaks from each chromatogram, quantifies the mean of peak intensity to
compare between sample groups, and selects the peaks with differences in accumulation of metabolites. This program was
incorporated into a quantitative differential metabolome pipeline as a module to improve the throughput of gas
chromatography-mass spectrometry dataset analysis. As a result, the module incorporation largely reduced the total
processing time. Furthermore, differential analysis of metabolites in soybean (Glycine max) cultivars was demonstrated by
use of the system. This system might facilitate biological hypothesis generation from large-scale comparative metabolome
analysis.
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for quantitative differential analysis after peak alignment
(Figure 1). The incorporation of this program into a
quantitative differential metabolome pipeline as a
module largely reduced the total processing time and
enabled batch processing of the peak selection process.
We applied the pipeline to public gas chromatography-
time-of-flight-mass spectrometry (GC-TOF-MS) datasets
in MassBase (http://webs2.kazusa.or.jp/massbase/) and
the resulting biological hypotheses are described here.

As a test dataset, mass spectral tags (MSTs; Schauer et
al. 2005) from 19 analytical datasets which contained
three to four repetitive GC-TOF-MS measurements of
metabolites in wild soybean (Glycine max subsp. soja)
and three soybean cultivars (G. max Misuzu, Masshoku,
and Koitozairai) seeds were obtained from the public
metabolome database MassBase (Accession numbers:
MDGC1_02413, 02414, 02417 to 02419, 02422, 02423,
02426, 02427, 02430, 02431, 02433, 02434, 02439,
02440, 02442, 02443, 02445, 02446). MSTs of the same
cultivar were grouped into a sample group. Metadata was
acquired from the database or an additional survey was
performed (e.g., sample condition: dry seed; sample
preparation method: methanol extraction after crush by a
mortar; sample fraction: polar; internal standard: ribitol;
retention index method: using n-alkane (C12–36);
deconvolution program: ChromaTOF, etc).

For each MST, noise peaks were removed by peak
property assignment. The definition of a noise peak is
described in the README file from the MassBase
download page (http://webs2.kazusa.or.jp/massbase/
index.php?action�Massbase_ShowDownload). Multiple

alignment and compound name annotation were
performed by the in-house program FragmentAlign ver
1.12 that can align peaks by similarity of fragmentation
patterns and can correct alignments manually (Sakurai et
al. in preparation). The parameters of this program were
set at the default values except for the retention index
permission width (15) and correlation coefficients to
calculate the similarity between mass spectra (�1, 0.8,
�1 for Pearson correlation, cosine correlation, Spearman
correlation, respectively) for alignment. After the
automatic alignment process, manual corrections of the
resulting alignment were performed. Compound names
of aligned peaks were identified using an in-house mass
spectral library of known compounds. Several
ambiguous annotations were assigned with a term
“putative” in these annotations. Additionally, aligned
peaks with retention indices below 900 and above 3500
were too complicated to correct manually. These peaks
were removed from later analysis. Finally a tab-delimited
table of aligned peaks with intensity values was
produced (Supplemental Table 1). The average mass
spectrum of each aligned peak was output to a file in
NIST format (Linstrom and Mallard 2005).

For differential analysis of metabolites, we have
developed a program named FAQuant that aims to
evaluate the reliability of each peak by appearance
frequency and distribution of peak intensity in each
sample group for each aligned peak, and to select high
confidence peaks to perform quantification and
differential analysis among sample groups from a
multiple alignment. Input file format is based on the
output files of FragmentAlign but it is possible to adjust
to text format output file of other peak alignment
programs. The algorithm and parameters of the peak
selection process were designed based on conventional
manual procedures and were implemented using the
script language Perl (De Souza et al. 2006; Steinfath et
al. 2008). This program consists of the four following
steps: 1) selection of the available peaks, 2) evaluation of
the reliability of peaks in sample groups and calculation
of the mean of peak intensity, 3) comparison of the mean
peak intensity between sample groups for all aligned
peaks, and 4) selection of aligned peaks that are reliable
and show intensity differences among the sample groups
(Figure 2). Details of the algorithm are described below.

At first, each peak intensity is corrected by the
intensity of the internal standard (IS) incorporated in
each sample so that IS intensities are the same value, the
mean IS intensity of all measurements. After this
correction, peaks with higher intensities than the
threshold (e.g., 10000) are selected as available peaks.
When more than two available peaks are observed in a
sample group of an aligned peak, this is defined as the
aligned peak being detected in the sample group. These
peaks are represented as peak group Pi, j [i-th aligned
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Figure 1. Quantitative differential metabolome pipeline for GC-TOF-
MS datasets. Deconvoluted MST datasets in a public metabolome
database are applied to the pipeline as input. The pipeline contains
steps for noise filtering, multiple peak alignment (FragmentAlign or
other programs), compound name annotation, and statistical processing
of alignment (FAQuant) to output data matrix for differential analysis.



peak, j-th sample group]. To estimate the magnitude of
mean peak intensity of Pi, j, the integer part of a
logarithm to base 10 of peak intensity (Cpeak) is
calculated. This approximation is effective to detect
outliers in Pi, j easier prior to calculation of the mean
peak intensity for differential analysis. If there are peaks
having the same value in each Pi, j, these peaks are
grouped as a “high-confidence peak set”. After this
calculation, the level of reliability of each Pi, j is defined
as follows. In the case of only one high-confidence peak
set existing in a Pi, j, and the number of peaks in the peak
set is �50% of the number of samples for the sample
group, and �50% of the number of the whole available
peaks are in the Pi, j, the level of reliability is set to “1”. If
there is a single high-confidence peak set but the criteria
of the number of peaks in the peak set described above is
not satisfied, the level of reliability is set to “2”. If there
are multiple high-confidence peak sets, the level of
reliability is set to “3”, and in the case that no high-
confidence peak set is observed, the level of reliability is
set to “4”.

