
Secondary metabolites of the plant kingdom have long
been important as leading precursors in the
pharmaceutical industry (Simmond and Grayer 1999).
Reconstruction of biopathways in plants plays key roles
in effectively biosynthesizing those precursors, but
rational engineering of secondary metabolic pathways in
plants requires a thorough knowledge of the whole
biosynthetic pathway and a detailed understanding of the
regulatory mechanisms controlling the onset and flux of
the pathways. Such information is not yet available for
the vast majority of secondary metabolites though
studies have progressed extensively. For example,
chemical structures of around 50,000 secondary
metabolites from the plant kingdom have been
determined (Verpoote 1998; De Luca and St Pierre 2000)
whereas only around 2,000 enzyme reactions are known.
Some researchers have predicted more than 200,000
metabolites for the plant kingdom and the number of
plant species is predicted to be around 400,000 in the
world (Hostettmann 2000). Thus, experimental evidence
is insufficient for assigning all metabolites to metabolic
pathways. 

There are several approaches for pathway prediction
such as fingerprints (Tohsato and Nishimura 2008),

reaction rule-base (Langowski and Long 2002; Talafous
et al. 1994; Ellis et al. 2006; Hou et al. 2004; Oh et al.
2007) and maximum common subgraph search (MCSS)
(Kotera et al. 2008). The fingerprint-based approach
predefines some important molecular fragments and
determines which fragments are included in each
metabolite as bit-strings consisting of 0’s and 1’s. This
approach can measure similarity between two
metabolites without much computational effort, but these
fingerprints can’t consider connectivity between each
fragment, making it difficult for this approach to predict
correct pathways. Rule-based approaches predefine
reaction rule-base on the basis of predefined organic
metabolic reactions and predict possible pathways.
Prediction by these approaches has the limitation that it
depends on the restricted types of rule-base. Also, there
is the possibility that the result of prediction of unknown
pathways is biased by the nature of known pathways. An
MCSS-based approach does not require predefined
information, but this approach is an NP-hard problem
(Hattori et al. 2003). Therefore, an MCSS-based
approach is computationally difficult and probably to
reduce the burden of computation in one such approach,
only 2,502,333 metabolite pairs were compared while
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their target was 74,766,971 pairs collected from the
KEGG database (Kotera et al. 2008) causing the
possibility of generating incomplete results.

The building blocks for the secondary metabolism are
strongly regulated and we observed the inclusive
relationship between substrate and product metabolites at
the cyclic substructure (defined in the next section) level.
In the present study we have developed prediction of the
biosynthetic pathways based on a method for the
inclusive relation between the cyclic substructures of
metabolites originating from identical species. Our
strategy can predict pathway relations at the cyclic
substructure level from 28,675 metabolites in the
KNApSAcK database in about three minutes (Test
machine spec: Intel core2 Duo processor T7600 2.33
GHz, 1 GB RAM).

Methods

The proposed algorithm
Chemical structures of metabolites are considered as molecular
graphs. Before giving details of the algorithm, we define some
terms utilized in the present study.

Definition 1: Molecular graph
A molecular graph is the representation of the chemical
structure of a molecule as a graph where atoms are nodes and
bonds are edges.

Definition 2: Cyclic subgraph
A cyclic subgraph is the maximal subgraph of a molecular
graph where the degree of each node is two or more, generally
these graphs are called 2-core graphs.

If no such subgraph exists then a null graph is considered as
a cyclic subgraph. For example the cyclic subgraph
corresponding to Thiothece 460 of Figure 2 is a null graph.

Definition 3: Inclusive relation
A cyclic graph A has an inclusive relation with a cyclic graph
B if B is a subgraph of A and we express this relation as B�A.

Definition 4: Parent graph
We say graph B is a parent graph of graph A if B�A and there
exists no other graph C such that B�C�A.

