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Abstract Lignan is a large class of plant secondary metabolites, which has long attracted pharmacological interest
because of its anti-tumor and estrogenic activities. Forsythia plants are known to produce a wide variety of lignans, such as
(—)-matairesinol, (—)-secoisolariciresinol, (+)-pinoresinol, and (+)-phillygenin. The majority of such lignans are
accumulated in glucoside forms. However, their glucosylation mechanisms largely remain to be elucidated. Here we
describe the sequence, enzymatic activities, and gene expression profiles of UDP-sugar dependent-glycosyltransferases
(UGT) from Forsythia koreana through a reverse-genetic approach. A Forsythia UGT, UGT71A18 protein, expressed in E.
coli, preferentially glucosylated furofuran-class lignans, including (+)-pinoreisnol, (+)-epipinoreisnol, and (+)-
phylligenin. Moroeover, the recombinant UGT71A18 exhibited specificity to UDP-glucose as a glycosyl donor. Gene
expression analysis revealed that UGT71A418 is expressed predominantly in leaves and the suspension cell culture of F
koreana, and that the UGT71A18 transcript is upregulated in the transgenic cell culture expressing the RNAi construct of
the pinoresinol lariciresinol reductase (PLR) gene, compared to non-transformants. These results are consistent with the
remarkable elevation of pinoresinol glucosides in the PLR-RNA:I lines. Collectively, the present data strongly suggests that
UGT71A18, in part, is responsible for glucosylation of furofuran-class lignans, including (+)-pinoresinol and/or
structurally related lignans in vivo.
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Lignan is a major class of secondary metabolites in
plants, and are known for their beneficial biological
effects such as their antioxidative, anti-bacterial, anti-
fungal, and anti-viral properties (Ayres and Loike 1990;
Apers et al. 2003). These findings provoked the idea that
lignans are involved in plant defense response and
function as preformed phytoalexins. For example,
constitutive deposition of lignans in heartwood is
believed to confer durability, longevity and resistance
against wood-rotting fungi (Gang et al. 1999). Lignans
occur in various plants, including Thymelaeaceae,
Asteraceae, Pedaliaceae and Oleaceae families.
However, their physiological functions remain largely
unknown.

Forsythia koreana and its related species, which
belong to the Oleaceae family, possess a considerable

amount of lignans (Tokar and Klimek 2004; Umezawa
2003). In Forsythia plants, pinoresinol, epipinoresinol,
phillygenin, matairesinol, arctigenin and their respective
glycosides (pinoresinol 4-O-glucoside, epipinoresinol
4-0O-glucoside, phillyrin, matairesinoside, arctiin) are
accumulated almost throughout the entire plant body, as
well as in cell suspension cultures (Guo et al. 2007;
Kitagawa et al. 1984; Kitagawa et al. 1988; Nishibe et al.
1988; Piao et al. 2008; Rahman et al. 1986; Rahman et
al. 1990a, 1990b, 1990c; Schmitt and Petersen 2002a;
2002b; Tokar and Klimek 2004). The biosynthetic
pathway of Forsythia major lignan aglycones has been
well characterized (Figure 1). (+)-Pinoresinol is
synthesized by sterco-specific radical coupling of two
coniferyl alcohols in the presence of dirigent protein
(DIR), and then is converted to (—)-secoisolariciresinol

Abbreviations: DIR, dirigent protein; OMT, O-methyltransferases; PIP, Pinoresinol-lariciresinol/Isoflavone/Phenylcoumaran benzylic ether reductase;
PLR, pinoresinol lariciresinol reductase; PSS, (+)-piperitol/sesamin synthase; SIRD, secosisolariciresinol dehydrogenase; UGT, UDP-sugar depend-

ent glycosyltransferase; UDP, uridine diphosphate

Footnotes: UGT72B13 (Accession ABS524715), UGT88A10 (AB524716), UGT71A17 (AB524717), UGT71A18 (AB524718), UGT71A19

