Genetic engineering of chrysanthemum (*Chrysanthemum morifolium*): Current progress and perspectives

Harue Shinoyama^{1,*}, Ryutaro Aida², Hiroaki Ichikawa³, Yukio Nomura¹, Atsushi Mochizuki⁴

¹Fukui Agricultural Experiment Station, Fukui 918-8215, Japan; ²National Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan; ³Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan; ⁴National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan

*E-mail: harue_shinoyama@fklab.fukui.fukui.jp Tel: +81-776-54-5100 Fax: +81-776-54-5106

Received March 13, 2012; accepted May 21, 2012 (Edited by M. Nakano)

Abstract We give an overview of the advances of an *Agrobacterium*-mediated transformation system, clarifying its problems and their solutions, and then show the latest version of our transformation system and examples of the introduction of agronomically important traits into chrysanthemums. Typical problems with the *Agrobacterium*-mediated transformation in chrysanthemum include low transformation efficiency, high chimerism and cultivar specificity. Using a co-cultivation medium containing acetosyringone and casamino acids for high transformation efficiency and an antibiotic-selection step for transgenic calli before plant regeneration to eliminate the chimerism, we established an efficient and stable transformation system for chrysanthemum. In addition, this system was used to successfully introduce useful agronomical traits, such as insect resistance and new flower color, into chrysanthemums. These traits have been stably and highly expressed to confer the expected characteristics upon the transgenic chrysanthemums. Before applying a field trial of the genetically modified (GM) chrysanthemums, male and female sterility were introduced into the transformants to exclude the transgene flow from the GM plants to their wild relatives. So far, using RNAi technology, some of the transgenic chrysanthemums have displayed complete male sterility with very weak female fertility.

Key words: Agrobacterium, callus induction system, bi-directional promoters, agronomic traits, environmental safety

Chrysanthemum (Chrysanthemum morifolium Ramat.) is one of the most popular ornamental flowers cultivated all over the world, second only to the rose. Chrysanthemums originated from interspecific crossing between wild relatives native to China. Fukai et al. (1995) and Kitamura (1950) suggested that florist chrysanthemums (2n=54) originated by crossing and doubling between C. zawadskii var. latilobum (Maxim.) Kitamura (2n=18) and C. indicum var. procumbense (Lour.) Kitamura (2n=36). The contemporary cultivars are hexaploids with a loss or gain of several chromosomes (Dowrick 1958; Dowrick and El-Bayoumi 1966), and they display a self-incompatible trait (Drewlow et al. 1973).

Florist chrysanthemums are mostly cultivated by vegetative stem cuttings or suckers. In addition, the

plants can be regenerated from adventitious shoots from various chrysanthemum tissues or calli using in vitro culture methods (Teixeira da Silva 2003). Since the late 1970s, its extensive ranges of flower colors, shapes and form have been created by conventional crossbreeding techniques or artificial mutation breeding techniques using X-rays (Broertjes et al. 1976; Huitema et al. 1987; Preil et al. 1983), gamma rays (De Jong and Custers 1986), heavy-ion beams (Nagatomi et al. 1998) or chemical substances such as ethylmethane sulphonate (EMS) (Dalsou and Short 1987). In conventional crossbreeding, hereditary elements from the same or different species are combined by sexual reproduction to create completely new gene combinations. The artificial mutation breeding techniques can only change a few useful traits.

This article can be found at http://www.jspcmb.jp/ Published online September 20, 2012

Abbreviations: *Bt*, *Bacillus thuringiensis*; *cab*, *chlorophyll-a/b-binding protein* gene; CaMV 35S, Cauliflower mosaic virus 35S RNA; *CmCCD4a*, *carotenoid cleavage dioxygenase 4a* gene from chrysanthemum; *CHS*, *chalcone synthase* gene; CRES-T, Chimeric REpressor gene-Silencing Technology; *EF1a*, *elongation factor 1a* gene; GM, genetically modified; *GUS*, β -glucuronidase gene; ICPs, insecticidal crystal proteins; *ipt*, *isopentenyl transferase* gene; *Lhca3.St.1*, *apoprotein 2 of the light-harvesting complex of photosystem I* gene from Solanum tuberosum; *nptII*, *neomycin phosphotransferase II* gene; *NtADH*, tobacco *alcohol dehydrogenase* gene; *PhyB1*, *phytochrome B1* gene; *rbcS1*, *ribulose-1,5-bisphosphate carboxylase small-subunit* gene; SAAT, sonication-assisted *Agrobacterium* transformation; TSWV, *Tomato spotted wilt virus*; *UEP1*, *ubiquitin extension protein 1* gene; 5'UTR, 5'-untranslated region.

Many agronomically important and commercially attractive traits are impossible to be introduced by conventional breeding or artificial mutation breeding because utilizable gene resources and modified traits are limited. Recently, advances in biotechnology have made possible the addition of new traits that are unachievable via conventional or mutation breeding (Shinoyama et al. 2006). After the first report on the susceptibility of chrysanthemum plants to *Agrobacterium* (Miller 1975), many researchers have tried to introduce useful agronomical traits into chrysanthemums via *Agrobacterium*-mediated transformation.

Here, we briefly review advances in the *Agrobacterium*mediated transformation of chrysanthemums by discussing their problems and solutions and then describing our improved transformation system with examples of the introduction of agronomically important traits into chrysanthemums.

1. Genetic transformation systems

1.1. Biolistic-mediated genetic transformation

Several methods for gene transfer are applicable to the chrysanthemum. Biolistic-mediated transformation, which uses particle bombardment to deliver exogenous genetic material (Hosokawa et al. 1998; Teixeira da Silva and Fukai 2002a, 2002b; Yepes et al. 1995, 1999), has been applied in many plant species to overcome the problem of strain specificity that limits the use of Agrobacterium transformation. However, in the chrysanthemum, it is often difficult to directly induce shoot or callus formation from the cells into which foreign genes have been introduced via particle bombardment (Hosokawa et al. 1998). There is also a high level of cultivar specificity on the efficiency of plant regeneration and transformation (Teixeira da Silva and Fukai 2002a, 2002b; Yepes et al. 1995, 1999). Accordingly, biolistic-mediated transformation is not frequently used in the chrysanthemum.

1.2. Agrobacterium-mediated genetic transformation

Once the susceptibility of chrysanthemums to *Agrobacterium tumefaciens* was reported (De Cleene and De Ley 1976; Hooykaas and Beijersbergen 1994; Miller 1975), the *Agrobacterium*-mediated transformation of chrysanthemum was studied worldwide. However, some barriers to the establishment of a chrysanthemum transformation system have been reported: low transformation efficiency (De Jong et al. 1994; Renou et al. 1993; Urban et al. 1994), regeneration of chimeric plants comprising both transgenic and non-transgenic tissues (Benetka and Pavingerová 1995; Pavingerová et al. 1994) and transgene inactivation, also known as gene silencing (Takatsu et al. 2000).

1.2.1. Agrobacterium strains and their specificity to chrysanthemum cultivars

Ledger et al. (1991) first tried to generate transgenic chrysanthemum (Dendranthema indicum 'Korean') using A. tumefaciens strain LBA4404, but the transformation frequency was extremely low (1.7%). Renou et al. (1993) achieved a higher transformation efficiency (5 to 40%) using A. tumefaciens EHA101. Shinoyama and colleagues used two Agrobacterium strains, LBA4404 and EHA101, to transform the cultivar 'Shuho no chikara' and showed relatively high transformation efficiencies: 5.2% for LBA4404 (Shinoyama et al. 2002b) and 4.4% (Shinoyama et al. 2002a) and 8.8% (Shinoyama et al. 2003) for EHA101. They also used two Agrobacterium strains, EHA101 and EHA105, to transform the cultivar 'Yamate shiro' and showed relatively high transformation efficiencies: 21.7% for EHA101 (Shinoyama et al. 2002a) and 22.0% (Shinoyama et al. 2008) and 23.9% (Shinoyama et al. 2012b) for EHA105. Other Agrobacterium strains, such as Ach5, AGL0, and those isolated from the crown gall of chrysanthemums, have successfully been used to obtain high transformation frequencies (Bush and Pueppke 1991; Ogawa et al. 2000; Vaudequin-Dransart et al. 1995) (Table 1).

The transformation efficiency has been reported to be dependent not only on *Agrobacterium* strains but also on the nature of chrysanthemum cultivars, including their susceptibility to *Agrobacterium* infection and their ability to regenerate plants *in vitro* (Aida et al. 2004; Deroles et al. 2002; Horsch et al. 1985; Shinoyama et al. 2002a; Teixeira da Silva 2004; Van Wordragen et al. 1991). Aida et al. (2004), Shinoyama et al. (2002a) and Shinoyama and Mochizuki (2006) compared transformation frequencies among several cultivars and found high transformation frequency for some cultivars (e.g., 'Hiroshima beni' [Aida et al. 2004; Shinoyama et al. 2002a; Shinoyama and Mochizuki 2006] and '94-787' [Aida et al. 2004]).

De Jong et al. (1994) and Urban et al. (1994) described the difference in transformation frequencies of chrysanthemum using different Agrobacterium strains and indicated that the AGL0 and EHA105 strains showed higher transformation frequencies than LBA4404. In contrast, no significant difference in the transformation frequency was recognized for four cultivars, 'Shuho no chikara' (Shinoyama et al. 2002a, 2002b, 2003), 'Yamate shiro' (Shinoyama et al. 2002a, 2008, 2012a, 2012b), 'Yamabiko' and 'New Summer Yellow' (Takatsu et al. 2000), even if different Agrobacterium strains were used. The discrepancy between the cultivar dependence and independence of the chrysanthemum transformation might be caused by the use of different transformation methods and binary vectors. These results at least suggest the importance of choosing the Agrobacterium strain(s) that confer the highest transformation frequency on

some chrysanthemum cultivars.