The flow-chart of the algorithm
The flowchart of the algorithm is shown in Figure 1 and it is
divided into five major steps: (a) Data input, (b) Unique cyclic
subgraph extraction, (c) Fingerprint matrix formation, (d)
Parent matrix formation and (e) Output.

a) Data input
The input to this algorithm is chemical structures from a
database. Let us select N chemical structures and represent
them as a set of molecular graphs G (N ).

b) Unique cyclic subgraph extraction
From each molecular graph gi�G (N ), we extract cyclic
subgraph cgi, where i�1, 2, · · · , N. Cyclic subgraphs are
extracted as follows. Step 1: Check whether the degree of each

node of gi is 2 or more; if yes then gi is a cyclic subgraph, call
it cgi and exit, or else remove all nodes with a degree smaller
than 2. Step 2: Update all node degrees of gi. Step 3: If
presently the highest degree in gi is 0 or 1 then exit considering
cgi a null graph, or else continue to Step 1. Here, we define CG
(N ) as the set of all extracted cyclic subgraphs. By deducting
the redundant elements from CG (N ), we determine the unique
cyclic subgraph set and define it as UCG (M ). Obviously
M�N.

c) Fingerprint matrix formation
For each cyclic subgraph, we check its inclusive relation with
all other subgraphs by a substructure search and represent that
as a fingerprint vector. For example, in Figure 1, ucg3 has an
inclusive relation with ucg1 and ucg3 but not with ucg2 and
ucg4. Therefore, the fingerprint vector of ucg3 is [1, 0, 1, 0].
The fingerprint vectors of all the unique cyclic subgraphs
constitute the fingerprint matrix. Let F be the fingerprint matrix
and F[A][B]�1 implies B�A. The fingerprint matrix is not a
diagonally symmetric matrix.

d) Parent matrix formation
For each cyclic subgraph ucgi, we find parent subgraphs. Parent
subgraphs of ucgi are found by the following steps. Step 1: For
each cyclic subgraph ucgj, if ucgj�ucgi, then ucgj is a
candidate parent of ucgi, or else ucgj is not a parent of ucgi.
Step 2: For any other cyclic subgraph ucgk, if the relation
ucgj�ucgk�ucgi does not exist, then ucgj is a parent of ucgi.
(In this part, we don’t recalculate the inclusive relation by
substructure search, but use the fingerprint matrix as described
in the flowchart of Figure 1.)

For example (in Figure 1), ucg4 has an inclusive relation with
ucg1 and therefore ucg1 is a candidate of a parent of ucg4, but
an intermediate subgraph ucg2 exists such that ucg1�ucg2�

ucg4. So ucg1 is not a parent but an ancestor of ucg4. Indeed,
ucg2 is a parent of ucg4. We store information about parents in
the parent matrix. Let P be the parent matrix, and P[A][B]�1
implies B is a parent of A. Like the fingerprint matrix, the
parent matrix is also not a diagonally symmetric matrix. 

e) Output
The output of the algorithm is the parent matrix that can be
represented as a parent-child directed network showing
probable metabolic pathways at the cyclic structure level. This
information can be extended to predict pathways at the
chemical structure level.

System
For the automation of the above algorithm and other related
processes, we have developed a software tool called
MetClassifier. We have developed MetClassifier to handle a
huge amount of metabolites for prediction of metabolic
pathways automatically and to learn more about the complex
world of metabolites. For our purposes, not only faster
calculation is important but also an interactive user interface is
essential, and therefore MetClassifier has been developed using
easy to operate graphical user interface (GUI) facilities.
MetClassifier uses chemical structural data format MDL
Molfile and Sdfile (Symyx, http://www.symyx.com/).
MetClassifier is written in C and uses the OpenGL, GLUT and
AntTweakBar libraries. MetClassifier can be downloaded from
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the following URL (http://kanaya.naist.jp/MetClassifier/).