(AB524719), UGT71A21 (AB524720)
This article can be found at http://www.jspcmb.jp/
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Figure 1. Lignan biosynthetic pathways in Forsythia. A Forsythia
plant in bloom (Upper). Lignan biosynthetic pathways (Lower).
Gray arrows indicate that the enzymes catalyzing the step have
not been determined yet. Yellow arrows indicate the possible
glucosylating steps in Forsythia. PLR, pinoresinol/lariciresinol
reductase; SIRD, secosisolariciresinol dehydrogenase; OMT, putative
O-methyltransferase.

via  (+)-lariciresinol by  pinoresinol/lariciresinol
reductase (PLR), a member of the Pinoresinol-
lariciresinol/Isoflavone/Phenylcoumaran benzylic ether
reductase (PIP) family, in an enantio-selective manner
(Davin et al. 1997, Dinkova-Kostova et al. 1996;
Katayama et al. 1992). (—)-Secoisolariciresinol is further
converted to (—)-matairesinol by secoisolariciresinol
dehydrogenase (SIRD) (Davin and Lewis 2003;
Umezawa et al. 1991; Xia et al. 2001). Moreover, a
monomethylated epipinoresinol, (+)-phillygein, and a
monomethylated matairesinol, (—)-arctigenin are also

present, suggesting that O-methyltransferases (OMT) are
involved in the lignan biosynthesis in Forsythia plants
(Ozawa et al. 1993). Notably, a majority of these lignans
is glycosylated at their phenolic hydroxyl groups
(Kitagawa et al. 1984; Nishibe et al. 1988; Rahman et al.
1986, 1990b, 1990c; Tokar and Klimek 2004).
Pinoresinol and matairesinol, the two major lignans in
the cell suspension culture of F intermedia and F
koreana respectively, were shown to be predominantly
present as glucoside forms (Kim et al. 2009; Schmitt and
Petersen 2002a).

Diverse lignan glycosides with various different
glycoylation patterns have been observed in nature
(Ayres and Loike 1990). Glycosylation is generally
catalyzed by a superfamily of enzymes, the uridine
diphosphate (UDP)-sugar dependent glycosyltransferases
(UGT). UGT transfers a sugar moiety from an activated
donor (UDP-sugar) to an accepting substrate. However,
molecular basis for the glycosylation of lignans was not
well understood until we recently identified UGT71A9
as the first lignan UGT from Sesamum indicum (Noguchi
et al. 2008). UGT71A9 specifically glucosylates a
furofuran-class of lignan, (+)-sesaminol. In addition, the
glucosylating activity of an anti-tumor lignan,
podophyllotoxin, was also shown to be dependent on
UDP-glucose in Linum nodiflorum suspension cell
cultures (Berim et al. 2008). These findings suggest that
UGTs play crucial roles in lignan glycosylation, although
very few lignan UGTSs have been thus far identified.

In this study, we present the molecular and functional
characterization of novel Forsythia UGTs. In particular,
the results herein not only provide evidence that
UGT71A18 of Forsythia is a novel enzyme responsible
for glucosylation of (+)-pinoreisnol, (+)-epipinoreisnol,
and (+)-phillygenin in vivo, but also pave the way to
metabolic engineering of lignan biosynthesis .

Materials and methods

Plant and chemical materials

Forsythia koreana was originally grown at the Research
Institute of Sustainable Humanosphere, Kyoto University, and
transferred to the greenhouse facility of the Suntory Co. Ltd.
Cell suspension culture was prepared from the callus and
maintained as previously described (Kim et al. 2009). Lignans
used for enzymatic assays were prepared as previously
described (Kim et al. 2009; Noguchi et al. 2008).

