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Abstract We give an overview of the advances of an Agrobacterium-mediated transformation system, clarifying
its problems and their solutions, and then show the latest version of our transformation system and examples of the
introduction of agronomically important traits into chrysanthemums. Typical problems with the Agrobacterium-mediated
transformation in chrysanthemum include low transformation efficiency, high chimerism and cultivar specificity. Using a
co-cultivation medium containing acetosyringone and casamino acids for high transformation efficiency and an antibiotic-
selection step for transgenic calli before plant regeneration to eliminate the chimerism, we established an efficient and
stable transformation system for chrysanthemum. In addition, this system was used to successfully introduce useful
agronomical traits, such as insect resistance and new flower color, into chrysanthemums. These traits have been stably and
highly expressed to confer the expected characteristics upon the transgenic chrysanthemums. Before applying a field trial
of the genetically modified (GM) chrysanthemums, male and female sterility were introduced into the transformants to
exclude the transgene flow from the GM plants to their wild relatives. So far, using RNAi technology, some of the transgenic
chrysanthemums have displayed complete male sterility with very weak female fertility.
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Chrysanthemum (Chrysanthemum morifolium plants can be regenerated from adventitious shoots from

Ramat.) is one of the most popular ornamental flowers
cultivated all over the world, second only to the
rose. Chrysanthemums originated from interspecific
crossing between wild relatives native to China. Fukai
et al. (1995) and Kitamura (1950) suggested that florist
chrysanthemums (2n=54) originated by crossing and
doubling between C. zawadskii var. latilobum (Maxim.)
Kitamura (2n=18) and C. indicum var. procumbense
(Lour.) Kitamura (2n=36). The contemporary
cultivars are hexaploids with a loss or gain of several
chromosomes (Dowrick 1958; Dowrick and El-Bayoumi
1966), and they display a self-incompatible trait
(Drewlow et al. 1973).

Florist chrysanthemums are mostly cultivated by
vegetative stem cuttings or suckers. In addition, the

various chrysanthemum tissues or calli using in vitro
culture methods (Teixeira da Silva 2003). Since the late
1970s, its extensive ranges of flower colors, shapes and
form have been created by conventional crossbreeding
techniques or artificial mutation breeding techniques
using X-rays (Broertjes et al. 1976; Huitema et al. 1987;
Preil et al. 1983), gamma rays (De Jong and Custers
1986), heavy-ion beams (Nagatomi et al. 1998) or
chemical substances such as ethylmethane sulphonate
(EMS) (Dalsou and Short 1987). In conventional
crossbreeding, hereditary elements from the same or
different species are combined by sexual reproduction to
create completely new gene combinations. The artificial
mutation breeding techniques can only change a few
useful traits.

Abbreviations: Bt, Bacillus thuringiensis; cab, chlorophyll-a/b-binding protein gene; CaMV 35S, Cauliflower mosaic virus 358 RNA; CmCCD4a,
carotenoid cleavage dioxygenase 4a gene from chrysanthemum; CHS, chalcone synthase gene; CRES-T, Chimeric REpressor gene-Silencing
Technology; EFla, elongation factor la gene; GM, genetically modified; GUS, f-glucuronidase gene; ICPs, insecticidal crystal proteins; ipt,
isopentenyl transferase gene; Lhca3.St.1, apoprotein 2 of the light-harvesting complex of photosystem I gene from Solanum tuberosum; nptIl, neomycin
phosphotransferase II gene; NtADH, tobacco alcohol dehydrogenase gene; PhyBl, phytochrome Bl gene; rbcS1, ribulose-1,5-bisphosphate carboxylase
small-subunit gene; SAAT, sonication-assisted Agrobacterium transformation; TSWV, Tomato spotted wilt virus; UEP1, ubiquitin extension protein 1

gene; 5'UTR, 5'-untranslated region.
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Many agronomically important and commercially
attractive traits are impossible to be introduced by
conventional breeding or artificial mutation breeding
because utilizable gene resources and modified traits
are limited. Recently, advances in biotechnology
have made possible the addition of new traits that are
unachievable via conventional or mutation breeding
(Shinoyama et al. 2006). After the first report on the
susceptibility of chrysanthemum plants to Agrobacterium
(Miller 1975), many researchers have tried to introduce
useful agronomical traits into chrysanthemums via
Agrobacterium-mediated transformation.

