
More or less over the past 10 years, vast amount of
protein–protein interaction data have been generated 
by high-throughput methods for detecting protein
interactions, such as the combinatorial method of
protein-complex purification with subsequent analysis by
mass spectrometry (MS) and the yeast two-hybrid (Y2H)
system (Uetz et al. 2000; Ito et al. 2001; Ho et al. 2002;
Gavin et al. 2002). However, there being no complete
and accurate detection method, each experimental
strategy generates a significant number of not only false-
negatives but also false-positives (Titz et al. 2004). False-
positives are usually a more serious problem because
they cause erroneous results and misleading conclusions,
making PPI analysis complicated and difficult.

The methods such as protein-complex purification and
MS, and Y2H analysis have propensity to detect different
kinds of protein interactions. For example, the
combinatorial method of pull-down assay and MS
identifies stable interactions such as those in protein
complexes, whereas Y2H more often find transient
interactions. In case of the PPI detection method using
pull-down assay and MS, protein complexes are often
isolated in an affinity purification experiment in which a
single protein (the “bait”) is provided with a molecular

tag such as FLAG (Ho et al. 2002) , TAP (Gavin et al.
2002) or His-tag (Arifuzzaman et al. 2006), then proteins
(“preys”) in isolated complexes are identified using
subsequent analysis by MS. Isolation of protein
complexes in this procedure allows the purification of the
“bait” together with all of the “prey” proteins that belong
to the same multi-protein complex. The problem seems
to lie in the fact that every “prey” protein doesn’t directly
interacts with the “bait” protein; rather, the topology of
the complex will include both “bait–prey” and “prey–
prey” type interactions (Hakes et al. 2007). It implies
that the conformation, i.e., the true topology of the
protein complexes cannot be determined from the
individual experiments only. In case that proteins a, b
and c are identified in isolation as a protein complex
using protein ‘a’ with a tag as a “bait”, three PPIs can be
obtained (a-b, a-c, and b-c), but it is difficult to conclude
what is the true conformation of the complex out of the
four possible cases as shown in i)�iv) in Figure 1.
Though understanding the conformation of protein
complexes is necessary in order to obtain useful
information about them, little attention has been given 
by the bioinformatics researchers to decipher the 
true topology of the protein complexes. Also the
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Abstract The present study proposes a method to predict the conformation of protein complexes by using statistically
significant domain–domain interactions (DDIs). High-throughput methods for detecting protein interactions generate a
significant number of false-positives, and especially the combinatorial method of protein-complex purification and mass
spectrometry detect both direct and non-direct interactions i.e. “bait–prey” and “prey–prey” interactions making it difficult
to predict the conformation of complexes. Therefore in this work we utilized the DDIs as a means to support the interactions
and subsequently to predict the conformation of complexes. As the first step, we extracted 312 statistically significant DDIs
out of 1,162 DDIs underlying 3, 118 protein–protein interactions (PPIs) of Arabidopsis thaliana by using Fisher’s exact test.
Next, 67 protein complexes were obtained by applying a graph clustering algorithm to the PPI network. Finally, we
discussed the conformation of protein complexes based on DDI information extracted in the first step. Information on
significant DDIs can also be utilized to annotate unknown function proteins and to predict localization of proteins with
confidence.
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experimental technologies used to detect PPI do not
focus on this matter.

The bioinformatics analysis of PPI has mainly
followed two different approaches after the high
throughput experiments started to produce huge amount
of data. One of the approaches is the analysis of protein
interaction networks based on graph theory, aiming to
detection of protein complexes from PPIs networks
(Bader and Hogue 2003; Altaf-Ul-Amin et al. 2006).
These studies have reported that the densely connected
regions in a network correspond to known protein
complexes or protein functional units. The other
approach is the analysis of DDIs coming out from PPI
data by statistics or machine learning intended to predict
unknown PPIs (Sprinzak and Margalit 2001; Riley et al.
2005; Singhal and Resat 2007; Liu et al. 2009). These
studies have shown that the concept of DDIs statistically
extracted from large-scale PPI data can explain the
makeup of PPIs to some extent.