Agrobacterium rhizogenes causes hairy root syndrome in infected plant tissues by transferring T-DNA from the Ri plasmid into the plant genome (De Cleene and De Ley 1981). Genetic transformation mediated by A. rhizogenes is used in many plant species because A. rhizogenes strains are often more virulent than A. tumefaciens (Van Wordragen et al. 1992a). In chrysanthemum, a moderately higher transformation efficacy was observed for A. rhizogenes (6.0%) than for A. tumefaciens (3.3%). However, the rol genes of A. rhizogenes Ri T-DNA were detected in only four of 38 transgenic chrysanthemum plants (i.e., 10.5%), and none of them exhibited hairy root syndrome (Tsuro et al. 2005). This result implies that unidentified barriers to the transfer of Ri T-DNA to chrysanthemum may exist. Because the difference in the transformation frequencies of chrysanthemum by A. rhizogenes and A. tumefaciens is not very large, the advantages of disarmed A. tumefaciens strains have overshadowed the usefulness of oncogenic A. rhizogenes strains as reagents for chrysanthemum transformation.

1.2.2. Explants for infection and its treatment

Successful transformation also depends on the source and physiological condition of the explants to be infected with *Agrobacterium*. Explants from leaves and stems have been frequently used for *Agrobacterium tumefaciens*mediated transformation (Table 1). Most of those explants are harvested from plants aseptically cultured *in vitro*. In many cases, juvenile explants are used, such as newly formed expanding leaves (Ledger et al. 1991). Remarkably, De Jong et al. (1994, 1995) succeeded in the transformation using pedicels that were removed from the flowers of chrysanthemum plants that were nonaseptically grown in greenhouses.

The timing of *Agrobacterium* infection is considered an important factor for raising the infection efficiency, resulting in increased plant transformation efficiency (De Jong et al. 1993; Shinoyama et al. 2002a; Teixeira da Silva and Fukai 2002a). Shinoyama et al. (1998) demonstrated that the *Agrobacterium* culture in the logarithmic growth phase confers high infectability on plants and that the number of transformed cells increases when using the *Agrobacterium* in this phase.

The addition of chemical compounds such as acetosyringone, detergent and casamino acids to cocultivation medium can increase the *Agrobacterium* infection frequency. De Jong et al. (1994) first succeeded in increasing the *Agrobacterium* infectability of chrysanthemum by adding 100μ M acetosyringone to the co-cultivation medium. Fukai et al. (1995) and Takatsu et al. (1998, 2000) confirmed the effect of acetosyringone. Shinoyama et al. (1998) reported that 50μ M acetosyringone is enough to increase the infectability. When added to the infection solution, detergent, such as 5% (v/v) polyoxyethylene sorbitan monolaurate (Tween 20[®]), increased the adhesion of *Agrobacterium* to explants (Shinoyama et al. 1998). The infection frequency of *Agrobacterium* in chrysanthemums was further increased when 1% (w/v) casamino acids was added to the co-cultivation medium (Shinoyama et al. 1998).

An alternative method to increase chrysanthemum transformation frequency is sonication-assisted *Agrobacterium* transformation (SAAT), which helps *Agrobacterium* to seep deep inside the tissue and thus infect more tissues and cells (Teixeira da Silva and Fukai 2002b). Sonication could destroy bristles (trichomes) on the surface of the chrysanthemum plants, which inhibit the adhesion of *Agrobacterium* (Teixeira da Silva and Fukai 2002b).

Increasing the regenerative ability of plantlets from explants is also an effective way to increase transformation efficiency. Several combinations of plant growth regulators, such as indole-3-acetic acid (IAA) and 6-benzylaminopurine (BAP) (Aida et al. 1992; De Jong et al. 1995; Fukai et al. 1995; Ledger et al. 1991; Urban et al. 1994), 1-naphthaleneacetic acid (NAA) and BAP (Renou et al. 1993; Takatsu et al. 1998), and NAA, BAP and Gibberellin A_3 (Shinoyama et al. 2002b) are reported to be effective.

Because both *Agrobacterium*-mediated transformation and shoot regeneration are promoted by wounding the explants (De Jong et al. 1993), Shinoyama et al. (1998) compared the difference in transformation frequencies with the two leaf-cutting methods using scalpels or corkborers. More *Agrobacterium*-infected cells were obtained from the segments cut with cork-borers than from those cut with scalpels. The cut surfaces made by the corkborers are likely more convenient for *Agrobacterium* infection.

1.2.3. Selection markers

Because the neomycin phosphotransferase II gene (nptII) was first applied as a selectable marker gene in the transformation of florist chrysanthemum (Lemieux et al. 1990), kanamycin has been the main selection agent of transformed cells and tissues (Table 1). Florist chrysanthemums are sensitive to kanamycin, and the application of a high concentration of kanamycin in the selection medium inhibits shoot formation (De Jong et al. 1994). Other antibiotics, such as hygromycin, paromomycin and geneticin, have also been successfully used for the selection of transgenic chrysanthemums (Aida et al. 2004; Renou et al. 1993; Sherman et al. 1998b; Shinoyama et al. 1998). Renou et al. (1993) used hygromycin for selection and showed the potential to avoid chimeras. Paromomycin is considered less toxic to cells than kanamycin, and its constant selection pressure during plant regeneration and rooting could reduce the chance of non-transgenic escapes (Aida et al. 2004;

obacterium tun	<i>nefacıens-</i> теала						CITS activity (nmol	
Antib (A	iotics b)	Ab for selection	Promoter(s)	Transgene(s)	Transformation frequency (%)	Localization of <i>GUS</i> gene expression	4-MU mg ⁻¹ protein min ⁻¹)	Reference
CF	, VA	none	CaMV 35S	GUS	n.s.	n.s.	n.s.	De Jong et al. 1990
Г	L	K	CaMV 35S	nptII, GUS	0.8	n.s.	n.s.	Ledger et al. 1991
CF	, VA	K	nos, TR-2'	nptII, GUS	n.s.	Callus	0.0-466,000 (Callus)	Van Wordragen et al. 1991
	CF	K	CaMV 35S	nptII, HPT, GUS	n.s.	n.s.	n.s.	Aida et al. 1992
CF	; VA	K	CaMV 35S	nptII, GUS, opines	n.s.	None	l	Van Wordragen et al 1992a
C	З, VA	none	CaMV 35S	nptII, GUS, opines	n.s.	None	Ι	Van Wordragen et al 1993h
C	F. VA	none	CaMV 35S	nntII. GUS	.s.u	None	I	De Iong et al. 1993
0	F, VA	К, Н	CaMV 35S	nptII, HPT, GUS	1.04–12.14	Callus, shoots, plants	histochemical assay+	Renou et al. 1993
	CF	К, В	CaMV 35S	nptII, GUS, luc	n.s.	None	I	Lowe et al. 1993
0	CF, VA	К	CaMV 35S	nptII, GUS, cry1Ab	n.s.	Callus	110–3,660 (Callus)	Van Wordragen et al. 1993
-	CF, VA	K	CaMV 35S	nptII, GUS	0.0 - 12.6	Shoot	histochemical assay +	De Jong et al. 1994
	CF, TI	K	CaMV 35S	npt11, GUS, ocs	17.0	Plant	25.61–73.31 (Plants)	Pavingerová et al. 1994
	CA	K	CaMV 35S	nptII, GUS, TSWV N	4-7	Leaf	10–160 (Leaves)	Urban et al. 1994
	CF, TI	K	CaMV 35S	GUS, ocs	n.s.	Plant	11.32-66.89 (Plants)	Benetka and Pavingerová 1995
0	CF, VA	K	CaMV 35S	nptII, GUS	0.0 - 45.0	Shoot	histochemical assay +	De Jong et al. 1995
-	CF, VA	K	CaMV 35S	nptII, GUS	5.6 - 15.6	Plant	histochemical assay +	Fukai et al. 1995
	CA	Р	CaMV 35S	nptII, GUS	0.5 - 4.1	Plant	30–240 (Plants)	Sherman et al. 1998l
	CF	IJ	nos, CaMV 35S	nptII, HPT, intron-GUS	3.4	Leaf	histochemical assay +	Shinoyama et al. 1998
	CF	K, H, G	CaMV 35S	nptII, GUS	0.0 - 2.46	n.s.	n.s.	Takatsu et al. 1998
	CA	Н	CaMV 35S	nptII, GUS	2.5	Leaf	histochemical assay + (treated 5'-azacitidine)	Shirasawa et al. 2000
	CF	K	CaMV 35S	nptII, GUS	1.12-1.91	Plant	30–250 (Plants)	Takatsu et al. 2000
	CF, TI	K	Lhca3.St1, Lhaca3. St1 with MARs	nptII, GUS	n.s.	Plant	140,000 (Lhca3.St1; leaves)	Annadana et al. 200
0	CF, VA	М	CaMV 35S, CaMV 35S with MARs, UEP1, ChsA, EPF2, CER6, PMC	nptII, GUS	n.s.	Plant	16,500 (UEP1; ray florets)	Annadana et al. 2002a