Here, we briefly review advances in the Agrobacterium-
mediated transformation of chrysanthemums by
discussing their problems and solutions and then
describing our improved transformation system with
examples of the introduction of agronomically important
traits into chrysanthemums.

1. Genetic transformation systems

1.1. Biolistic-mediated genetic transformation
Several methods for gene transfer are applicable to the
chrysanthemum. Biolistic-mediated transformation,
which uses particle bombardment to deliver exogenous
genetic material (Hosokawa et al. 1998; Teixeira da
Silva and Fukai 2002a, 2002b; Yepes et al. 1995, 1999),
has been applied in many plant species to overcome
the problem of strain specificity that limits the use
of Agrobacterium transformation. However, in the
chrysanthemum, it is often difficult to directly induce
shoot or callus formation from the cells into which
foreign genes have been introduced via particle
bombardment (Hosokawa et al. 1998). There is also a
high level of cultivar specificity on the efliciency of plant
regeneration and transformation (Teixeira da Silva and
Fukai 2002a, 2002b; Yepes et al. 1995, 1999). Accordingly,
biolistic-mediated transformation is not frequently used
in the chrysanthemum.

1.2. Agrobacterium-mediated genetic
transformation

Once the susceptibility of chrysanthemums to
Agrobacterium tumefaciens was reported (De Cleene and
De Ley 1976; Hooykaas and Beijersbergen 1994; Miller
1975), the Agrobacterium-mediated transformation
of chrysanthemum was studied worldwide. However,
some barriers to the establishment of a chrysanthemum
transformation system have been reported: low
transformation efficiency (De Jong et al. 1994; Renou
et al. 1993; Urban et al. 1994), regeneration of chimeric
plants comprising both transgenic and non-transgenic
tissues (Benetka and Pavingerova 1995; Pavingerova et
al. 1994) and transgene inactivation, also known as gene
silencing (Takatsu et al. 2000).

1.2.1. Agrobacterium strains and their specificity to
chrysanthemum cultivars

Ledger et al. (1991) first tried to generate transgenic
chrysanthemum (Dendranthema indicum ‘Korean’) using
A. tumefaciens strain LBA4404, but the transformation
frequency was extremely low (1.7%). Renou et al.
(1993) achieved a higher transformation efliciency (5
to 40%) using A. tumefaciens EHA101. Shinoyama and
colleagues used two Agrobacterium strains, LBA4404 and
EHAI101, to transform the cultivar ‘Shuho no chikara’
and showed relatively high transformation efficiencies:
5.2% for LBA4404 (Shinoyama et al. 2002b) and 4.4%
(Shinoyama et al. 2002a) and 8.8% (Shinoyama et al.
2003) for EHA101. They also used two Agrobacterium
strains, EHA101 and EHA105, to transform the cultivar
‘Yamate shiro” and showed relatively high transformation
efficiencies: 21.7% for EHA101 (Shinoyama et al.
2002a) and 22.0% (Shinoyama et al. 2008) and
23.9% (Shinoyama et al. 2012b) for EHA105. Other
Agrobacterium strains, such as Ach5, AGLO, and those
isolated from the crown gall of chrysanthemums, have
successfully been used to obtain high transformation
frequencies (Bush and Pueppke 1991; Ogawa et al. 2000;
Vaudequin-Dransart et al. 1995) (Table 1).

The transformation efliciency has been reported to be
dependent not only on Agrobacterium strains but also
on the nature of chrysanthemum cultivars, including
their susceptibility to Agrobacterium infection and their
ability to regenerate plants in vitro (Aida et al. 2004;
Deroles et al. 2002; Horsch et al. 1985; Shinoyama et
al. 2002a; Teixeira da Silva 2004; Van Wordragen et al.
1991). Aida et al. (2004), Shinoyama et al. (2002a)
and Shinoyama and Mochizuki (2006) compared
transformation frequencies among several cultivars and
found high transformation frequency for some cultivars
(e.g., ‘Hiroshima beni’ [Aida et al. 2004; Shinoyama et
al. 2002a; Shinoyama and Mochizuki 2006] and ‘94-787
[Aida et al. 2004]).