Molecular cloning of Forsythia UGT genes

An RNeasy Plant Mini Kit (QIAGEN) was used to extract total
RNA from leaves and flowers of Forsythia koreana. Poly A(+)
RNA was obtained from total RNA using an oligotex-MAG
mRNA purification kit (TaKaRa Bio, Shiga, Japan). A cDNA
library was constructed with 5 g of poly A(+) RNA by means
of a ZAP Express cDNA Synthesis Kit and ZAP Express
c¢DNA Gigapack3 Gold Cloning Kit (Stratagene, CA). This
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library had a titer of 2.4X10°pfuml™'. The Sesamum indicum
(+)-sesaminol glucosyltransferase gene (UGT7149, Accession
AB293960) was used for the screening probes (Noguchi et al.
2008), and the full length of UGT7149 gene was DIG-labeled
by PCR using the following primers (UGT71A9-Fw: 5'-ATG
TCG GCG GAC CAA AAA TTA ACC A and UGT71A9-Rv:
5'-TCA AGA AAT GTT ATT CAC GAC ATT) according to
the procedure previously described in Ono et al. (2006).
Approximately 400,000 pfu of the cDNA library was screened
with the DIG-labeled UGT71A9 probe. The screening and
detection of positive clones were performed with a DIG-DNA
labeling & detection kit (Roche, Mannheim, Germany).
Positive  clones detected under low stringency
hybridization conditions, as described previously (Yonekura-
Sakakibara et al. 2000). After the second screening, positive
clones were excised into the pBK-CMV plasmid (Stratagene,
CA), and the nucleotide sequences determined.
Sequencing reactions were conducted with a BigDye-
terminator ver.3.1 cycle sequencing kit (Applied Biosystems,
CA). Subsequently, the sequencing reaction mixtures were
analyzed in a 3100 Genetic Analyzer (Applied Biosystems,
CA).

Wwere

were

Preparation of recombinant F. koreana UGT71A
proteins

The open reading frame of the UGT71418 and UGT71A417
genes was amplified from each pPBK-CMV plasmid containing
UGT71418 and UGT71A417 cDNA, respectively, using the
following primer set (Ndel-FkUGT71A-Fw: 5'-CAC CCA TAT
GGC AGA AAC AAA GAA ATC AGA and Bglll-
FKUGT71A-Rv: 5'-AGA TCT TTA ATC CGT CAT TGG AAT
GTT AT), and was subcloned into a pENTR-Directional-TOPO
vector (Invitrogen, CA) and sequenced to confirm the absence
of PCR errors. The plasmid of the UGT71A418 or UGT71417
cDNA was digested using Ndel and Bglll. The resulting DNA
fragment was ligated with a pET-15b vector (Novagen,
Darmstadt, Germany) that had previously been digested with
Ndel and BamHI. The resultant plasmid was transformed into
Escherichia coli BL21 (DE3). The transformant cells were
prepared as previously described in Noguchi et al. 2008. The
recombinant E. coli cells were harvested by centrifugation
(7,000Xg, 15min), washed with distilled water, and
resuspended in buffer A (20mM sodium Pi (pH 7.4),
containing 14 mM 2-mercaptoethanol and 0.5M NaCl) along
with 20 mM imidazole. The cells were sonicated on ice by five
cycles of ultrasonication (where one cycle corresponds to
10kHz for 1 min followed by an interval of 1min). The cell
debris was removed by centrifugation (7,000Xg, 15 min). To
the supernatant solution, polyethyleneimine was slowly added
to a final concentration of 0.12% (v/v). The mixture was placed
at 4°C for 30min, and this was followed by centrifugation
(7,000Xg, 15min). The supernatant was applied to a
HisTrapTM HP column (1ml, GE Healthcare Bio-Science,
UK) that had been equilibrated with buffer A containing
20mM imidazole. The column was washed with buffer A
containing 20 mM imidazole, and the enzyme was eluted with
buffer A containing 200mM and 500 mM imidazole. The
active column-bound fractions were concentrated and desalted
using VIVASPIN 30,000 MWCO (VIVASCIENCE, Hannover,
Germany), followed by substitution with buffer B (20 mM
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potasium Pi (pH 8.0), containing 14 mM 2-mercaptoethanol).

Enzyme assays

The standard assay mixture (50 ul) consisted of a 200 uM
sugar acceptor (lignans), a 2mM sugar donor (UDP-glucose,
UDP-galactose, and UDP-glucuronic acid), a 100mM
potassium phosphate buffer (pH 8.0), and enzymes. After a 10-
min pre-incubation of the mixture without the enzyme at 30°C,
the reaction was initiated by the addition of the enzyme. After
incubation at 30°C for 60 min, the reaction was terminated by
the addition of 50ul of MeCN containing 0.5% (v/v)
trifluoroacetic acid (TFA). To determine the initial velocity of
the recombinant UGT71A18 enzyme, the assays were carried
out under the standard assay with various
concentrations (0.014-1mM for pinoresinol, 0.01-3 mM for
UDP-glucose). The apparent Km value for the glucosyl
donor and acceptor substrate in the presence of a saturating
concentration of the counter substrate were determined by
fitting the initial velocity data to the Michaelis-Menten
equation using non-linear regression analysis (Leatherbarrow
1990; Segel 1975). The range of pH from 6.5-8.5 was tested
for estimation of the optimal pH.