TAULE 1. JUULES UIL.	agrouucterium un	main-suannhaun	arcu rialisiofiliarioli s	ysicilis of cill ysalling	anna dearg and gene				
Agrobacterium strain(s)	Segment(s)	Antibiotics (Ab)	Ab for selection	Promoter(s)	Transgene(s)	Transformation frequency (%)	Localization of <i>GUS</i> gene expression	GUS activity (pmol 4-MU mg ⁻¹ protein min ⁻¹)	Reference
LBA4404, EHA101, AGL0, C58C1	Leaf	IT	K	nos, CaMV 35S	nptII, HPT, GUS	n.s.	Cell	blue spot +	Kudo et al. 2002
LBA4404	Leaf	CF	IJ	nos, CaMV 35S	nptII, HPT, GUS	0-23.9	Shoot, root, plant	histochemical assay +	Shinoyama et al. 2002a
LBA4404, AGL0	Stem	CF	K	CaMV 35S with enhancer	nptII, GUS	0.0-25.0	Plant	histochemical assay +	Teixeira da Silva and Fukai 2002a, b
AGL0	Stem	CF, VA	K	CaMV 35S, rbc1	nptII, GUS		Plant	82,000 (rbc1; leaves)	Outchkourov et al. 2003
EHA105, AGL0	Leaf	CA	Ρ	CaMV 35S, cab	npt11, GUS	0.5-6.5	Plant	58,766 (cab; leaves)	Aida et al. 2004
EHA105	Leaf	CA	Ρ	$EF1\alpha$	nptII, GUS	0.5 - 6.8	Plant	14,000 (Leaves)	Aida et al. 2005
EHA105	Leaf	CA	Ь	CaMV 35S with enhancer	nptII, GUS	n.s.	n.s.	98,500	Aida et al. 2008b
CA: carbenicillin, (specified.	CF: cefotaxime (sodium salt), V_{t}	A: vancomycin, TI: t	icarcillin, K: kanamy	/cin, H: hygromycin, B	: Basta, P: paromom	ycin, G: geneticin (G41	8), MARs: matrix-assoc	iated regions. n.s.: not

Sherman et al. 1998b). Takatsu et al. (1998) described that the susceptibility against antibiotics depends on cultivars by comparing three antibiotics, kanamycin, hygromycin and geneticin (G418). Shinoyama and Mochizuki (2006) showed a high selection ability of the non-mutated type *nptII* gene, which was artificially synthesized by PCR, against 20 to $30 \text{ mg} \text{l}^{-1}$ of G418. Yenofsky et al. (1990) warned that the chimeric *nptII* gene, inserted in some of the commonly used binary vectors such as pBIN19 and pBI121, has an undesired point mutation, reducing the resistance of the transformants against kanamycin.

Recently, marker-free transgenic chrysanthemums have been generated using twin T-DNA binary vectors (Sun et al. 2009). Because these transgenic plants cannot be re-transformed using the same selectable marker gene, technology that can eliminate the selectable marker gene needs to be developed. This will be a very useful approach toward producing marker-free transgenic chrysanthemums and to relieve public or scientific concerns regarding the dispersal of antibiotic- and herbicide-resistant genes into the environment.

1.2.4. Eliminating chimerism

Chimerism, the regeneration of chimeric plants comprising both transgenic and non-transgenic cells, is one of the most serious problems in establishing a stable transformation system in chrysanthemum (Benetka and Pavingerová 1995; Pavingerová et al. 1994). To eliminate the chimerism, a method that allows for the regeneration of plantlets only from transformed cells must be used. Shinoyama et al. (2002a) compared the transformation efficiencies and chimerism of two transformation procedures: a regeneration system through callus-induction (CI) and a regeneration system with direct shoot-induction (SI). In the CI regeneration system, Agrobacterium infection and callus induction are simultaneously performed on CI medium (MS medium + 1.0 mg l^{-1} NAA, 0.5 mg l^{-1} BAP) containing 250 or 100 mgl⁻¹ cefotaxime sodium salt and 20 mgl⁻¹ G418, and plantlets are regenerated from the calli on regeneration medium (MS medium $+0.5 \text{ mg} \text{l}^{-1} \text{ BAP}$, $0.2 \text{ mgl}^{-1} \text{ GA}_3$) containing 100 mgl^{-1} cefotaxime sodium salt. In the SI regeneration system, shoots are directly regenerated from leaf discs infected with Agrobacterium on SI medium (MS medium+ 2.0 mgl^{-1} NAA, 0.5 mgl^{-1} BAP) containing 250 or $100 \text{ mg} \text{l}^{-1}$ cefotaxime sodium salt and 20 mgl⁻¹ G418. More plantlets were regenerated from the SI regeneration system than from the CI regeneration system. Fewer transformed plantlets were obtained using the SI regeneration system than using the CI regeneration system. All transformed plantlets regenerated from the CI regeneration system were nonchimeric, whereas 80% of the transformed plantlets regenerated from the SI regeneration system were

chimeric. These results indicate that transformation using the CI regeneration system can eliminate nontransformed cells and prevent chimerism.

1.2.5. Promoters and translational enhancer

When the β -glucuronidase (GUS) reporter gene was driven by the cauliflower mosaic virus 35S RNA (CaMV 35S) promoter, relatively low GUS activities in CaMV 35S::GUS-transgenic chrysanthemums have been reported (Urban et al. 1994). When the GUS gene was under the control of a CaMV 35S::Intron, which often confers higher GUS activity in some plants (Ohta et al., 1990), the highest GUS activity in the transgenic chrysanthemum leaves was 18,100 pmol 4-MU mg⁻¹ protein min⁻¹ (Aida et al. 2004).

Alternatively, several efficient promoters have been developed for high transgene expression in chrysanthemums using GUS as a reporter (see Table 1). Annadana et al. described two such high-level expression promoters: the promoter from the potato Lhca3.St.1 gene encoding apoprotein 2 of the light-harvesting complex of photosystem I from Solanum tuberosum (Annadana et al. 2001) and the promoter from the chrysanthemum UEP1 gene encoding ubiquitin extension protein 1 (Annadana et al. 2002a). A promoter-terminator cassette of the chrysanthemum rbcS1 gene (encoding the ribulose-1,5bisphosphate carboxylase small subunit) conferred high GUS activity to the transgenic leaves (Outchkourov et al. 2003). Aida et al. (2004, 2005) reported other promoters that induce high GUS expression: the promoter from the chrysanthemum cab gene encoding chlorophyll*a*/*b*-binding protein and the promoter from the tobacco EF1 α gene encoding elongation factor 1 α . The EF1 α gene promoter was used to delay leaf senescence with a mutated ethylene receptor gene (Narumi et al. 2005) and to modify flower shape with a MADS-box gene (Aida et al. 2008b).

We cloned a novel bi-directional promoter fragment (465 bp) for the *mannopine synthase-1'* and -2' (*mas1'-2'*) genes from an *Agrobacterium tumefaciens* strain isolated from crown galls formed on chrysanthemum plants (Shinoyama et al. unpublished). The bi-directional promoters could induce the expression of genes fused at both ends of the promoters, which was first demonstrated in transgenic chrysanthemums with insect resistance by Shinoyama and Mochizuki (2006). We have also been successful in producing transgenic chrysanthemums in which the *mas* bi-directional promoters drive both insect resistance and sterility (Shinoyama et al. 2012b) and in which the small promoter cassette drives both antibiotic resistance and sterility (Shinoyama et al. 2012a).

Inducible promoters would be necessary to efficiently cope with the environmental stresses. Recently, such promoters, including that from the tomato *ACC oxidase* (*LEACO1*) gene (Khodakovskaya et al. 2009) and the stress-inducible *rd29A* promoter (Ma et al. 2010), were used for transgene expression in chrysanthemum (Table 1).

For the efficient transgene expression, appropriate levels of protein production are required. Although a promoter with high transcriptional activity results in a high-level accumulation of transgene mRNA, such accumulation tends to induce post-transcriptional gene silencing (Vaucheret et al. 1998). The 5'-untranslated region (5'UTR) of the tobacco *alcohol dehydrogenase* gene (NtADH-5'UTR) (Satoh et al. 2004) has been reported to be an efficient translational enhancer in chrysanthemums (Aida et al. 2008a). Transgene silencing has occasionally occurred in chrysanthemum transformants (Takatsu et al. 2000). The NtADH-5'UTR translational enhancer may have the potential to solve transgene silencing in transgenic chrysanthemum through its high transgene-expression mechanism.

1.2.6. Agrobacterium-mediated transformation protocol

We established an efficient Agrobacterium-mediated transformation protocol using the chrysanthemum cultivar 'Shuho no chikara' (Shinoyama et al. 1998, Table 3). Initially, aseptic plant materials were produced by meristem culture. Their shoot tips were surface-sterilized briefly by dipping in 70% ethanol and then 1% sodium hypochlorite for 15 min. They were rinsed with sterilized distilled water three times. Then, they were cultivated in vitro on basal MS medium (Murashige and Skoog 1962) containing 3% sucrose and 0.3% Gellan Gum (Wako Pure Chemical Industries, Osaka, Japan) adjusted to pH 5.8 prior to autoclaving at 120°C for 15 min. They were incubated at 25°C under a 16-h photoperiod using coolwhite fluorescent lamps [photosynthetic photon flux (PPF, 400–700 nm) of $60 \,\mu \text{mol}\,\text{m}^{-2}\,\text{s}^{-1}$] or at 25°C in darkness.

We routinely apply the CI system because it efficiently inhibits chimerism in the transformants (Shinoyama et al. 2002a). We use *A. tumefaciens* strains LBA4404 (Ooms et al. 1982), EHA101 (Hood et al. 1986) or EHA105 (Hood et al. 1993) for conformity with cultivars or vectors. Individual frozen stocks of *Agrobacterium* strains are pre-cultured on AB minimal medium plates (Clark and Maaloe 1967) containing 50 mgl⁻¹ kanamycin and 50 mgl⁻¹ rifampicin at 30°C for three days in an incubator. The antibiotics should be changed depending on the antibiotic resistance genes in the binary vectors and *Agrobacterium* strains. They are then cultured in 10 ml of liquid YEP medium (5 gl⁻¹ NaCl, 10 gl⁻¹, yeast extract, 10 gl⁻¹ peptone, pH 7.2) in an incubator shaker at 200 rpm for 5 h at 28°C.