De Jong et al. (1994) and Urban et al. (1994)
described the difference in transformation frequencies
of chrysanthemum using different Agrobacterium strains
and indicated that the AGLO and EHA105 strains showed
higher transformation frequencies than LBA4404. In
contrast, no significant difference in the transformation
frequency was recognized for four cultivars, ‘Shuho no
chikara’ (Shinoyama et al. 2002a, 2002b, 2003), ‘Yamate
shiro’ (Shinoyama et al. 2002a, 2008, 2012a, 2012b),
“Yamabiko’ and ‘New Summer Yellow™ (Takatsu et al.
2000), even if different Agrobacterium strains were used.
The discrepancy between the cultivar dependence and
independence of the chrysanthemum transformation
might be caused by the use of different transformation
methods and binary vectors. These results at least suggest
the importance of choosing the Agrobacterium strain(s)
that confer the highest transformation frequency on
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some chrysanthemum cultivars.

Agrobacterium rhizogenes causes hairy root syndrome
in infected plant tissues by transferring T-DNA from the
Ri plasmid into the plant genome (De Cleene and De Ley
1981). Genetic transformation mediated by A. rhizogenes
is used in many plant species because A. rhizogenes
strains are often more virulent than A. tumefaciens
(Van Wordragen et al. 1992a). In chrysanthemum, a
moderately higher transformation efficacy was observed
for A. rhizogenes (6.0%) than for A. tumefaciens (3.3%).
However, the rol genes of A. rhizogenes Ri T-DNA were
detected in only four of 38 transgenic chrysanthemum
plants (i.e., 10.5%), and none of them exhibited hairy
root syndrome (Tsuro et al. 2005). This result implies
that unidentified barriers to the transfer of Ri T-DNA
to chrysanthemum may exist. Because the difference
in the transformation frequencies of chrysanthemum
by A. rhizogenes and A. tumefaciens is not very large,
the advantages of disarmed A. tumefaciens strains have
overshadowed the usefulness of oncogenic A. rhizogenes
strains as reagents for chrysanthemum transformation.

1.2.2.  Explants for infection and its treatment

Successful transformation also depends on the source
and physiological condition of the explants to be infected
with Agrobacterium. Explants from leaves and stems have
been frequently used for Agrobacterium tumefaciens-
mediated transformation (Table 1). Most of those
explants are harvested from plants aseptically cultured
in vitro. In many cases, juvenile explants are used, such
as newly formed expanding leaves (Ledger et al. 1991).
Remarkably, De Jong et al. (1994, 1995) succeeded in the
transformation using pedicels that were removed from
the flowers of chrysanthemum plants that were non-
aseptically grown in greenhouses.

The timing of Agrobacterium infection is considered
an important factor for raising the infection efficiency,
resulting in increased plant transformation efficiency (De
Jong et al. 1993; Shinoyama et al. 2002a; Teixeira da Silva
and Fukai 2002a). Shinoyama et al. (1998) demonstrated
that the Agrobacterium culture in the logarithmic growth
phase confers high infectability on plants and that the
number of transformed cells increases when using the
Agrobacterium in this phase.

The addition of chemical compounds such as
acetosyringone, detergent and casamino acids to co-
cultivation medium can increase the Agrobacterium
infection frequency. De Jong et al. (1994) first succeeded
in increasing the Agrobacterium infectability of
chrysanthemum by adding 100 M acetosyringone to the
co-cultivation medium. Fukai et al. (1995) and Takatsu et
al. (1998, 2000) confirmed the effect of acetosyringone.
Shinoyama et al. (1998) reported that 50uM
acetosyringone is enough to increase the infectability.
When added to the infection solution, detergent, such as
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5% (v/v) polyoxyethylene sorbitan monolaurate (Tween
20%), increased the adhesion of Agrobacterium to explants
(Shinoyama et al. 1998). The infection frequency of
Agrobacterium in chrysanthemums was further increased
when 1% (w/v) casamino acids was added to the co-
cultivation medium (Shinoyama et al. 1998).