Dataset
To demonstrate the performance of the proposed algorithm, we
applied it to two separate sets of metabolites collected from
KEGG on May 29, 2009 (Kanehisa and Goto 2000) and

KNApSAcK on April 15, 2009 (Shinbo et al. 2006). Chemical
structural datasets are necessary to predict pathways at the
cyclic substructure level. We use molfiles as chemical
structural datasets from KNApSAcK and KEGG. Furthermore,
to evaluate our system and to discuss biological viewpoints, we
use additional information on metabolite-species relation from
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Figure 1. Flow-chart of the proposed algorithm along with a simple example.



KNApSAcK and reaction data from KEGG.

Results and discussion

Important features of the proposed method
In general, metabolic pathways are predicted by
estimating similarities between metabolites. In the case
of the MCSS approach, to measure the similarity
between two metabolites, first the maximum common
connected substructure between their chemical structures
is determined. However, this is computationally difficult
when chemical structures are big and complex. For
example, Figure 2 shows the cyclic structure of
Portensterol (KNApSAcK ID�C00023762), and the
non-cyclic structure of Thiothece 460 (C00023121).
Both metabolites include 33 bonds (excluding the bonds
with hydrogen). For both structures, the number of
unconnected subgraphs is equal to 2number of edges, which is
an enormous number. Therefore, MCSS focused on
connected subgraphs but still it is very big in the case of
complex structures specially containing cycles (as shown
in Figure 2, 5,787,190 connected subgraphs are in
Portensterol compared to 7,811 in Thiothece 460, which
does not contain any cycle). The MCSS approach 
must find the maximum common connected subgraph
between two metabolites, which theoretically requires
comparisons proportional to the product of the numbers
of connected substructures in the metabolites under
consideration. However, the number of comparisons can
be somewhat reduced using some constraints, but
computational cost remains huge.

To solve this problem, we introduce the concept of the
cyclic subgraph. Whereas a chemical structure contains
numerous connected subgraphs, it contains only one
cyclic subgraph. For almost all reactions, an inclusive
relation exists between cyclic subgraphs of substrate and
product, i.e. one cyclic subgraph contains another cyclic
subgraph perfectly. Therefore, to establish the product-
substrate relation between two metabolites, we search for
an inclusive relation between their cyclic subgraphs,

which can be performed by only one comparison,
making the computation cost very low compared to the
MCSS approach, which must perform many comparisons
to determine the maximum common subgraph. As a
result, our approach offers very fast computation.

Both fingerprint and MCSS approaches estimate
chemical structural similarity by the Tanimoto
coefficient. It should be noted that the Tanimoto
coefficient is not appropriate for pathway prediction
because of the following two reasons: the Tanimoto
coefficient puts emphasis on the size of common features
between two structures. Therefore, Tanimoto coefficients
are different even though two reactions are very similar
(Figure 3). If we set a lower threshold for pathway
prediction, the possibility is high that false-positive
pathways are included in the case of larger compounds;
on the other hand, if we set a higher threshold then many
true-positive pathways may be rejected in the case of
smaller compounds. In known pathways, the extent of
structural change between substrate and product varies,
because of which the Tanimoto coefficient may vary a
lot. For example, methylation and hydroxylation cause
small change, but glycosilation and dimer formation
cause large change between substrate and product. This
means it is difficult to select a suitable threshold
regarding the Tanimoto coefficient that can perform well
for different types of pathway prediction. In our case,
there is no necessity of selecting any threshold. In the
proposed method, we do not focus on the extent of the
difference between substrate and product but focus on
inclusive relation of their cyclic subgraphs. Finally, this
algorithm selects the most similar subgraphs as the
parent subgraphs from all the subgraphs with inclusive
relation, making our approach much more relevant to bio
pathways.

Performance evaluation using data from KEGG
To demonstrate the performance of the proposed method
in a simple way, we collected a part of map00942 from
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Figure 3. The Tanimoto coefficient is calculated as the ratio of the
number of atoms included in the common structure to the number of
atoms included in the union of both structures. The Tanimoto
coefficient puts emphasis on the size of common features. So Tanimoto
coefficients are different even though two reactions are very similar.