Leaf discs are cut from newly formed expanding leaves (1 cm^2) by a cork-borer $(\varphi = 6 \text{ mm})$ and immersed for 15 min at room temperature in MS liquid

medium containing 5% (v/v) Tween 20^{\circ} and 50 μ M acetosyringone with Agrobacterium (final $OD_{600}=0.1$). After immersion, the leaf discs are placed onto cocultivation CI medium (MS medium $+1.0 \text{ mgl}^{-1}$ NAA, $0.5 \text{ mgl}^{-1} \text{ BAP}$ (containing 1.0 gl^{-1} casamino acids) and co-cultivated for three days at 25°C in darkness. The leaf discs are transferred to bacteria elimination CI medium (containing 250 mgl⁻¹ cefotaxime sodium salt) for the elimination of Agrobacterium and, after 10 days, are transferred to the selection CI medium I (containing 250 mgl^{-1} cefotaxime sodium salt and 20 mgl^{-1} G418) for the selection of putatively transformed calli. After three subcultures on the selection CI medium I, the leaf discs are transferred to selection CI medium II (containing 100 mg l⁻¹ cefotaxime sodium salt and $20 \text{ mgl}^{-1} \text{ G418}$) in which the concentration of cefotaxime sodium salt is reduced to promote callus proliferation. In the CI system, the leaf discs forming green calli are transferred to plantlet regeneration medium (MS medium + 0.5 mg l⁻¹ BAP, 0.2 mg l⁻¹ gibberellin A_3 (GA_3) and 100 mgl^{-1} cefotaxime sodium salt) to obtain putatively transformed plantlets. The regenerated plantlets are transferred to rooting medium (MS medium without plant growth regulators), acclimatized under the same culture conditions in vermiculite and then transferred to a closed greenhouse at 25°C.

This CI regeneration system is applicable to other cultivars of chrysanthemum with appropriate changes in the concentration of G418 (between 20 and 30 mg l^{-1}), depending on the cultivar (Shinoyama et al. 2002a).

2. Recent examples of agronomically practical transgenic chrysanthemums

At present, several agronomic traits have been introduced to chrysanthemums using GM technology (Table 2). Several reports, however, seem to describe unclear results because only a small number of transgenic lines were tested or because the transgenes were expressed at low levels. Therefore, whether the new transgene-based agronomic traits have practical potential is not obvious. To obtain agronomically useful transgenic plants, generating a great number of independent transgenes at appropriate levels would be necessary. Here, we show recent examples of agronomically practical transgenic chrysanthemums with high and stable expression of transgenes.

One example is insect-resistant chrysanthemums. Insect damage brings yield loss, and thus, expensive pesticides are required in chrysanthemum cultivation to control insects. In particular, lepidopteran insects cause heavy damage and are responsible for a substantial proportion of insect loss. To protect chrysanthemums from the damage, Shinoyama et al. (2003) introduced the mcbt gene, which was a modified cry1Ab sequence (encoding Bacillus thuringiensis insecticidal protein Cry1Ab) that maintained the amino acid sequences; eliminated AT-rich sequences such as ATTTA, which destabilize mRNA in eukaryotes (Murray et al. 1991; Perlak et al. 1991; Van Aarssen et al. 1995); and increased the preferred codon of the Compositae family. A total of 317 transgenic chrysanthemum lines were obtained, and of 20 randomly sampled transgenic lines, 11 highly expressed the Cry1Ab protein. In addition, all tobacco budworm larvae (Helicoverpa armigera) that fed on the leaves were dead during the first instar, resulting in a high insecticidal effect against lepidopteran insect larvae. Shinoyama and Mochizuki (2006) obtained 1,586 transgenic chrysanthemum lines in another 5 chrysanthemum cultivars and successfully induced 10 lines of 20 randomly sampled transgenic lines to confer a high lepidopteran insect resistance using the same protocol.

The second example of practical chrysanthemum transformation is flower color modification. Chrysanthemums contain anthocyanins and carotenoids as pigments in their ray florets. The pink to violet flower color is controlled by the existence of anthocyanins alone, the cream to yellow color is controlled by carotenoids alone, and the blond to orange color is directed by both anthocyanins and carotenoids. White flowers lack both anthocyanins and carotenoids. Ohmiya et al. (2006) demonstrated white petals could be converted into yellow petals by suppressing the expression of carotenoid cleavage dioxygenase (CmCCD4a) using RNAi technology. Although carotenoids are initially synthesized in both yellow and white flowers, carotenoids are degraded by the carotenoid cleavage dioxygenase (CCD) protein in white flowers. This strategy was used to produce "Yellow Jimba" from 'Jimba', which is the most popular whiteflower chrysanthemum cultivar in Japan (Ohmiya et al. 2009; Fig. 1). They first obtained 61 transformed plants carrying a CmCCD4a RNAi construct, but the petals of the transformed plants were very pale yellow. They then chose the most yellow transformed plant to perform the second transformation with another CmCCD4a RNAi construct bearing different DNA sequences. They finally obtained 50 double-transformed plants, and more than half showed yellow-colored petals. Recently, expression of the flavonoid 3',5'-hydroxylase gene in chrysanthemums generated delphinidin-based anthocyanins, which resulted in a flower color shift toward blue (Noda et al., in preparation).

3. Prevention of transgene flow for practical use of GM chrysanthemums

Transgenic crops were first cultured commercially in

Table 2. Studies on Agroba	scterium tumefacien	ıs-mediated transforma	tion systems and intro	oduction of agronomically in	portant traits to chrysanthemur	ns.	
Agrobacterium strain(s)	Segment(s)	Antibiotics (Ab)	Ab for selection	Promoter(s)	Transgene(s)	Changed trait(s)	Reference
LBA4404	Peduncle	VA	K	100, CaMV 35S	nptII, GUS, CHS	Flower color	Lemieux et al. 1990
LBA4404	Leaf	CA	K	CaMV 35S	nptII, CHS	Flower color	Courtney-Gutterson et al. 1993
A281	Leaf	CF, VA	K	CaMV 35S	nptII, GUS, cry1Ab	Insect resistance	Van Wordragen et al. 1993
LBA4404	Leaf	CA	К	CaMV 35S	nptII, CHS	Flower color	Courtney-Gutterson et al. 1994
B6S3	Leaf	CF, TI	К	CaMV 35S	nptII, GUS, ocs	Plant shape	Pavingerová et al. 1994
EHA105, Ach5, A281, Chry5	Leaf	CA	K	CaMV 35S	nptII, GUS, TSWV N	Virus and viroid resistance	Urban et al. 1994
B6S3	Leaf, stem	CF, TI	К	CaMV 35S	GUS, ocs	Plant shape	Benetka and Pavingerová 1995
C58, A281	Leaf	CF	К	CaMV 35S	nptII, bt	Insect resistance	Dolgov et al. 1995
A281, GV3101, C58, CBE21	Leaf	CF	К, Н	nos, CaMV 35S, mas	nptII, HPT, AFP, bt, rolC, CHS	Flower color, shape, insect resistance, stress	Dolgov et al. 1997
						resistance	
LBA4404	Leaf	IT	K	nos, CaMV 35S	nptII, Lc	Flower color	Boase et al. 1998
LBA4404	Leaf, stem	CF	К	CaMV 35S	nptII, NP-1	n.s.	Fu et al. 1998
LBA4404	Stem	n.s.	n.s.	CaMV 35S	nptII, F3',5'H	Flower color	Kim et al. 1998
EHA105	Leaf	CA	Р	CaMV 35S	nptII, TSWV N	Virus and viroid resistance	Sherman et al. 1998a
LBA4404	Stem	n.s.	К	CaMV 35S	nptII, LFYcDNA	Flowering time	Shao et al. 1999
C58, MP90	Stem	CF	К	CaMV 35S	nptII, RCC2	Fungal resistance	Takatsu et al. 1999
GV3101	Leaf	CF	K	CaMV 35S	Agrobacterium rhizogenes rolC	Plant shape	Mitiouchkina and Dolgov 2000
EHA101	Stem	CF, VA	К	CaMV 35S	nptII, Ac	n.s.	Tosca et al. 2000
n.s.	Pedicel	CF, TI	К	CaMV 35S	modified <i>cry1C</i>	Insect resistance	De Jong 2001
EHA105	Leaf, stem	CA	K	CaMV 35S	Rice <i>phyA</i> and Arabidipsis <i>phyB</i>	Plant shape	Zheng et al. 2001
AGL0	Pedicel	CF, VA	K	UEPI	Potato <i>multicystatin</i>	Insect resistance	Annadana et al. 2002b
LBA4404, AGL0	Leaf	CF	K	CaMV 35S with leader	nptII, pacI	Virus and viroid resistance	Ishida et al. 2002
LBA4404	Leaf	CF	К	nos, CaMV 35S	nptII, OsMADS1		Jeong et al. 2002
LBA4404	Leaf	CF	IJ	CaMV 35S	<i>nptII</i> , non-modified <i>cry1Ab</i>	Insect resistance	Shinoyama et al. 2002b
LBA4404, AGL0	Leaf	CF	К	CaMV 35S with leader	nptII, pacI	Virus and viroid resistance	Toguri et al. 2003
AGL0	Pedicel	CF, VA	К	CaMV 35S, GAI	nptII, GAI	Plant shape	Petty et al. 2003
EHA101	Leaf	CF	IJ	nos, CaMV 35S	<i>nptII, HPT,</i> modified <i>cry1Ab</i>	Insect resistance	Shinoyama et al. 2003
n.s.	Leaf	CF	Н	CaMV 35S	IbMADS4	Plant shape	Aswath et al. 2004
LBA4404	stem	IT	К	cor15a	ipt	Leaf senescence	Khodakovskaya et al. 2005
EHA105	Leaf	CA	Р	$EF1\alpha$	mDG-ERS1	Leaf senescence	Narumi et al. 2005
LBA4404, AGL0	Leaf	CF	К	CaMV 35S	pacl	Virus and viroid resistance	Ogawa et al. 2005
LBA4404	Leaf	CA	К, Н	rolC	rolC	Plant shape	Kubo et al. 2006