Taking these two recent approaches into account, the
present study focuses on statistically significant DDIs i.e.
the direct interactions to predict the conformation of
protein complexes by avoiding the effects of false-
positives or non-direct interactions. Corresponding to
Figure 1, if DDI analysis supports that protein b and c
directly interacts with different domains of protein a then
we would predict the conformation of ii) and on the other
hand if protein b and c directly interacts with an identical
domain of protein a competitively then we would predict

the conformation of iv). Further detail prediction of
interactions in protein complexes were performed based
on DDIs.

Methods

In the present study, we propose a procedure for inferring
conformation of protein complexes with reliable PPIs by
using information of DDIs (Figure 2), which comprises
three steps, (Step 1) Detection of domains in proteins,
(Step 2) Extraction of statistically significant DDIs, and
(Step 3) validation of protein complexes based on
extracted DDIs.

Step 1: Detection of domains in proteins
The InterProScan, which is a tool that combines different
protein signature recognition methods into one resource,
can detect protein families, domains, repeats 
and functional sites containing post-translational
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Figure 1. Conformation diversity of protein complexes in case that
proteins a, b and c are identified as a complex by MS.

Figure 2. Procedure to predict conformation of protein complexes
based on DDI, Firstly, domains were extracted by InterProScan (Step
1), then statistically important co-occurred domain-domain pairs were
extracted by Fisher’s exact test using 2�2 contingency table (Step 2),
and, in Step 3, validation of protein complexes were carried out using
the domain-domain pairs recognized in Step 2.



modification sites (Zdobnov and Apweiler 2001). In the
present study the domains present in a protein were
detected by InterProScan. The protein signature by
InterProScan has the hierarchical structure, that is, a
parent/child relationship between two signatures is
defined in the output of InterProScan, and the parent is
the entry containing a more general signature, while the
children are more specific to certain members of the
signature. In the context of protein interaction, domains
or smaller peptide motifs act as recognition elements,
therefore domains, repeats and functional sites of second
depth in hierarchy but not families by InterProScan were
simply used as domains in this DDI analysis.

Step 2: Statistically extracting domain–domain
interactions from PPI data
Statistical analysis based on 2�2 contingency table was
applied to detect significant relation between a domain
pair by judging their presence or absence in a set of
interacting protein pairs (Figure 2). Concerning the
presence or absence of two domains say, X and Y in two
interacting proteins say, i and j there could be 16
combinations and Figure 2 shows how we counted A, B,
C and D of the contingency table corresponding to each
combination. The null hypothesis is that the occurrence
of domain X in a protein and the occurrence of domain Y
in the other protein in a PPI are independent of each
other. So, the test of independence between domain X
and domain Y was performed using Fisher’s exact test
with significance level a �0.01, taking multiple
hypotheses into consideration, that is, Bonferroni’s
correction was adopted in order to avoid statistical
significance that might occur by chance. To determine
significant DDIs, we statistically tested potential DDIs,
containing self-DDIs, for which a protein has a domain
and the other protein has another domain in at least one
PPI, i.e., the count A on the contingency table in Figure 2
is not lower than one.

Step 3: Validation of protein complexes
generated by DPClus
Firstly, protein complexes were predicted by applying
DPClus (Altaf-Ul-Amin et al. 2006) to the whole PPI
network. DPClus detects densely connected regions of a
graph comprising nodes and edges as clusters which
correspond to protein complexes in case of a PPI
network. The PPIs in the complexes were validated by
significant domain–domain pairs obtained in Step 2
which in turn helps to cast insight into probable
conformation of the complexes. In summary we propose
that to predict the conformation of a complex the
significant DDIs should be given priority over the PPIs.

Results and discussion
Collection and integration of PPIs data
The PPIs of the Arabidopsis interactome were collected
by following two procedures: collecting from public PPI
databases and manual collecting from research papers.
Any computationally predicted PPI was excluded from
this study. In the first procedure, the PPI data was
assembled from BIND (Bader et al. 2000; 2003), DIP
(Xenarios et al. 2002), MINT (Zanzoni et al. 2002;
Chatr-aryamontri et al. 2007), HPRD (Peri et al. 2003)
and IntAct (Hermjakob et al. 2004) which are major PPI
data resources accepting experimentally determined PPIs
from research papers. In the second procedure, 946 PPIs
were manually gathered by reading experimental
research papers. PPI data redundancies were removed by
mapping PPI information onto the Arabidopsis gene
codes (AGI codes), and, as a result an integrated PPI
data, 3,118 PPIs composed of 1,302 Arabidopsis proteins
was obtained.