substrate

LC-MS

The reverse-phase HPLC procedure was performed with an
LC-2010A HT system with a SPD-M20A photodiode array
detector (Shimadzu, Kyoto, Japan) on the Develosil column
(Develosil) C30-UG-5 at 40°C (4.6mm [D.X150mm,
NOMURA CHEMICAL, Aichi, Japan). Each sample was
eluted with a linear gradient of 5-100% solvent B [90% MeCN
containing 0.1% (v/v) TFA] in solvent A [H,O containing 0.1%
(v/v) TFA] for 20 min at a flow rate of 1 mlmin~!, and then was
further eluted with 90% solvent B for 5Smin. Lignans were
monitored by UV absorption at 230 and 280 nm.

LC-TOF-MS analysis of the enzyme reaction mixtures was
carried out using an electrospray ionization ion-trap time-of-
flight mass spectrometry (ESI IT-TOF MS) instrument with
LC-20AD HPLC (Shimadzu, Kyoto, Japan) on a Develosil
C30-UG-3 column (2.0mmX150mm, Nomura Chemical,
Aichi, Japan) in a ternary solvent system comprised of solvent
A [H,O containing 0.1% HCOOH], and solvent B [MeCN
containing 0.1% HCOOH]. The sample was eluted using a
linear gradient of 5 to 100% of solvent B in solvent A for
20min at a flow rate of 0.2mlmin~!, and then with 100% of
solvent B for 5 min. The mass spectrometer scanned from m/z
200-1000. The interface voltage was 4.5kV in positive ion
mode and —3.5kV in negative ion mode. (+)-Pinoresinol
monoglucoside was detected in a negative mode to be a
deprotonated molecule [M—H]™ at m/z 519.1639 (exact mass:
520.1945) in the reaction mixture of UDP-glucose and (+)-
pinoresinol with the recombinant UGT71A18 protein.

Reverse transcription-polymerase chain reaction
(RT-PCR)

RT-PCR was performed on cDNAs prepared from each organ.
The following specific primer sets (UGT71A17-Fw: 5'-TAG
CGG ATC AAC CAA CTA AAC and UGT71A17-Rv: 5'-TCT
TGC CAT ACC GAG GAA CAT for UGT71A17 (Accession
ABS524717), UGT71A18-Fw: 5'-TAG CAG ATC AAC CCA
GTA AAT and UGT71A18-Rv: 5'-TCT TGC CAT ACT GAC
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GAA TGG for UGT71A18 (Accession AB524718), PLR-Fw:
5'-ATG GGA AAA AGC AAA GTT TTG ATC ATT GG and
PLR-Rv: 5'-CAC GTA ACG CTT GAG GTA CTC TTC CAC
for Forsythia PLR(Accession AAC49608), and rRNA-Fw: 5'-
GAA ACC TGC AAA GCA GA and rRNA-Rv: 5'-CTG ACC
TGG GGT CGC TGT CGA for Forsythia tTRNA (Accession
AJ236041)) were used to amplify DNA with ExTaq DNA
polymerase (TaKaRaBio, Shiga, Japan) for 25-35 cycles of
94°C for 15sec, 55°C for 30sec, and 72°C for 1min
(GeneAmp 2400, PerkinElmer). Each PCR product was
separated (in) on 0.8% agarose gel and visualized by ethidium
bromide staining.

Results and discussion

Molecular cloning of Forsythia UGTs

To identify Forsythia lignan UGTs, we initially prepared
crude enzyme fractions from the mature leaves and a
leaf-derived suspension of cells of F koreana, and tested
their glucosylating activity toward (+)-pinoresinol, (+)-
phillygenin, and (—)-arctigenin. After the incubation of
the reaction mixtures of the crude enzymes with these
lignans, new products were observed (Figure 2). These
were not produced in the absence of UDP-glucose,
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Figure 2.  Lignan glucosylating activity in Forsythia crude enzymes.