Figure 2. Chemical structures of Portensterol and Thiothece 460.
Both metabolites include 33 bonds (excluding the bonds with
hydrogen), but the number of connected subgraphs is very big in the
case of complex structure specially containing cycles. In this case, the
MCSS-approach requires enormous computational resources.



KEGG containing 20 reactions involving 19 metabolites
as shown in Figure 4. We used the molfiles of these 19
metabolites as input to our system, extracted 11 unique
cyclic substructures and predicted the pathways

concerning them at the cyclic structure level. Figure 5(a)
shows the pathways of Figure 4, and Figure 5(b) shows
the predicted pathways at the cyclic structure level. Our
algorithm recognizes cyclic structure ID 8 (CID 8) as an
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Figure 4. A part of map00942 from KEGG containing 20 reactions involving 19 metabolites. Metabolites with the same cyclic substructures are
clustered by ID number.



intermediate structure between CID 6 and CID 11. In
Figure 4, CID 6 has Cycles A, B and C. CID 8 has
Cycles A, B, C and D. CID 11 has Cycles A, B, C, D,
and E. Therefore, the pathway from CID 6 to CID 11 is
rejected and another new pathway from CID 8 to CID 11
is suggested. The algorithm found another new pathway
from CID 4 to CID 8.

We also applied the present method to all KEGG
RPAIRs available at (http://www.genome.jp/kegg/
download/ftp.html). In general, a reaction consists of
multiple reactants but for this analysis we considered
only 9,577 main pairs involving 5,701 metabolites.
These 5,701 metabolites correspond to 585 unique cyclic
substructures. At the cyclic structure level, 9,577 main
pairs can be represented by 735 relations. The predicted
pathways by the present method contain 1,198 relations,
out of which there are 521 matches with KEGG RPAIR
cyclic level relations and 214 KEGG RPAIR cyclic level
relations were missed while 677 new relations were
predicted.

Predicted pathways in the context of species-
metabolite relation
The present method makes it feasible to enumerate
topologically unique cyclic structures and determine
inclusive relations between cyclic structures (called
cyclic pairs). Out of 34,852 chemical structures
contained in KNApSAcK DB, we have identified 5,281
topologically unique cyclic structures. Among these,
16,602 pairs of inclusive relations were found. Also,
3,009 pairs of inclusive relations were found in at least
one organism, and 67.0% of these cyclic pairs were
found in only one species. We can observe the power-law
distribution for the number of species and the number of
cyclic pairs in each species (Figure 6). In a previous
study (Shinbo et al. 2006), we observed the power-law
distribution for the number of species and the number of
metabolites in each species. It is noteworthy that the

metabolic pathways of individual organisms also follow
the power law, i.e., the probability P(k) that a metabolite
interacts with k other metabolites in the metabolic
pathway decays as a power law, following P(k)�k�r,
where r is a constant (Ravasz et al. 2002).

It should be noted that in the present case, not so many
cyclic pairs are shared in many species, that is, most of
the cyclic pairs are common in few species. The cyclic
pairs shared by the largest number of species are listed in
Table 1. All of these processes are involved in
biosynthesis of unique and vital secondary metabolites
of plants, such as flavonoids (cyclic pair ID (CPID) 1, 2,
3, 4, 5, 7, 11, 13, 14, 17), alkaloids (CPID 6, 9, 15),
gibberellins (CPID 8, 12) or lignans (CPID 16).
Following are more detailed descriptions of these most
frequently observed CPIDs.