Significant domain–domain interactions extracted
from PPI data
Proteins must physically bind to other proteins, 
either stably or transiently, to perform their functions.
Interaction specificity results from the binding of a
modular domain to another domain or smaller peptide
motif in the target protein (Pawson and Nash 2003). 
For example, some cytoskeletal proteins bind to actin
through their modular gelsolin repeat domains
(McGough et al. 2003), and Src-homology 3 domains
(SH3) bind to proline rich peptides that have a PxxP
consensus sequence (Lim et al. 1994). In the context of
protein interaction, such domains and peptides act as
recognition elements; we refer to these binding domains
or recognized peptides simply as ‘domains’ in this study.
Over the past few years with developments of high-
throughput PPI detection technologies, many researchers
have shown an interest in extracting domain–domain
interactions (DDIs) from large-scale PPI data by
statistical methods, demonstrating that the idea of DDIs
explain the cause of PPIs in some measure (Sprinzak and
Margalit 2001; Riley et al. 2005; Singhal and Resat
2007; Liu et al. 2009). Here, we statistically extracted
DDIs from integrated PPI data of Arabidopsis by
following a procedure described in the ‘Method’ section.
Total 312 significant DDIs were obtained (Fisher’s exact
test, a �0.01 with Bonferroni correction) out of 1,162
potential DDIs for which a protein has a domain and the
other protein has another domain in at least one PPI.

PPI detection technologies experimentally provide the
information about existence of interaction, but usually no
direct information about the domains and peptides which
act as recognition elements or binding sites, and
determining binding domains and peptides in proteins

K. Nishikata et al. 497

Copyright © 2009 The Japanese Society for Plant Cell and Molecular Biology



requires further analysis. Therefore, as a benchmark for
true-positive DDIs, we used pairs of domains reported to
interact in determined structures of protein complexes in
iPfam (Finn et al. 2005). In iPfam, two domains are
defined as interacting if they are close enough to form at
least one interaction based on available PDB structures.
It should be noted that known set of interacting domain
pairs determined from structures are only a small
fraction of all DDIs that may exist, i.e. though these are
the gold standard DDIs, it is certainly possible that
predicted DDIs are also true and structures which
contains predicted DDIs have not been determined yet.
According to a recent study (Itzhaki et al. 2006), DDIs in
iPfam and 3DID (Stein et al. 2005) databases could
explain no more than 20% of the PPIs for any of the E.
coli, S. cerevisiae, C. elegans, D. melanogaster, and H.
sapien, suggesting that the number of known DDIs is
rather small. So we used iPfam to assess true-positive
rate with respect to P-value after Bonferroni’s correction
for DDIs and 70% of the known DDIs have been

recognized within the threshold of 0.01 showing the
effectiveness of our method (Figure 3A). Using this
threshold, 312 statistically significant pairs of interacting
domains were obtained (Figure 3B) and if we add 20
other gold DDIs not detected by our method then the
number of total significant DDIs is 332. Now 20% of the
PPIs can be explained by 66 DDIs and if we consider a
linear relation then 330 DDIs are required to explain
100% PPIs which almost matches with the number 332
implying that the proposed DDI prediction method is a
good one.