The HPLC profiles of reaction of the crude enzyme extracts from
Forsythia suspension cell cultures with (+)-pinoresinol (top), with (+)-
phillygenin (middle), and with (—)-arctigenin (bottom). Similar
glucosylating activity was observed in the crude enzyme prepared from
leaves (data not shown). Each chromatogram indicates absorption at
280 nm. Thick and thin lines indicate the reaction in the presence and
absence of UDP-gucose. Asterisk indicates each glucosylated lignan.

strongly suggesting that UGT family enzymes are

involved in the glucosylation of these lignans in vivo.
Based on the structural similarity to the Sesamum

lignan UGT, we screened a Forsythia koreana cDNA
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Figure 3. A phylogenetic tree of Forsythia UGTs. The sequences
used for the alignment were primarily those of UGTs that are ¢
lassified as UGT71 family. The tree was constructed from a Clustal W
multiple alignment using the neighbor-joining method by MEGA
4 software (Tamura et al. 2007). Bar=0.05 amino acid
substituteion/site. Numbers indicates bootstrap values. Forsythia
koreana (Fk)UGTs are shown as boldface letters. Arabidopsis thaliana
(At) UGT71 protein sequences are available at the web site
(http://www.p450.kvl.dk/Arab_ugts/table.shtml).  Lycium  barbarum
(Lb)GT55/UGT71A12, AB360615; LbGT211/UGT71A14, AB360630;
Nicotiana  tabacum (Nt)GT1a/UGT71A6, ABO052557; NtGTI1b/
UGT71A7, AB052558; AtGT3/UGT71A11, AB072918; Catharanthus
roseus (Cr)C2’GlcT/UGT71E2, BAF75901; Cr CaUGT1, BAD29721;
Antirrhinum majus (Am)UGT71AS, AB293962; Sesamum alatum
(Sa)UGT71A8, AB293959; Sesamum indicum (Si)UGT71A9,
AB293960; Sesamum radiatum (Sa)UGT71A10, B293961; Maclura
pomifera (Mp)UGT71A13, ABL85473; Vitis vinifera (Vv)UGT,
CANG67919; Stevia rebaudiana (Str)UGT71E1, AY345976; Medicago
truncatula (Mt)UGT71G1, AAWS6092; Fragaria ananassa (Fa)GT6,
ABB92748; Phytolacca americana (Pa)GT1/UGT71F6, AB458516;
Anthriscus sylvestris (As)UGT71A20, AB524721.
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library prepared from leaves using the S. indicum (+)-
sesaminol 2-O-glucosyltransferase, UGT71A9 gene
(Noguchi et al. 2008), as a probe. The cDNA library
screening resulted in the detection of six novel molecular
species of UGT, four of which were classified as UGT71
family enzymes (UGT71A17, UGT71A18, UGT71A19,
and UGT71A21), the others as UGT72B13 and
UGTS88A10 according to the definition of UGT identity
(Mackenzie et al. 2005). A phylogenetic tree of UGT71
family proteins with these Forsythia UGTs was
constructed using the Neighbor-Joining method (Figure
3). UGT71A17 and UGT71A18, two closely related
clones, both showed 56% amino acid sequence identity
to UGT71A9. UGT71A17 and UGT71A18 encode 469
and 468 amino acids, respectively, and share 90%
sequence homology. The high degree of structural
similarity of UGT71A17 and UGT71A18 to UGT71A9
allowed us to presume that the two Forsythia UGT71A
genes encode lignan glucosyltransferases.
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Glycosylation activity of Forsythia UGTs
To examine glycosylation activities of UGT71A17
and UGT71A18, the corresponding genes were
heterologously expressed as a His-tag fused chimera
protein in Escherichia coli. The resultant fused proteins
were purified with a nickel-affinity column, and their
enzymatic activities were evaluated. UGT71A18 reacted
with (+)-pinoresinol in the presence of UDP-glucose as
a sugar donor, and gave a product identical to the
authentic (+)-4-O-pinoresinol monoglucoside on HPLC
analysis (Figure 4A). The product exhibited a molecular
ion at m/z 519.1639 [M—H] , which was perfectly
consistent with the mass calculation of (+)-4-O-
pinoresinol monoglucoside (Figure 4B). These results
revealed that UGT71A18 catalyzes mono-glucosylation
at the 4-hydroxy group of (+)-pinoresinol. Similarly, the
paralog UGT71A17 also exhibited glucosylating activity
toward (+)-pinoresinol, but no further biochemical
characterization was performed, because its activity was
so much lower than that of UGT71A18.