The most common cyclic pairs are attributed to
glycosilation of flavonoids (CPID 1, 2, 7, 11, 13, 14 and
17) catalyzed by hexose transferases (EC 2.4.1). For
instance, one of the processes represented by CPID 1 is a
flavonoid glucosilation reaction catalyzed by Flavonol-
O3-Glucosyltransferase (EC 2.4.1.81, Sutter and
Grisebach 1973). Two of the CPIDs (5 and 9) correspond
to the formation of methylene dioxy bridges catalyzed by
oxidoreductases. One such enzyme relatively well
studied is (S)-canadine synthase (EC 1.14.21.5, Rueffer
and Zenk 1994). Two of the most commonly found
cyclic pairs (CPID 3 and 4) correspond to flavonoid
backbone biosynthesis pathways. CPID 3 corresponds to
the formation of medicarpin from vestiton or 7,2�-
dihydroxy-4�-methoxyisoflavanol, catalyzed by
pterocarpin synthase (EC 1.1.1.246, Guo et al. 1994,
Bless and Barz 1988). CPID 4 corresponds to the
formation of flavanones from chalcones catalyzed by
chalcone-flavanone isomerases (EC 5.5.1.6, Moustafa
and Wong 1967). CPID8 and 12 correspond to the
formation of g- and d-lactones, respectively, catalyzed
by gibberellin oxidases (EC 1.14.11, Gilmour et al.
1987). CPID 15 corresponds to the formation of
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Figure 5. Predicted pathways. (A) pathways of Figure 4 and (B) the
predicted pathways at cyclic structure level. The dotted red arrow in
(B) is rejected by our prediction. Arrows from 4 to 8 and from 8 to 11
in (B) indicate new predictions. Our algorithm recognizes CID 8 as an
intermediate structure between CID 6 and CID 11. In Figure 4, CID 6
has Cycles A, B and C. CID 8 has Cycles A, B, C and D. CID 11 has
Cycles A, B, C, D, and E. So the pathway from CID 6 to CID 11 is
rejected and another new pathway from CID 8 to CID 11 is suggested.
The algorithm found another new pathway from CID 4 to CID 8.

Figure 6. Power-law distribution for the number of species and the
number of cyclic pairs in each species.



aporphine-type alkaloids from reticuline, through
oxidative o,o�-coupling or o,p�-coupling of biradical
intermediates (Battersby et al. 1971). To date, more than
700 different kinds of aporphine-type alkaloids are

isolated (Guinaudeau et al. 1994). CPID 16 is an
example of the reverse processes, that is, the less
complicated ring structure (ring system id. 1303) is
formed from more complicated ring structure (ring
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Table 1. List of cyclic pairs shared by more than 50 species.

CPID # of species
from to

Reaction type
CID Cyclic structure CID Cyclic structure

1 208 933 2432 flavonoid glycosylation

2 201 933 2430 flavonoid glycosylation

3 142 927 1221 dehydration

4 134 736 933 isomerization

5 126 1221 1956 methylene dioxy bridge formation (oxidation)

6 109 499 1217 possibly reverse process

7 109 2432 3673 flavonoid glycosylation

8 100 886 1367 ring closure through oxidation

9 94 1202 1959 methylene dioxy bridge formation (oxidation)

10 85 22 137 possibly independent processes

11 75 927 2433 flavonoid glycosylation

12 61 886 1543 ring closure through oxidation

13 56 933 2271 flavonoid glycosylation

14 55 2432 3520 flavonoid glycosylation

15 54 1099 1202 oxidative biradical coupling

16 54 1303 1803 reverse process, ring opening through reduction

17 51 2432 3501 flavonoid glycosylation



system id. 1803). Pinoresinol/larisiresinol reductase
(Min et al. 2003) catalyzes this ring opening reaction of
pinoresinol to form larisiresinol. For CPID 6, the more
complicated sparteine-type ring system is known to form
by the coupling of three cadaverines (Binnig 1974).
Therefore, the cyclic pair is speculated to represent
another reverse process or a pair of independently
formed ring systems. CPID 10 is an example where the
inclusive relationship of cyclic systems may not be
indicating the reaction pairs. In this case, the ring