Table 2. Studies on Agrob.	acterium tumefacien	1s-mediated transformat	tion systems and intro	duction of agronomically im	portant traits to chrysanthemur	ns.	
Agrobacterium strain(s)	Segment(s)	Antibiotics (Ab)	Ab for selection	Promoter(s)	Transgene(s)	Changed trait(s)	Reference
C58	Leaf	CF	К	nos, CaMV 35S with enhancer, rd29A	DREB1A	Stress resistance	Hong et al. 2006
EHA105	Leaf	CA	Ρ	$EFI\alpha$	CmCCD4a-RNAi	Flower color	Ohmiya et al. 2006
EHA105	Leaf	CF	Ċ	mas	<i>nptII</i> , modified <i>cry1Ab</i>	Insect resistance	Shinoyama and Mochizuki 2006
CBE21	Leaf, stem	CF	K	double CaMV 35S with enhancer	ORF5 encoding the CVB coat protein	Virus and viroid resistance	Skachkova et al. 2006
n.s.	n.s.	n.s.	п.s.	rbcS1	modified <i>cry1Ca</i> , engineered <i>seven-domain</i> <i>protein inhibitor</i> gene, strawberry <i>linalool</i> <i>svnthase</i> gene	Insect resistance	Visser et al. 2007
LBA4404, C58C1	Leaf	CF	K	CaMV 35S	Ls-like gene	Plantshape	Han et al. 2007
EHA105	Leaf	CA	Ъ	EFIα	chrysanthemum AGAMOUS	Flower shape	Aida et al. 2008a
EHA105	Leaf	CF	G	mas	<i>nptII</i> , modified <i>cryIAb</i>	Insect resistance	Shinoyama et al. 2008
LBA4404	Stem	IT	К	LEACOI	ipt	Plant shape	Khodakovskaya et al. 2009
EHA105	Leaf	CA	Р	CaMV 35S, EF1a	CmCCD4a-RNAi	Flower color	Ohmiya et al. 2009
n.s	Leaf	CF	К	rd29A, CaMV 35S	DREB1A	Stress resistance	Ma et al. 2010
EHA105	Leaf	CA	K	CaMV 35S	$hpaG_{Xoo}$	Fungal resistance	Xu et al. 2010
LBA4404	Leaf	CF	K	nos, CaMV 35S	nptll, HPT, CaXMT1, CaMXMT1, CaDXMT1	Fungal resistance	Kim et al. 2011a
LBA4404	Leaf	CF	K	nos, CaMV 35S	nptII, HPT, CaXMT1, CaMXMT1, CaDXMT1	Insect resistance	Kim et al. 2011b
EHA105	Leaf	CA	Р	CaMV 35S	TCP3-SRDX	Plant shape	Narumi et al. 2011
EHA105	Leaf	CF	G	nos, mas	nptII, CmETR1/H69A	Male/female sterility	Shinoyama et al. 2012a
EHA105	Leaf	CF	IJ	nos, mas	<i>nptII</i> , <i>CmDMC1</i> -RNAi, modified <i>cry1Ab</i>	Male/female sterility, insect resistance	Shinoyama et al. 2012b
CA: carbenicillin, CF: cef	otaxime (sodium sa	lt), VA: vancomycin, TI	: ticarcillin, K: kanam)	ycin, H: hygromycin, B: Basti	a, P: paromomycin, G: geneticin	(G418). n.s.: not specified.	

Table 3. Transformation time table using the callus induction (CI) system.

Day	Procedure	Key points
0	[Inoculation with Agrobacterium]	
	Culture of Agrobacterium in liquid YEP liquid medium for 5 h.	
	Prepare leaf discs with cork-borer from the aseptic plants.	Plant materials are produced by meristem culture. The newly formed expanding leaves are used for leaf discs.
	Immerse the leaf discs into MS liquid medium containing <i>Agrobacterium</i> for 15 min.	
	Coculture the leaf discs with <i>Agrobacterium</i> on cocultivation callus induction (CI) medium.	
3	[Elimination of Agrobacterium after cocultivation]	
	Transfer the discs to bacteria elimination CI medium.	
10	[Selection of transformed cells]	
	Transfer to selection CI medium.	
24	Transfer to fresh selection CI medium I.	
38	Transfer to fresh selection CI medium I.	Calli are induced on the edge of leaf discs
52	Transfer to fresh selection CI medium II.	Cam are mudded on the edge of leaf discs.
66	Transfer to fresh selection CI medium II.	
80	[Regeneration of plantlet from the transformed calli]	
	Transfer to plant regeneration medium.	
101	Transfer to plant regeneration medium.	
122	Transfer to plant regeneration medium.	Shoots are formed on the calli.
	Collect elongated shoots (first collection) and trasfer to rooting medium.	
143	Transfer to plant regeneration medium.	The shoots are rooted.
	Collect elongated shoots (second collection) and trasfer to rooting medium.	
143-180	[Acclimatizing the transgenic plants]	
	Transfer rooted plants to a closed greenhouse.	In some cultivars, the low-temperature treatment (10°C, 40 days) must be performed.
200 onwards	[Plants available for testing]	

Medium constructions. CI medium: $MS+1.0 \text{ mgl}^{-1} \text{ NAA}$, $0.5 \text{ mgl}^{-1} \text{ BA}$, 3% Sucrose (Suc.), 0.3% Gellan Gum (Gel.). Cocultivation CI medium: CI medium $+1.0 \text{ gl}^{-1}$ Casamino acids. Bacteria elimination CI medium: CI medium $+250 \text{ mgl}^{-1}$ Cefotaxine sodium salt (Cf.). Selection CI medium I: CI medium $+250 \text{ mgl}^{-1}$ Cf., 20 mgl^{-1} Gf. 20 mgl^{-1} Gf. 20 mgl^{-1} Gf. 20 mgl^{-1} Gf. 3% Suc, 0.4% Gel. Rooting medium: MS+100 mgl $^{-1}$ Cf. 3% Suc, 0.4% Gel.

Non-transgenic chrysanthemum 'Jimba'

Transgenic chrysanthemum "Yellow Jimba"

Figure 1. The suppression of the *carotenoid cleavage dioxygenase* gene converted white petals to yellow. Scale bars indicate 50 mm.

1996, and since then, the number of planted transgenic crops has been increasing worldwide. These increases are due to the many benefits of culturing transgenic crops, such as reduced production costs and farm labor. Recently, concerns have been raised about their potential harmful effects on biodiversity and the environment because transgenic crops are generated without ordinary crossings or intraspecies gene flow (Kamada 2001). Thus, risk assessment has been required for transgenic crops before their field cultivation.

Items on the risk assessment of transgenic crops are well documented in the international templates of the Cartagena Protocol on Biosafety (Article 15 and Annex II). The actual assessment methods and procedures, however, vary depending on the types of genes introduced, the plant species, and the environment where the transgenic crops will be released.

Florist chrysanthemums are predominantly selfincompatible plants and are easily cross-pollinated by certain insects, such as bees (Nakata and Takeuchi 1998). Many wild chrysanthemum relatives in the *Compositae* family are cross-compatible with chrysanthemum cultivars and are widely distributed throughout Japan. F_1 plants from natural crossbreeding between chrysanthemum cultivars and their wild relatives have been found in several relatively wild habitats (Taniguchi et al. 2009). As one of the risks of GM chrysanthemums, the pollen of transgenic chrysanthemums could be carried by insect pollinators and crossed with wild relatives, resulting in the production of F_1 plants with the transgene in relatively wild habitats. These F_1 plants

Table 4. Percentage of mature pollens in GM and non-GM chrysanthemums (modified from Shinoyama et al. 2012a and 2012b)

Line		The Ca	mETR1/H69.	A gene		The CmDM0	C1-RNAi seg	ements and t	he modified	cry1Ab gene	
Temp. (°C)	non-GM	ETR91	ETR191	ETR324	DB194	DB260	DB315	DB395	DB569	DB576	DB613
35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	62.0	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**
20	81.5	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**
15	50.4	10.3**	12.7**	10.9**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**
10	37.8	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**	0.0**

ETR: transgenic lins bearing the *CmETR1/H69A* gene, DB: transgenic lines bearing the *CmDMC1*-RNAi segments and the modified *cry1Ab* gene. Data are the percentages of no. of mature pollens/no. of total pollens per anther sac. Mature and immature pollens were differentially stained by Alexander staining (Alexander 1969). ** Significant at 1% level by Student *t* test.

Non-transgenic chrysanthemum 'Yamate-shiro'

Figure 2. The pollen induction of tubular flowers of non-transgenic and transgenic chrysanthemum plants carrying both a modified *cry1Ab* gene and *CmDMC1*-RNAi segments. Scale bars indicate 1 mm.

are thought to have various direct and indirect effects on biodiversity. For example, the insect-resistant plants may kill rare insect species that feed only on the wild plants. Alternatively, because the plants are not damaged by insects, they may grow thick and deprive the habitat of other wild plants.

To eliminate the risks of transgene flow, Shinoyama et al. (2012a) tried to create male-sterile transgenic chrysanthemums using the modified melon ethylene receptor gene, CmETR1/H69A. The overexpression of the CmETR1/H69A gene delayed the tapetum degradation of the anther sac, resulting in a reduction of mature pollen grains in some of the transgenic lines. In 15 of the 335 CmETR1/H69A-overexpression chrysanthemum lines, male and female fertility was significantly lower than in non-GM chrysanthemum. In particular, three of these lines produced no mature pollen grains in the temperature ranging 10 to 35°C, with the exception that 10% pollen grains in an anther sac were matured at 15°C (Table 4). Moreover, the female fertility of these three lines was decreased to half that of non-GM chrysanthemums. Overexpression of CmETR1/H69A gene most likely delays the maturation of the ovule.