The Km value of UGT71A18 for (+)-pinoresinol and
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Figure 4. Biochemical analysis of Forsythia UGT71A418. (A) The HPLC chromatograph of reaction of (+)-pinoresinol with the recombinant
UGT71A18 protein in the presence (top) or absence of UDP-glucose (middle). Authentic (+)-pinoresinol 4-O-monoglucoside is shown at the
bottom. Asterisk indicates the glucosylated (+)-pinoresinol. (B) Mass spectrum of the glucosylated (+)-pinoresinol by UGT71A18. (C) Relative
sugar donor specificity of UGT71A18. (+)-Pinoresinol was used as the sugar acceptor. The highest specific activity on UDP-glucose is set as 100%.
n.d. indicates “not detected”. (D) Sugar acceptor specificity of UGT71A18. Relative activities toward 200 uM solutions of lignans are shown. The

glucosylating activity toward (+)-pinoresinol is taken to be 100%.
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UDP-glucose was 81.2 = 54.9 uM and 478.5 = 16.4 uM,
respectively. The optimal pH for the catalysis was
determined to be 8.2. Furthermore, UGT71A18
exhibited prominent specificity to UDP-glucose as the
sugar donor for the catalysis (Figure 4C), showing
that UGT71A18 is a typical UDP-glucose-dependent
glucosyltransferase. UGT71A18 exhibited relatively
broad sugar acceptor specificity for lignans with a
preference for furofuran-class lignans such as (+)-
pinoresinol, (+)-epipinoresinol, and (+)-phillygenin,
compared with other classes of lignans, including
dibenzylbutyrolactone-class (Figure 4D). These results
indicate that other UGTs are responsible for the
glucosylating activity of non-furofuran class of lignans
observed in the Forsythia crude enzyme fractions (Figure
2), although the corresponding genes remain to be
clarified.

The identification of novel lignan glucosyltransferases
from Forsythia plants based on the similarity to the S.
indicum UGT71A9 highlights the structural conservation
of lignan UGTs across plant species. Nevertheless, the
structural diversity of lignan glycosides strongly suggests
that not all lignan UGTs belong to the UGT71 family
since flavonoid UGTs form separate phylogenetic clades
based on their various regio-specificities (Noguchi et
al. 2009). It was previously reported that Sesamum
UGT71A9 participates in the glucosylation of an
intrinsic furofuran lignan, sesaminol, while other UGT71
enzymes are involved in the glucosylation of the
flavonoid/triterpene (Medicago UGT71Gl), a growth
inhibitor (Arabidopsis UGT71B2/HYR1), exogenous
naphthols  (Nicotiana UGT71A6,7,11), exogenous
curcumin (Catharanthus UGT71E2), and endogenous
phytohormone (Arabidopsis UGT71B6) (Kaminaga et al.
2004; Noguchi et al. 2008; Priest et al. 2006; Taguchi et
al. 2003; Zhao et al. 2007), so the target compounds of
the UGT71 enzymes are evidently structurally diverse
(Figure 3). In addition to these reports, the present
results support the view that the UGT71 family enzymes
possess promiscuous substrate specificity, and some of
them have adapted to lignans.

Expression analysis of Forsythia UGTs

Several cell culture systems of Forsythia spp. have been
shown to accumulate pinoresinol glucoside, but the
genes responsible for pinoresinol glucosylating activity
have yet to be clarified (Kim et al. 2009; Schmidt and
Petersen 2002). To investigate whether UGT71A18 is
involved in the glucosylation of pinoresinol in the
Forsythia cell cultures, expression of the Forsythia
UGT71A genes was analyzed by RT-PCR. Both the
UGT71A417 and UGT71A18 genes were shown to be
expressed in the leaf, floral bud, and petal where lignan
glucosides are accumulated, whereas only the expression
of UGT71A418 was detected in the suspension cell culture

(Figure 5A). These results suggest that UGT71A418,
not UGT71A17, plays a major role in the glucosylation
of lignans in the Forsythia cell suspension cultures,
while both of these two genes participate in lignan
glucosylation in the leaf, floral bud, and petal of
Forsythia plants.