An alternative method to increase chrysanthemum
transformation frequency is sonication-assisted
Agrobacterium transformation (SAAT), which helps
Agrobacterium to seep deep inside the tissue and thus
infect more tissues and cells (Teixeira da Silva and Fukai
2002b). Sonication could destroy bristles (trichomes) on
the surface of the chrysanthemum plants, which inhibit
the adhesion of Agrobacterium (Teixeira da Silva and
Fukai 2002b).

Increasing the regenerative ability of plantlets
from explants is also an effective way to increase
transformation efficiency. Several combinations of plant
growth regulators, such as indole-3-acetic acid (IAA) and
6-benzylaminopurine (BAP) (Aida et al. 1992; De Jong
et al. 1995; Fukai et al. 1995; Ledger et al. 1991; Urban
et al. 1994), 1-naphthaleneacetic acid (NAA) and BAP
(Renou et al. 1993; Takatsu et al. 1998), and NAA, BAP
and Gibberellin A; (Shinoyama et al. 2002b) are reported
to be effective.

Because both Agrobacterium-mediated transformation
and shoot regeneration are promoted by wounding the
explants (De Jong et al. 1993), Shinoyama et al. (1998)
compared the difference in transformation frequencies
with the two leaf-cutting methods using scalpels or cork-
borers. More Agrobacterium-infected cells were obtained
from the segments cut with cork-borers than from those
cut with scalpels. The cut surfaces made by the cork-
borers are likely more convenient for Agrobacterium
infection.

1.2.3.  Selection markers

Because the neomycin phosphotransferase II gene
(nptIl) was first applied as a selectable marker gene in
the transformation of florist chrysanthemum (Lemieux
et al. 1990), kanamycin has been the main selection
agent of transformed cells and tissues (Table 1). Florist
chrysanthemums are sensitive to kanamycin, and the
application of a high concentration of kanamycin in the
selection medium inhibits shoot formation (De Jong
et al. 1994). Other antibiotics, such as hygromycin,
paromomycin and geneticin, have also been successfully
used for the selection of transgenic chrysanthemums
(Aida et al. 2004; Renou et al. 1993; Sherman et al.
1998b; Shinoyama et al. 1998). Renou et al. (1993) used
hygromycin for selection and showed the potential to
avoid chimeras. Paromomycin is considered less toxic to
cells than kanamycin, and its constant selection pressure
during plant regeneration and rooting could reduce
the chance of non-transgenic escapes (Aida et al. 2004;
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Studies on Agrobacterium tumefaciens-mediated transformation systems of chrysanthemums using GUS gene.

Table 1.

Localization of GUS

Transformation

Antibiotics

Agrobacterium

Reference

GUS activity (pmol
4-MU mg ! protein

Transgene(s)

Promoter(s)

Ab for selection

Segment(s)

gene expression

frequency (%)

(Ab)

strain(s)

min~')

nptll, HPT, GUS n.s. Cell blue spot + Kudo et al. 2002

nos, CaMV 35S

TI

Leaf

LBA4404,

EHA101, AGLO,

C58C1
LBA4404

nptIl, HPT, GUS 0-23.9 Shoot, root, plant  histochemical assay +  Shinoyama et al.

nos, CaMV 35S

CF

Leaf

2002a

histochemical assay +  Teixeira da Silva and

Plant

0.0-25.0

nptll, GUS

CaMV 358 with

CF

Stem

LBA4404, AGLO

Fukai 2002a, b
Outchkourov et al.

enhancer
CaMV 358, rbcl

82,000 (rbcl; leaves)

Plant

nptIl, GUS

CE VA

Stem

AGLO

2003
Aida et al. 2004

Aida et al. 2005
Aida et al. 2008b

58,766 (cab; leaves)

Plant
Plant
n.s.