systems are too simple with the result that 85 identified
pairs are likely be independently formed compounds and
not representing the reaction pairs. For this kind of
simple compound, algorithms using more detailed
structural information, such as Kotera’s method (Kotera
et al. 2009) should provide a better prediction of
corresponding reaction pairs.
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Figure 7. Out of 34,852 chemical structures contained in KNApSAcK DB, we have identified 5,281 topologically unique cyclic structures,
predicted 16,602 cyclic pair relations and extracted pathways concerning Camellia sinensis. Out of 35 types of unique cyclic structures in C. sinensis,
24 cyclic structures are associated with the largest cluster produced. To complement the results, intermediate cyclic structures are included if those
are reported in the KNApSAcK database but not yet associated to C. sinensis, indicated by the red surrounding boxes. Metabolic pathway relations
supported by KEGG DB are shown by red arrows and explainable processes utilized for general modifications such as pyranosyl, caffeoyl, ferulyl,
sinapyl and hydroxybenzoyl transferases are indicated by blue arrows. The number in a black box above an arrow indicates the number of species to
which the concerned cyclic pair belongs calculated using information from the KNApSAcK database.



Hierarchy of Cyclic pair relations in individual
species 
The hierarchy of cyclic pair relations in individual
species can also be visualized using MetClassifier. As an
example, we estimate the metabolic pathway of Camellia
sinensis on the basis of inclusive relation of cyclic
structures using data from KNApSAcK. Out of 35 types
of unique cyclic structures in C. sinensis, 24 cyclic
structures are associated with the largest cluster
produced by MetClassifier (Figure 7). To complement
the results, intermediate cyclic structures are included if
those are reported in the KNApSAcK database but not
yet associated with the targeted species indicated by red
surrounding boxes in Figure 7, which are important for
elucidating biosynthetic pathways while using an
insufficient data set. Metabolic pathway relations
supported by KEGG DB are shown by red arrows, and
explainable processes utilized for general modifications
such as pyranosyl, caffeoyl, ferulyl, sinapyl and
hydroxybenzoyl transferases etc. are indicated by blue
arrows in Figure 7. Therefore, it should be noted that
MetClassifier effectively elucidates the metabolic
pathways at the cyclic structure level because many of
the cyclic pairs connected in Figure 7 correspond to
reported metabolic pathways. In addition, when two
metabolites corresponding to a predicted cyclic pair are
available together in a number of species then it
strengthens the validity of prediction because of their
conserved nature across species. The number in a black
box above an arrow in Figure 7 indicates the number of
species to which the concerned cyclic pair belongs,
calculated using information from KNApSAcK.

The bi- and triflavonoids constitute two major classes
of complex C6-C3-C6 secondary metabolites. These
compounds represent products of phenol oxidative
coupling of flavones, flavonols, dihydroflavonols,
flavanones, isoflavonones, aurones, auronols and
calcones. Though the enzymes concerning to those
processes have remained unknown, MetClassifier makes
it possible to predict those processes, for example, CID
4956 may be derived from CID 3865 with the highest
probability, and CID 4927 may be derived following a
series of pathways involving CID 589, 933, 2586 and
4585. Thus, this method predicts metabolite synthesis
pathways concerning cyclic substructures which are very
relevant to bio-chemical reactions.

In the present paper, we focused on inclusive relations
between cyclic substructures of substrate and product
that are frequently observed in known metabolic
pathways. We have also developed an algorithm to
efficiently recognize inclusive relations and thus to
predict metabolic pathways. Previously proposed MCSS-
based approaches measure similarity between
compounds by way of determining maximum common
subgraphs, which is an NP-hard problem and hence their

computational cost is very high. On the other hand, our
approach only check whether an inclusive relation exists
or not between cyclic substructures by substructure
search requiring low computational cost. Furthermore,
we explain that the Tanimoto coefficient used in MCSS-
based and fingerprint-based approaches is not suitable
for pathway prediction, and we propose an algorithm that
does not require selecting any threshold. Our method
finds most similar cyclic substructure pairs on the basis
of inclusive relation through recognizing parent
subgraphs. By focusing on cyclic substructures and
developing an algorithm without using any threshold, we
achieve real-time operation for good pathway prediction
while considering a large number of metabolites at a
time.
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