We further investigated the gene expression profiles of
UGT71A18 in the transgenic lines overexpressing the
PLR-RNAI construct (Kim et al. 2009). Interestingly,
remarkable up-regulation of the UGT71418 gene was
observed in the transgenic cell line, compared to the wild
type (Figure 5B). Such expression profile is consistent
with the previous observation that the Forsythia PLR-
RNAI cell cultures produce approximately 20-fold higher
(+)-pinoresinol glucoside than the wild type (Kim et al.
2009), and also suggests that the UGT71A418 gene is up-
regulated in response to increases in endogenous
pinoresinol. Moreover, this result accords with the notion
that glycosylation of small molecules is a major plant
mechanism underlying detoxification of abnormal
intermediates of endogenous metabolites and xenobiotic
compounds (Gachon et al. 2005; Lim and Bowles 2004).
Together, these data suggest that UGT71A18 serves
as a major (+)-pinoresinol glucosyltransferase in the
Forsythia suspension culture.

A L FB P SC
UGTT1A17 x35
UGTT71A18 x35
rRNA x25
B WT  PLR-RNAi
5 5
PLR x30
UGTT1A17 - x30
UGT71A18 = x30
Figure 5. Expression analysis of Forsythia UGT7IAI7 and

UGT71A418. (A) Expression profiles of UGT71417 and UGT71418 in
separate organs and suspension cells. L, leaf; FB, floral bud; P, petal;
SC, suspension cells (B) Expression profiles of lignan biosynthetic
genes in wild type (WT) and transgenic suspension cells in which PLR
gene expression is inhibited by RNAi construct. Numbers indicate
independent cell lines.
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Perspective on the application of UGT71A18 to
metabolic engineering

We previously identified a cytochrome P450 enzyme
gene, CYP81Q]1 from sesame seeds (Sesamum indicum).
The CYP81QI gene encodes a (+)-piperitol/sesamin
synthase (PSS) that catalyzes the sequential conversion
of (+)-pinoresinol to (+)-sesamin through (+)-piperitol
by forming two methylenedioxy bridges (Ono et al.
2006). During an effort to ectopically produce in
Forsythia plants the furofuran-class lignan, sesamin
originally produced in Sesamum indicum, we established
Forsythia cell cultures co-overexpressing PLR-RNAi and
CYP81Q1 constructs, and found that the cell cultures
unexpectedly produced large amount of (+)-pinoresinol
glucosides, but only a small amount of (+)-sesamin
(Kim et al. 2009). These results suggest that the
pinoresinol glucosylating activity could be the limiting
step for (+)-sesamin production, which is compatible
with the fact that CYP81QI is unable to catalyze (+)-
pinoresinol glucoside as its substrate (Ono et al. 2006).
Thus, the inhibition of pinoresinol glucosylation is
highly likely to be crucial for efficient production of (+)-
sesamin in the Forsythia platform.

This study reports the novel lignan glucosylation
activity of UGT71 family enzymes, the biochemical
properties of which in vivo have been mostly unknown.
The sequence information and functional characteristics
of UGT71A17 and UGT71A18 of Forsythia not only
partly reveal the lignan glucosylating activity observed
in vivo, but also serve as promising molecular tools
for the metabolic engineering of lignan biosynthesis.
Inhibition of the UGT71A418 gene in combination with
the overexpression of PLR-RNAi and CYP8IQI in the
Forsythia suspension cell culture platform is expected to
improve (+)-sesamin production via a redirection
of metabolic flow to the (+)-pinoresinol aglycone
which is subjected to the catalysis of CYP81Q1. To this
end, generation of transgenic Forsythia cell cultures
overexpressing the UGT71418-RNAi construct is
underway in our laboratory.
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