The mean peak intensity and its width (the difference
of maximum Cpeak and minimum Cpeak; Cmax–Cmin) are
calculated from peaks in the peak set. In the case that the
level of reliability of Pi, j is 3 or 4, all available peaks are
used for the calculation of the mean peak intensity and
its width. Accordingly, all peaks in Pi, j are represented by
a peak model that has this mean peak intensity value as a
property of peak intensity. This peak model is defined as

a representative peak of Pi, j. In cases where the
difference in the mean peak intensity of a representative
peak between a target sample group (Mtarget) and the
blank sample group (Mblank) in an aligned peak is over
the threshold (e.g., 10000) and the ratio of the mean peak
intensity of the target sample group and the blank sample
group (Mtarget/Mblank) is over the threshold (e.g., 1.1), the
difference Mtarget–Mblank is used to calculate the ratio of
the mean peak intensity between the target sample and
control sample groups. If the difference Mtarget–Mblank is
below zero, the value is replaced with zero and the
representative peak is classified as “not detected”. If the
ratio of the mean peak intensity between the target
sample and control sample groups is more than (e.g., 2)
or less than (e.g., 0.5) the threshold, the representative
peak is classified into the “up” or “down” category,
respectively. If the level of reliability of one or both
peaks is “2”, then the term “putative” is added to the
category. If the level of reliability of either or both
representative peaks is 3, the peak is classified into
“increase” or “decrease” when the following criteria are
satisfied:

Criteria: X and Y�threshold (e.g. 3), Z�X, Z�Y
where X�Cmax(target)�Cmin(target)

Y�Cmax(control)�Cmin(control)

Z �|Cmean(target)�Cmean(control)|
When a representative peak is detected with only one
sample group to compare, the difference is classified into
the “new” or “lost” category. Furthermore, if the level of
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Figure 2. Processing steps of FAQuant. FAQuant converts the input file (table of all aligned peaks) to an output file (table of selected aligned peaks
with reliable intensity differences) through 1) selection of available peaks by peak intnsity, 2) evaluation of high confidence peaks by stability of peak
intensity among repetitive experiments, 3) comparison of representative peaks (fold change, etc), and 4) selection of peaks that show intensity
differences. Details of the algorism are descrived in the text.



reliability of the representative peak is “2” or “3”, the
term “putative” is added to the category. Other cases are
categorized into “no difference”. Any aligned peak is
removed from the original alignment if no representative
peak exists except for blank samples or if its normalized
fragmentation pattern is assigned to a noise peak. After
these processes, a summarized result of aligned peaks is
generated as a tab-delimited text format file
(Supplemental Table 2). Any threshold described above
is easily changeable for recalculations. Accuracy of the
calculation by FAQuant was manually evaluated by using
randomly selected peaks in the input/output files.

A differential analysis of accumulated metabolites
among cultivars of soybean was performed to
demonstrate the usage of this system. FAQuant greatly
improved the throughput of the reliable peak selection
process for hundreds of peaks in an alignment from a
more than one week manual process to a less than 1 min
automated process. This performance can adjust
parameters faster and achieve high throughput batch
processing for this part of the pipeline. After the peak
selection process, about 30% of representative peaks of
the dataset were classified as “1” and 20% were
classified as “2” or “3” as the level of reliability. Out of
701 aligned peaks, 490 were subjected to a differential
analysis as the selected reliable dataset. Compound name
annotation was given in about 20% of the 490 aligned
peaks. Finally, biological hypotheses were generated
from these results with some manual operations. 1) A
total of about 200 reliable (�level of reliability�1)
representative peaks were detected in each soybean
species. Among these peaks, 32 peaks were observed in
all cultivers and 49 cultivar-specific accumulated peaks
were observed (Table 1). 2) A total of 319 reliable peaks
showed differences in accumulation against peaks
observed in wild soybean. Among these 319 reliable
representative peaks, 47, 52, 96, and 124 were classified
into “up”, “down”, “new”, and “lost” categories of
difference, respectively (Figure 3). 3) After this
statistical survey, individual peaks with known
metabolite names were investigated in detail. Compared
with wild soybean, the S-adenosyl-methionine and
arginine contents tended to be decreased in other
soybean species. In addition, uracil accumulation was
observed only in wild soybean. Further investigation is
necessary to interpret these generated results since there
are imperfect annotations and metadata in the dataset.
However, improving the throughput of the peak selection
process for generating biological hypotheses under
various parameter settings greatly advances the
quantitative differential metabolome pipeline. The
pipeline will greatly enhance comparative metabolomics
research and these results will be registered in the
metabolome database Komics (http://webs2.kazusa.or.jp/
komics/) in the future.

In conclusion, a program to automate the peak
selection process in differential analysis of metabolites
was developed and incorporated into a quantitative
differential metabolome pipeline resulting in a great
improvement of the throughput for generating a reliable
data matrix, thereby producing biological hypotheses
from GC-TOF-MS datasets. In addition, a parameter
search by large-scale batch processing is now possible
for the differential analysis. This system might enhance
the accumulation of a large-scale comparative
metabolomics results available to the public. This
program is available on request.
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