0.5-6.5
0.5-6.8

nptll, GUS

CaMV 358, cab

EFla

CA
CA
CA

Leaf

EHA105, AGLO

EHA105

14,000 (Leaves)

nptll, GUS

Leaf

98,500

n.s.

nptll, GUS

CaMV 358 with

Leaf

EHA105

enhancer

CA: carbenicillin, CF: cefotaxime (sodium salt), VA: vancomycin, TI: ticarcillin, K: kanamycin, H: hygromycin, B: Basta, P: paromomycin, G: geneticin (G418), MARs: matrix-associated regions. n.s.: not

specified.
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Sherman et al. 1998b). Takatsu et al. (1998) described
that the susceptibility against antibiotics depends on
cultivars by comparing three antibiotics, kanamycin,
hygromycin and geneticin (G418). Shinoyama and
Mochizuki (2006) showed a high selection ability of
the non-mutated type nptIl gene, which was artificially
synthesized by PCR, against 20 to 30mgl™" of G418.
Yenofsky et al. (1990) warned that the chimeric nptIl
gene, inserted in some of the commonly used binary
vectors such as pBIN19 and pBI121, has an undesired
point mutation, reducing the resistance of the
transformants against kanamycin.

Recently, marker-free transgenic chrysanthemums
have been generated using twin T-DNA binary vectors
(Sun et al. 2009). Because these transgenic plants cannot
be re-transformed using the same selectable marker
gene, technology that can eliminate the selectable marker
gene needs to be developed. This will be a very useful
approach toward producing marker-free transgenic
chrysanthemums and to relieve public or scientific
concerns regarding the dispersal of antibiotic- and
herbicide-resistant genes into the environment.

1.2.4.  Eliminating chimerism

Chimerism, the regeneration of chimeric plants
comprising both transgenic and non-transgenic cells, is
one of the most serious problems in establishing a stable
transformation system in chrysanthemum (Benetka
and Pavingerovd 1995; Pavingerova et al. 1994). To
eliminate the chimerism, a method that allows for
the regeneration of plantlets only from transformed
cells must be used. Shinoyama et al. (2002a) compared
the transformation efficiencies and chimerism of two
transformation procedures: a regeneration system
through callus-induction (CI) and a regeneration system
with direct shoot-induction (SI). In the CI regeneration
system, Agrobacterium infection and callus induction
are simultaneously performed on CI medium (MS
medium+1.0mgl™! NAA, 0.5mgl™" BAP) containing
250 or 100mgl™" cefotaxime sodium salt and 20mg1™"
G418, and plantlets are regenerated from the calli on
regeneration medium (MS medium+0.5mgl™' BAP,
0.2mgl™" GA;) containing 100 mgl™" cefotaxime sodium
salt. In the SI regeneration system, shoots are directly
regenerated from leaf discs infected with Agrobacterium
on SI medium (MS medium+2.0mgl™' NAA, 0.5mgl™"
BAP) containing 250 or 100 mgl™* cefotaxime sodium
salt and 20mgl™' G418. More plantlets were regenerated
from the SI regeneration system than from the CI
regeneration system. Fewer transformed plantlets were
obtained using the SI regeneration system than using
the CI regeneration system. All transformed plantlets
regenerated from the CI regeneration system were non-
chimeric, whereas 80% of the transformed plantlets
regenerated from the SI regeneration system were
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chimeric. These results indicate that transformation
using the CI regeneration system can eliminate non-
transformed cells and prevent chimerism.

1.2.5. Promoters and translational enhancer

When the p-glucuronidase (GUS) reporter gene was
driven by the cauliflower mosaic virus 35S RNA (CaMV
35S) promoter, relatively low GUS activities in CaMV
35S8::GUS-transgenic chrysanthemums have been
reported (Urban et al. 1994). When the GUS gene was
under the control of a CaMV 35S:Intron, which often
confers higher GUS activity in some plants (Ohta et
al., 1990), the highest GUS activity in the transgenic
chrysanthemum leaves was 18,100 pmol 4-MU mg™!
protein min~' (Aida et al. 2004).