Prediction of protein complexes
Proteins interact with other proteins in complexes to
perform cellular functions. In the past, we developed an
algorithm called “DPClus”, which extracts the densely
connected regions in a network and demonstrated that
many of these densely connected regions correspond to
known protein complexes or protein functional units
(Altaf-Ul-Amin et al. 2006). DPClus is a robust
algorithm not affected by high rate of false positives 
in data from high-throughput interaction-detection
techniques. While predicting the protein complexes by
DPClus, we adopted the “overlapping clustering mode,”
which allows identical proteins to be classified into
different clusters, because it is biologically well
established that proteins can be present in multiple
complexes at different times and locations. By setting
three parameters as 0.7 for network density, 0.5 for
cluster property and 3 for least number of members in a
cluster, 67 protein complexes were obtained from 3,118
PPIs (Figure 4). In the present study, 1,629 out of 3,118
PPIs were supported by statistically significant domain-
domain pairs (Appendix Table 1). Additionally, using
significant DDI information, we predicted the
conformation of all protein complexes detected by
DPClus. Figure 5 shows some examples, in which each
node and each edge represent a protein and an interaction
respectively: blue and red edges represent interactions
determined by PPI experiments and interactions
supported by statistically significant domain–domain
pairs (suggesting direct interaction) respectively. The
complex represented by cluster 41 in Figure 5 is
composed of At1g16970, At1g48050 and At4g13870,
and according to the present DDI analysis, domain
IPR005160 of At1g16970 and domain IPR006164 of
At1g48050 contact with identical domain IPR002562 of
At4g13870. Thus this complex is explainable by the
competitive interactions of two proteins, At1g16970 and
At1g48050, with domain IPR002562 of At4g13870. The
cluster 23 consists of 5 proteins and 3 of its 7 PPIs are
supported by significant DDIs. At1g16240 has two
domains (IPR000727 and IPR010989) to interact with
At1g28490 and At5g46860, respectively, and At1g28490
also has two domains (IPR000727 and IPR010989) to
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Figure 3. Validation of statistically extracted DDIs using iPfam. (A)
True-positive DDIs with the p-value; (B) True-positive DDIs among
the statistically significant DDIs. By iPfam, 66 reported DDIs were
obtained, of them, 46 DDIs were included in statistically significant
domain–domain pairs determined by the proposed method (Step 2 in
Figure 2). So true-positive rate is estimated as 0.70.



interact with At1g16240 and At5g26980. This can be
explained by the consecutively ordered interaction of
four proteins At5g46860, At1g16240, At1g28490 and
At5g26980. In the complex 35, it is presumed from the
graph that At1g74740 and At3g19290 play a vital role.
In fact, in At1g74740, three domains related to
interaction with each of the other proteins in the complex
were detected whereas, At3g19290 has only one domain
to interact with other proteins in the complex, suggesting
that other proteins in the complex competitively interact
with At3g19290 case by case in different conditions.
Complexes 51, 15 and 8 also contain reasonable number
of significant domain–domain interactions and such
information might be used to predict their 3D
conformations. Thus, further detail prediction of
interactions in protein complexes were performed based
on DDIs.

Conclusion and remarks

This work has proposed a method to predict the
conformation of protein complexes by using domain–
domain interactions (DDIs). Significant DDIs were
determined by statistical analysis using Fisher’s exact test
based on 2�2 contingency tables. In the present study,
312 significant DDIs underlying 3, 118 protein–protein
interactions (PPIs) were obtained and 1,629 out of 3,118
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Figure 4. Complexes determined by DPClus in Arabidopsis PPI network. The more the number of proteins in a complex the bigger is its size and
the more the number of interactions between two complexes the thicker is the corresponding edge. Complexes of blue color contain one or more
proteins that are shared by more than one complex while green complexes do not contain such proteins.

Figure 5. Prediction of the conformation in protein complexes using
significant DDI information. The nodes and edges represent proteins
and interactions respectively. Blue edges show original interactions,
and red edges show interactions supported by significant DDIs.



PPIs were supported by statistically significant domain–
domain pairs. Furthermore, we generated 67 protein
complexes composed of 1,302 proteins by applying a
graph clustering algorithm to the protein interaction
network and provided explanation to predict the
conformation of the complexes in view of significant
DDIs. Mainly, to interpret the conformation of protein
complexes we configured the interactions supported by
DDIs. Information on significant DDIs can be utilized to
annotate unknown function proteins and to predict
localization of proteins with confidence. A further study
of conformation of protein complexes from PPI data
should be conducted, which can also help computer
simulation of protein complexes to develop new drugs.
The more understanding of conformation of protein
complexes would give new clues to development of
drugs.
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