Then, to produce transgenic chrysanthemums with both insect resistance and temperature-independent, complete male-sterility, Shinoyama et al. (2012b)

Non-transgenic chrysanthemum 'Shuho-no-chikara'

Transgenic chrysanthemum

transformed the *mcbt* gene and a 582-bp fragment of chrysanthemum meiosis-specific recombinase gene, *CmDMC1*, as an RNAi trigger segment (Fig. 2). We used the novel bi-directional mas promoter (Shinoyama et al. unpublished) to regulate the expression of the mcbt gene and the CmDMC1-RNAi segment located at both ends of the promoters. Transgenic lines showed high resistance for lepidopteran pest insects of chrysanthemums, such as the tobacco budworm (H. armigera), the cotton cutworm (Spodoptera litura) and the beet armyworm (S. exigua) (Fig. 3). Complete temperature-independent male sterility was achieved in seven of 682 transgenic lines (Table 4, Fig. 2). These seven lines produced no mature pollen grains from 10 to 35°C, which is the temperature range for chrysanthemum flowering. In the cross between GM lines and their wild relatives, a few F_1 seeds on the flowers of the GM lines, corresponding to 1/10 to 1/20 of non-GM chrysanthemum plants, were obtained (pollen parents were the wild relatives, and seed parents were the GM lines); no F₁ seeds were obtained on the flowers of the wild relatives (pollen parents were the GM lines, and seed parents were the wild relatives). Thus, these results suggested that these lines were completely male sterile and that their female fertility was partially retained. The F₁ plants obtained from the seeds of GM flowers showed male sterility, very weak

female fertility and strong insect resistance, indicating the stable inheritance of the transgenic phenotypes in the progeny. The *CmDMC1*-RNAi segment caused complete male sterility with incomplete female sterility. Because northern blot analysis showed the *mas* bi-directional promoters directed a lower transcription level of the *GUS* gene in ovules compared with leaves, stems, roots and pollens (Shinoyama et al. unpublished), the insufficient expression of the *CmDMC1*-RNAi segment in ovules might cause incomplete female sterility. Identifying more appropriate promoter(s) is desirable to realize highlevel expression of the *CmDMC1*-RNAi segment in both pollen and ovules and to create completely male- and female-sterile transgenic chrysanthemums.

As a new method to suppress the function(s) of the transcription factor(s) of interest, Chimeric REpressor gene-Silencing Technology (CRES-T) has been successfully applied in chrysanthemums (Narumi et al. 2011). It would be very useful to silence the expression of a set of downstream genes under the control of the target transcription factor(s).

Advances in transgenic technology could reduce production costs and improve yield, cut-flower quality and commercial value. In the future, superior transgenic chrysanthemums would appear on the markets that possess agronomic traits with environmental safety.

Acknowledgments

We give special thanks to Drs. H. Kamada (University of Tsukuba), S. Ohki (Fukui Prefectural University), K. Tanaka (Kyoto Prefectural University), H. Ezura (University of Tsukuba), M. Mii (Chiba University), K. Wakasa (Tokyo University of Agriculture), K. Kondo (Tokyo University of Agriculture), M. Nakata (Toyama Botanical Garden), K. Taniguchi (Hiroshima University), Y. Yonezawa (Naruto University of Education), S. Fukai (Kagawa University) and Jaime A. Teixeira da Silva (Kagawa University) for their valuable suggestions for all of our experiments. In addition, we thank Ms. C. Amaya, F. Nogawa and R. Murai (Fukui Agricultural Experiment Station) for their technical support in all of our experiments. The authors are particularly indebted to Dr. Teixeira da Silva for improvements in the grammar, content and structure of this review.

References

- Aida R, Tabei Y, Hirai M, Shibata M (1992) Agrobacteriummediated transformation of chrysanthemum. Breed Sci 42(Suppl. 2): 270–271 (in Japanese)
- Aida R, Ohira K, Tanaka Y, Yoshida K, Kishimoto S, Shibata M, Ohmiya A (2004) Efficient transgene expression in chrysanthemum, *Dendranthema grandiflorum* (Ramat.) Kitamura, by using the promoter of a gene for chrysanthemum chlorophyll-*a/b*-binding protein. *Breed Sci* 54: 51–58
- Aida R, Nagaya S, Yoshida K, Kishimoto S, Shibata M, Ohmiya A (2005) Efficient transgene expression in chrysanthemum, *Chrysanthemum morifolium* Ramat., with the promoter of a gene for tobacco elongation factor 1α protein. *Jpn Agric Res Q* 39: 269–274

- Aida R, Narumi T, Ohtsubo N, Yamaguchi H, Kato K, Shinmyo A, Shibata M (2008a) Improved translation efficiency in chrysanthemum and torenia with a translational enhancer derived from the tobacco *alcohol dehydrogenase* gene. *Plant Biotechnol* 25: 69–75
- Aida R, Komano M, Saito M, Nakase K, Murai K (2008b) Chrysanthemum flower shape modification by suppression of chrysanthemum-AGAMOUS gene. Plant Biotechnol 25: 55–59
- Alexander MP (1969) Differential staining of aborted and nonaborted pollen. *Stain Technol* 44: 117–122
- Annadana S, Mlynarova L, Udayakumar M, De Jong J, Nap JP (2001) The potato *Lhca3.St.1* promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMVbased promoters. *Mol Breed* 8: 335–344
- Annadana S, Beekwilder MJ, Kuipers G, Visser PB, Outchkourov N, Pereira A, Udayakumar M, De Jong J, Jongsma MA (2002a) Cloning of the chrysanthemum *UEP1* promoter and comparative expression in florets and leaves of *Dendranthema grandiflora*. *Transgenic Res* 11: 437–445
- Annadana S, Kuipers G, Visser PB, de Kogel WJ, Udayakumar M, Jongsma MA (2002b) Expression of potato multicystatin in florets of chrysanthemum and assessment of resistance to western flower thrips, *Frankliniella occidentalis. Acta Hortic* 572: 121–129
- Aswath CR, Mo SY, Kim SH, Kim DH (2004) *IbMADS4* regulates the vegetative shoot development in transgenic chrysanthemum (*Dendranthema grandiflora* (Ramat.) Kitamura). *Plant Sci* 166: 847–854
- Benetka V, Pavingerová D (1995) Phenotypic differences in transgenic plants of chrysanthemum. *Plant Breed* 114: 169–173
- Boase MR, Bradley JM, Borst NK (1998) Genetic transformation mediated by Agrobacterium tumefaciens of florists' chrysanthemum (Dendranthema×grandiflorum) cultivar 'Peach Margaret'. In Vitro Cell Dev Biol Plant 34: 46–51
- Broertjes C, Roest S, Bokelmann GS (1976) Mutation breeding of *Chrysanthemum morifolium* Ram. using *in vivo* and *in vitro* adventitious bud techniques. *Euphytica* 25: 11–19
- Bush AL, Pueppke SG (1991) Characterization of an unusual new Agrobacterium tumefaciens strain from Chrysanthemum morifolium Ram. Appl Environ Microbiol 57: 2468–2472
- Clark JD, Maaloe O (1967) DNA replication and the cell cycle in *Escherichia coli. J Mol Biol* 23: 99–112
- Courtney-Gutterson N, Otten A, Firoozababy E, Akerboom M, Lemieux C, Nicholas J, Morgan A, Robinson K (1993) Production of genetically engineered color-modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. *Acta Hortic* 336: 57–62
- Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson KEP (1994) Modification of flower color in florist's chrysanthemum: production of a whiteflowering variety through molecular genetics. *Biotechnology* 12: 268–271
- Dalsou V, Short KC (1987) Selection for sodium chloride tolerance in chrysanthemums. *Acta Hortic* 212: 737–740
- De Cleene M, De Ley J (1976) The host range of crown gall. *Bot Rev* 42: 389–466
- De Cleene M, De Ley J (1981) The host range of infectious hairy root. *Bot Rev* 47: 147–194
- De Jong J, Custers JBM (1986) Induced changes in growth and flowering of chrysanthemum after irradiation and *in vitro* culture of pedicel and petal epidermis. *Euphytica* 35: 137–148
- De Jong J, Van Wordragen MF, Rademaker W (1990) Early

transformation events in Dendranthema grandiflora. Proceeding of the EUCARPIA (Section Ornamentals): Integration of the in vitro techniques in ornamental plant breeding, Wageningen, pp. 156–161

- De Jong J, Rademaker W, Van Wordragen MF (1993) Restoring adventitious shoot formation on chrysanthemum leaf explants following cocultivation with *Agrobacterium tumefaciens*. *Plant Cell Tissue Organ Cult* 32: 263–270
- De Jong J, Mertens MJ, Rademaker W (1994) Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA. *Plant Cell Rep* 14: 59–64
- De Jong J, Rademaker W, Ohishi K (1995) Agrobacterium-mediated transformation of chrysanthemum. Plant Tissue Cult Biotechnol 1: 38–42
- De Jong J (2001) Transgenic *Dendranthema* (Chrysanthemum). In: Bajaj YPS (ed) *Transgenic crops III.* (*Biotechnology in Agriculture and Forestry*, vol. 38) Springer, Berlin, Heidelberg, New York, pp. 84–94
- Deroles SC, Boase MR, Lee CE, Peters TA (2002) Gene transfer to plants. In: Vainstein A (ed) *Breeding of ornamentals: classical and molecular approaches*. Kluwer, Dordrecht, pp.155–196
- Dolgov SV, Mityshkina TU, Rukavtsova EB, Buryanov YI (1995) Production of transgenic plants of *Chrysanthemum morifolium* Ramat. with the gene of *Bacillus thuringiensis* δ -endotoxin. *Acta Hortic* 441: 23–28
- Dolgov SV, Mitiouchkina TY, Skryabin KG (1997) Agrobacterial transformation of chrysanthemum. *Acta Hortic* 447: 329–333
- Dowrick GJ (1958) Chromosome numbers and the origin and nature of sports in the garden chrysanthemum. *Natl Chrysanthemum Sot Yrbk* pp. 60–79
- Dowrick GJ, El-Bayoumi A (1966) The origin of new forms of the garden *Chrysanthemum*. *Euphytica* 15: 32–38
- Drewlow LW, Ascher PD, Widmer RE (1973) Genetic studies of self inconpatibility in the garden chrysanthemum, *Chrysanthemum morifoliun* Ramat. *Theor Appl Genet* 43: 1–5
- Fu R-Z, Liu M, Liang H-J, Zhang C-H, Xue H, Sun Y-R (1998) Production of transgenic chrysanthemum via Agrobacterium tumefaciens mediated method. Acta Phytophysiol Sinica 24: 72–76
- Fukai S, De Jong J, Rademaker W (1995) Efficient genetic transformation of chrysanthemum (*Dendranthema grandiflorum* (Ramat.) Kitamura) using stem segment. *Breed Sci* 45: 179–184
- Han B-H, Suh E-J, Lee S-Y, Shin H-K, Lim Y-P (2007) Selection of non-branching lines induced by introducing *Ls*-like cDNA into chrysanthemum (*Dendranthema grandiflorum* (Ramat.) Kitamura) "Shuho-no-chikara". *Sci Hortic* (Amsterdam) 115: 70–75
- Hong B, Tong Z, Ma N, Kasuga M, Yamaguchi-Shinozuka K, Gao J-P (2006) Expression of the *Arabidopsis DREB1A* gene in transgenic chrysanthemum enhances tolerance to low temperature. *J Hortic Sci Biotechnol* 81: 1002–1008
- Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. *J Bacteriol* 168: 1291–1301
- Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmid for gene transfer to plants. *Transgenic Res* 2: 208–218
- Hooykaas PJJ, Beijersbergen AGM (1994) The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol 32: 157–179
- Horsch RB, Fly JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into