Alternatively, several efficient promoters have
been developed for high transgene expression in
chrysanthemums using GUS as a reporter (see Table 1).
Annadana et al. described two such high-level expression
promoters: the promoter from the potato Lhca3.St.1 gene
encoding apoprotein 2 of the light-harvesting complex of
photosystem I from Solanum tuberosum (Annadana et al.
2001) and the promoter from the chrysanthemum UEPI
gene encoding ubiquitin extension protein 1 (Annadana
et al. 2002a). A promoter-terminator cassette of the
chrysanthemum rbcS1 gene (encoding the ribulose-1,5-
bisphosphate carboxylase small subunit) conferred high
GUS activity to the transgenic leaves (Outchkourov et al.
2003). Aida et al. (2004, 2005) reported other promoters
that induce high GUS expression: the promoter from
the chrysanthemum cab gene encoding chlorophyll-
a/b-binding protein and the promoter from the tobacco
EFla gene encoding elongation factor la. The EFla
gene promoter was used to delay leaf senescence with a
mutated ethylene receptor gene (Narumi et al. 2005) and
to modify flower shape with a MADS-box gene (Aida et
al. 2008b).

We cloned a novel bi-directional promoter fragment
(465bp) for the mannopine synthase-1' and -2 (masl’-
2') genes from an Agrobacterium tumefaciens strain
isolated from crown galls formed on chrysanthemum
plants (Shinoyama et al. unpublished). The bi-
directional promoters could induce the expression of
genes fused at both ends of the promoters, which was
first demonstrated in transgenic chrysanthemums with
insect resistance by Shinoyama and Mochizuki (2006).
We have also been successful in producing transgenic
chrysanthemums in which the mas bi-directional
promoters drive both insect resistance and sterility
(Shinoyama et al. 2012b) and in which the small
promoter cassette drives both antibiotic resistance and
sterility (Shinoyama et al. 2012a).

Inducible promoters would be necessary to efficiently
cope with the environmental stresses. Recently, such
promoters, including that from the tomato ACC oxidase

(LEACOI) gene (Khodakovskaya et al. 2009) and the
stress-inducible rd29A promoter (Ma et al. 2010), were
used for transgene expression in chrysanthemum (Table
1).

For the efficient transgene expression, appropriate
levels of protein production are required. Although
a promoter with high transcriptional activity results in
a high-level accumulation of transgene mRNA, such
accumulation tends to induce post-transcriptional gene
silencing (Vaucheret et al. 1998). The 5'-untranslated
region (5'UTR) of the tobacco alcohol dehydrogenase
gene (NtADH-5'UTR) (Satoh et al. 2004) has been
reported to be an efficient translational enhancer
in chrysanthemums (Aida et al. 2008a). Transgene
silencing has occasionally occurred in chrysanthemum
transformants (Takatsu et al. 2000). The NtADH-5'UTR
translational enhancer may have the potential to solve
transgene silencing in transgenic chrysanthemum
through its high transgene-expression mechanism.

1.2.6. Agrobacterium-mediated transformation protocol

We established an efficient Agrobacterium-mediated
transformation protocol using the chrysanthemum
cultivar ‘Shuho no chikara’ (Shinoyama et al. 1998, Table
3). Initially, aseptic plant materials were produced by
meristem culture. Their shoot tips were surface-sterilized
briefly by dipping in 70% ethanol and then 1% sodium
hypochlorite for 15 min. They were rinsed with sterilized
distilled water three times. Then, they were cultivated in
vitro on basal MS medium (Murashige and Skoog 1962)
containing 3% sucrose and 0.3% Gellan Gum (Wako
Pure Chemical Industries, Osaka, Japan) adjusted to pH
5.8 prior to autoclaving at 120°C for 15min. They were
incubated at 25°C under a 16-h photoperiod using cool-
white fluorescent lamps [photosynthetic photon flux
(PPF, 400-700nm) of 60 umolm 2s™'] or at 25°C in
darkness.