plants. Science 227: 1229-1231

- Hosokawa M, Hossain MM, Takemoto T, Yazawa S (1998) Particlegun wounding of explants with and without plant-growth regulators effectively induces shoot formation in African violet. *Plant Tissue Cult Biotechnol* 4: 35–41
- Huitema JMB, Gussennoven GC, De Jong J, Dons JJM (1987) Selection and *in vitro* characterization of low-temperature tolerant mutants of *Chrysanthemum morifolium Ramat. Acta Hortic* 197: 89–96
- Ishida I, Tukahara M, Yoshioka M, Ogawa T, Kakitani M, Toguri T (2002) Production of anti-virus, viroid plants by genetic manipulations. *Pest Manag Sci* 58: 1132–1136
- Jeong JH, Chakrabarty D, Kim SJ, Paek KY (2002) Transformation of chrysanthemum (*Dendranthema grandiflorum* Kitamura) cv. Cheonsu by constitutive expression of rice OsMADS1 gene. J Kor Soc Hortic Sci 42: 382–386
- Kamada H (2001) Present state and prospects for research on safety of transgenic plants. *Research J* 24: 5–12 (in Japanese)
- Khodakovskaya M, Li Y, Li J, Vanková R, Malbeck J, McAvoy R (2005) Effects of *cor15a-IPT* gene expression on leaf senescence in transgenic *Petunia*×*hybrida* and *Dendranthema*× grandiflorum. J Exp Bot 56: 1165–1175
- Khodakovskaya M, Vanková R, Malbeck J, Li A, Li Y, McAvoy R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of *ipt* under the control of a 0.821 kb fragment of the *LEACO1* gene promoter. *Plant Cell Rep* 28: 1351–1362
- Kim M, Kim J, Hee Y (1998) Plant regeneration and flavonoids 3',5'-hydroxylase gene transformation of *Dendranthema zawadskii* and *Dendranthema indicum*. J Kor Soc Hortic Sci 39: 355–359
- Kim Y-S, Lim S, Yoda H, Choi YE, Sano H, Sano H (2011a) Simultaneous activation of salicylate production and fungal resistance in transgenic Chrysanthemum producing caffeine. *Plant Signal Behav* 6: 409–412
- Kim Y-S, Lim S, Kang K-K, Jung Y-J, Lee Y-H, Choi T-E, Sano H (2011b) Resistance against beet armyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. *Plant Biotechnol* 28: 393–395
- Kitamura S (1950) Chrysanthemum. In: Ishii Y (ed) *The Encyclopedia of Horticulture.* Seibundo-Shinkosya, Tokyo, pp. 576–585 (in Japanese)
- Kubo T, Tsuro M, Tsukimori A, Shizukawa Y, Takemoto T, Inaba K, Shiozaki S (2006) Morphological and physiological changes in transgenic *Chrysanthemum morifolium* Ramat. 'Ogura-nishiki' with *rolC. J Japan Soc Hortic Sci* 75: 312–317
- Kudo S, Shibata N, Kanno Y, Suzuki M (2002) Transformation of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) via Agrobacterium tumefaciens. Acta Hortic 572: 139-147
- Ledger SE, Deroles SC, Given NK (1991) Regeneration and *Agrobacterium*-mediated transformation of chrysanthemum. *Plant Cell Rep* 10: 195–199
- Lemieux CS, Firoozababy E, Robinson KEP (1990) Agrobacteriummediated transformation of chrysanthemum. In: De Jong J (ed) *Proceedings of the Eucarpia Symposium on Integration of in vitro Techniques in Ornamental Plant Breeding*. Pudoc, Wageningen, pp. 150–155
- Lowe JM, Davey MR, Power JB, Blundy KS (1993) A study of some factors affecting *Agrobacterium* transformation and plant regeneration of *Dendranthema grandiflora* Tzvelev (syn. *Chrysanthemum morifolium* Ramat.). *Plant Cell Tissue Organ*

Cult 33: 171-180

- Ma C, Hong B, Wang T, Yang YJ, Tong Z, Zuo ZR, Yamaguchi-Shinozaki K, Gao JP (2010) DREB1A regulon expression in *rd29A*: *DREB1A* transgenic chrysanthemum under low temperature or dehydration stress. *J Hortic Sci Biotechnol* 85: 503–510
- Miller M (1975) Leaf, stem, crown, and root galls induced in chrysanthemum by *Agrobacterium tumefaciens*. *Phytopathology* 65: 805–811
- Mitiouchkina TY, Dolgov SV (2000) Modification of chrysanthemum plant and flower architecture by *rolC* gene from *Agrobacterium rhizogenes* introduction. *Acta Hortic* 508: 163–169
- Murray EE, Rocheleau T, Eberle M, Stock C, Sekar V, Adang M (1991) Analysis of unstable RNA transcripts of insecticidal crystal protein genes of *Bacillus thuringiensis* in transgenic plants and electroporated protoplasts. *Plant Mol Biol* 16: 1035–1050
- Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiol Plant* 15: 473–497
- Nagatomi S, Tanaka A, Kato A, Yamaguchi H, Watanabe H, Tano S (1998) Mutation induction through ion beam irradiation in rice and chrysanthemum. *JAERI-Review* 98-016: 41–43
- Nakata M, Takeuchi K (1998) Variation in *Dendranthema indicum* var. *aphrodite* population in Oosakai, Himi City. *Toyama Pref Bull Bot Gard Toyama* 3: 1–16 (in Japanese)
- Narumi T, Aida R, Ohmiya A, Satoh S (2005) Transformation of chrysanthemum with mutated ethylene receptor genes: *mDG*-*ERS1* transgenes conferring reduced ethylene sensitivity and characterization of the transformants. *Postharvest Biol Technol* 37: 101–110
- Narumi T, Aida R, Koyama T, Yamaguchi H, Sasaki K, Shikata M, Nakayama M, Ohme-Takagi M, Ohtsubo N (2011) Arabidopsis chimeric TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium. Plant Biotechnol 28: 131–140
- Ogawa Y, Ishikawa K, Mii M (2000) Highly tumorigenic *Agrobacterium tumefaciens* strain from crown gall tumors of chrysanthemum. *Arch Microbiol* 173: 311–315
- Ogawa T, Toguri T, Kudoh H, Okamura M, Momma T, Yoshioka M, Kato K, Hagiwara Y, Sano T (2005) Double-stranded RNAspecific ribonuclease confers tolerance against *chrysanthemum stunt viroid* and *tomato spotted wilt virus* in transgenic chrysanthemum plants. *Breed Sci* 55: 49–55
- Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. *Plant Physiol* 142: 1193–1201
- Ohmiya A, Sumitomo K, Aida R (2009) "Yellow Jimba": Suppression of carotenoid cleavage dioxygenase (*CmCCD4a*) expression turns white chrysanthemum petals yellow. J Jpn Soc Hortic Sci 78: 450–455
- Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β -glucronidase (GUS) reporter gene containing an intron within the coding sequence. *Plant Cell Physiol* 31: 805–813
- Ooms G, Hooykaas PJJ, Van Veen RJM, Van Beelen P, Regensburg-Tuïnk TJG, Schilperoort RA (1982) Octopine Ti-plasmid deletion mutants of *Agrobacterium tumefaciens* with emphasis on the right side of the T-region. *Plasmid* 7: 15–29
- Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter-terminator of chrysanthemum *rbcS1* directs very high expression levels in plants. *Planta* 216:

1003-1012

- Pavingerová D, Dostal D, Biskova R, Benetka V (1994) Somatic embryogenesis and *Agrobacterium*-mediated transformation of chrysanthemum. *Plant Sci* 97: 95–101
- Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. *Proc Natl Acad Sci USA* 88: 3324–3328
- Petty LM, Harberd NP, Carre IA, Thomas B, Jackson SD (2003) Expression of the *Arabidopsis gai* gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. *Plant Sci* 164: 175–182
- Preil W, Engelhardt M, Walther F (1983) Breeding of low temperature tolerant poinsettia (*Euphorbia pulcherrima*) and chrysanthemum by means of mutation induction in *in vitro* culture. *Acta Hortic* 131: 345–351
- Renou JP, Brochard P, Jalouzot R (1993) Recovery of transgenic chrysanthemum (*Dendranthema grandiflora* Tzvelev) after hygromycin resistance selection. *Plant Sci* 89: 185–197
- Satoh J, Kato K, Shinmyo A (2004) The 5'-untranslated region of the tobacco *alcohol dehydrogenase* gene functions as an effective translational enhancer in plant. *J Biosci Bioeng* 98: 1–8
- Shao HS, Li JH, Zheng XQ, Chen SC (1999) Cloning of the *LFY* cDNA from *Arabidopsis thaliana* and its transformation to *Chrysanthemum morifolium. Acta Bot Sin* 41: 268–271
- Sherman JM, Moyer JW, Daub ME (1998a) Tomato spot wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. *Plant Dis* 82: 407–414
- Sherman JM, Moyer JW, Daub ME (1998b) A regeneration and Agrobacterium-mediated transformation system for genetically diverse Chrysanthemum cultivars. J Am Soc Hortic Sci 123: 189–194
- Shinoyama H, Komano M, Nomura Y, Kazuma T (1998) Stable Agrobacterium-mediated gene transformation of chrysanthemum (Dendranthema×grandiflorum (Ramat.) Kitamura). Bull Fukui Agric Expt Stn 35: 13-21 (in Japanese)
- Shinoyama H, Kazuma T, Komano M, Nomura Y, Tsuchiya T (2002a) An efficient transformation system in chrysanthemum [Dendranthema×grandiflorum (Ramat.) Kitamura] for stable and non-chimeric expression of foreign genes. Plant Biotechnol 19: 335–343
- Shinoyama H, Komano M, Nomura Y, Nagai T (2002b) Introduction of delta-endotoxin gene of *Bacillus thuringiensis* to chrysanthemum [*Dendranthema×grandiflorum* (Ramat.) Kitamura] for insect resistance. *Breed Sci* 52: 43–50
- Shinoyama H, Mochizuki A, Komano M, Nomura Y, Nagai T (2003) Insect resistance in transgenic chrysanthemum [Dendranthema×grandiflorum (Ramat.) Kitamura] by the introduction of a modified δ -endotoxin gene of Bacillus thuringiensis. Breed Sci 53: 359–367
- Shinoyama H, Mochizuki A (2006) Insect resistant transgenic chrysanthemum [*Dendranthema×grandiflorum* (Ramat.) Kitamura]. *Acta Hortic* 714: 177–184
- Shinoyama H, Anderson N, Furuta H, Mochizuki A, Nomura Y, Singh RP, Datta SK, Wang B, Teixeira da Silva JA (2006) Chrysanthemum Biotechnology. In: Teixeira da Silva JA (ed) *Floriculture, Ornamental and Plant Biotechnology, Advances and Topical Issues Vol. II.* Global Science Books, UK, pp 140–163
- Shinoyama H, Mochizuki A, Nomura Y, Kamada H (2008) Environmental risk assessment of genetically modified chrysanthemums containing a modified *cry1Ab* gene from *Bacillus thuringiensis. Plant Biotechnol* 25: 17–29

- Shinoyama H, Sano T, Saito M, Ezura H, Aida R, Nomura Y, Kamada H (2012a) Induction of male sterility in transgenic chrysanthemums (*Chrysanthemum morifolium* Ramat.) by expression of a mutated ethylene receptor gene, *Cm-ETR1/H69A*, and the stability of this sterility at varying growth temperatures. *Mol Breed* 29: 285–295
- Shinoyama H, Ichikawa H, Saitoh-Nakashima M, Saito M, Aida R, Ezura H, Yamaguchi H, Mochizuki A, Nakase K, Nishibata Y, Nomura Y, Kamada H (2012b) Introduction of male sterility to GM chrysanthemum plants to prevent transgene flow. *Acta Hortic*, in press
- Shirasawa N, Iwai T, Nakamura S, Honkura R (2000) Transformation and transgene expression of chrysanthemum (*Dendranthema grandiflorum* (Ramat.) Kitamura). *Bull Miyagi Prefect Agric Res Cent* 67: 15–20
- Skachkova TS, Mitiouchkina TY, Taran SA, Dolgov SV (2006) Molecular biology approach for improving chrysanthemum resistance to virus B. *Acta Hortic* 714: 185–192
- Sun L, Zhou L, Lu M, Cai M, Jiang X-W, Zhang Q-X (2009) Marker-free transgenic chrysanthemum obtained by *Agrobacterium*-mediated transformation with twin T-DNA binary vectors. *Plant Mol Biol Rep* 27: 102–108
- Takatsu Y, Tomotsune H, Kasumi M, Sakuma F (1998) Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (*Dendranthema grandiflorum* (Ramat.) Kitamura) cultivars and the improved protocol for *Agrobacterium*-mediated genetic transformation. *J Jpn Soc Hortic Sci* 67: 958–964 (in Japanese)
- Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (*Dendranthema grandiflorum* (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (*Botrytis cinerea*). Sci Hortic (Amsterdam) 82: 113–123
- Takatsu Y, Hayashi M, Sakuma F (2000) Transgene inactivation in Agrobacterium-mediated chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) transformants. Plant Biotechnol 17: 241–245
- Taniguchi K, Nakata M, Kusaba M (2009) *Chrysanthemum* Genome invasion and role of genetic resource. *Biophilla* 5: 55–60 (in Japanese)
- Teixeira da Silva JA, Fukai S (2002a) Increasing transient and subsequent stable transgene expression in chrysanthemum (*Dendranthema×grandiflora* (Ramat.) Kitamura) following optimization of particle bombardment and Agro-infection parameters. *Plant Biotechnol* 19: 229–240
- Teixeira da Silva JA, Fukai S (2002b) Change in transgene expression following transformation of chrysanthemum by four gene introduction methods. *Prop Ornamental Plants* 2: 28–37
- Teixeira da Silva JA (2003) Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. *Biotechnol Adv* 21: 715–766
- Teixeira da Silva JA (2004) Ornamental chrysanthemums: improvement by biotechnology. *Plant Cell Tissue Organ Cult* 79: 1–18
- Toguri T, Ogawa T, Kakitani M, Tukahara M, Yoshioka M (2003) Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora) plants with a disease resistance gene (pac1). Plant Biotechnol 20: 121–127
- Tosca A, Delledonne M, Furini A, Belenghi B, Fogher C, Frangi P (2000) Transformation of Korean chrysanthemum (*Dendranthema zawadskii* $\times D. \times grandiflorum$) and insertion of the maize autonomous element Ac using Agrobacterium

tumefaciens. J Genet Breed 54: 19-24

- Tsuro M, Kubo T, Shizukawa Y, Takemoto T, Inaba K (2005) Agrobacterium rhizogenes is a useful transporter for introducing T-DNA of the binary plasmid into the chrysanthemum, Dendranthema grandiflorum Kitamura, genome. Plant Cell Tissue Organ Cult 81: 175–181
- Urban LA, Sherman JM, Moyer JW, Daub ME (1994) High frequency shoot regeneration and *Agrobacterium*-mediated transformation of chrysanthemum (*Dendranthema grandiflora*). *Plant Sci* 98: 69–79
- Van Aarssen R, Soetaert P, Stam M, Dockx J, Gosselé V, Seurinck J, Reynaerts A, Cornelissen M (1995) *cry* IA(b) transcript formation in tobacco is inefficient. *Plant Mol Biol* 28: 513–524
- Van Wordragen MF, De Jong J, Huitema HBM, Dons HJM (1991) Genetic transformation of chrysanthemum using wild type *Agrobacterium* strains; strain and cultivar specificity. *Plant Cell Rep* 9: 505–508
- Van Wordragen MF, Ouwerkerk PBF, Dons HJM (1992a) Agrobacterium rhizogenesis mediated induction of apparently untransformed roots and callus in chrysanthemum. Plant Cell Tissue Organ Cult 30: 149–157
- Van Wordragen MF, De Jong J, Schornagel MJ, Dons HJM (1992b) Rapid screening for host-bacterium interactions in *Agrobacterium*-mediated gene transfer to chrysanthemum, by using the GUS-intron gene. *Plant Sci* 81: 207–214
- Van Wordragen MF, Honée G, Dons HJM (1993) Insectresistant chrysanthemum calluses by introduction of a *Bacillus thuringiensis* crystal protein gene. *Transgenic Res* 2: 170–180
- Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgeneinduced gene silencing in plants. *Plant J* 16: 651–659
- Vaudequin-Dransart V, Petit A, Poncet C, Ponsonnet C, Nesme X, Jones JB, Bouzar H, Chilton WS, Dessaux Y (1995) Novel Ti plasmids in *Agrobacterium* strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules. *Mol Plant Microbe Interact* 8: 311–321
- Visser PB, de Maagd RA, Jongsma MA (2007) Chrysanthemum. In: Pua EC, Davey MR (eds) *Transgenic crops VI*. (*Biotechnology in Agriculture and Forestry*, vol. 61) Springer-Verlag, Berlin Heidelberg, pp 253–272
- Xu G, Chen S, Chen F (2010) Transgenic chrysanthemum plants expressing a harpin_{Xoo} gene demonstrate induced resistance to Alternaria leaf spot and accelerated development. *Russ J Plant Physiol* 57: 548–553
- Yenofsky RL, Fine M, Pellow JW (1990) A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. *Proc Natl Acad Sci* USA 87: 3435–3439
- Yepes LC, Mittak V, Pang S-Z, Gonsalves C, Slightom JL, Gonsalves D (1995) Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. *Plant Cell Rep* 14: 694–698
- Yepes LC, Mittak V, Pang S-Z, Gonsalves D, Slightom JL (1999) Agrobacterium tumefaciens versus biolistic-mediated transformation of the chrysanthemum cvs. Polaris and Golden Polaris with nucleocapsid protein genes of three Tospovirus species. Acta Hortic 482: 209–218
- Zheng ZL, Yang ZB, Jang JC, Metzger JD (2001) Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome *B1* gene. *J Am Soc Hortic Sci* 126: 19–26