We routinely apply the CI system because it efficiently
inhibits chimerism in the transformants (Shinoyama
et al. 2002a). We use A. tumefaciens strains LBA4404
(Ooms et al. 1982), EHA101 (Hood et al. 1986) or
EHA105 (Hood et al. 1993) for conformity with cultivars
or vectors. Individual frozen stocks of Agrobacterium
strains are pre-cultured on AB minimal medium plates
(Clark and Maaloe 1967) containing 50 mgl~' kanamycin
and 50 mgl™" rifampicin at 30°C for three days in an
incubator. The antibiotics should be changed depending
on the antibiotic resistance genes in the binary vectors
and Agrobacterium strains. They are then cultured in
10ml of liquid YEP medium (5g1™* NaCl, 10g1™", yeast
extract, 10g1™" peptone, pH 7.2) in an incubator shaker
at 200 rpm for 5h at 28°C.

Leaf discs are cut from newly formed expanding
leaves (lcm?) by a cork-borer (¢=6mm) and
immersed for 15min at room temperature in MS liquid
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medium containing 5% (v/v) Tween 20° and 50 uM
acetosyringone with Agrobacterium (final ODg,,=0.1).
After immersion, the leaf discs are placed onto co-
cultivation CI medium (MS medium+1.0mgl™' NAA,
0.5mgl™! BAP) (containing 1.0gl™! casamino acids)
and co-cultivated for three days at 25°C in darkness.
The leaf discs are transferred to bacteria elimination CI
medium (containing 250 mgl ™! cefotaxime sodium salt)
for the elimination of Agrobacterium and, after 10 days,
are transferred to the selection CI medium I (containing
250mgl™! cefotaxime sodium salt and 20 mgl™' G418)
for the selection of putatively transformed calli. After
three subcultures on the selection CI medium I, the
leaf discs are transferred to selection CI medium II
(containing 100 mgl™!' cefotaxime sodium salt and
20mgl~' G418) in which the concentration of cefotaxime
sodium salt is reduced to promote callus proliferation.
In the CI system, the leaf discs forming green calli are
transferred to plantlet regeneration medium (MS
medium+0.5mgl™" BAP, 0.2mgl™! gibberellin A,
(GA,) and 100mgl™! cefotaxime sodium salt) to obtain
putatively transformed plantlets. The regenerated
plantlets are transferred to rooting medium (MS medium
without plant growth regulators), acclimatized under
the same culture conditions in vermiculite and then
transferred to a closed greenhouse at 25°C.

This CI regeneration system is applicable to other
cultivars of chrysanthemum with appropriate changes in
the concentration of G418 (between 20 and 30 mgl™?),
depending on the cultivar (Shinoyama et al. 2002a).

2. Recent examples of agronomically
practical transgenic chrysanthemums

At present, several agronomic traits have been
introduced to chrysanthemums using GM technology
(Table 2). Several reports, however, seem to describe
unclear results because only a small number of
transgenic lines were tested or because the transgenes
were expressed at low levels. Therefore, whether the new
transgene-based agronomic traits have practical potential
is not obvious. To obtain agronomically useful transgenic
plants, generating a great number of independent
transgenic lines and selecting lines that stably express the
transgenes at appropriate levels would be necessary. Here,
we show recent examples of agronomically practical
transgenic chrysanthemums with high and stable
expression of transgenes.

One example is insect-resistant chrysanthemums.
Insect damage brings yield loss, and thus, expensive
pesticides are required in chrysanthemum cultivation
to control insects. In particular, lepidopteran insects
cause heavy damage and are responsible for a substantial
proportion of insect loss. To protect chrysanthemums
from the damage, Shinoyama et al. (2003) introduced

H. Shinoyama et al.

the mcbt gene, which was a modified crylAb sequence
(encoding Bacillus thuringiensis insecticidal protein
CrylAb) that maintained the amino acid sequences;
eliminated AT-rich sequences such as ATTTA, which
destabilize mRNA in eukaryotes (Murray et al. 1991;
Perlak et al. 1991; Van Aarssen et al. 1995); and increased
the preferred codon of the Compositae family. A total
of 317 transgenic chrysanthemum lines were obtained,
and of 20 randomly sampled transgenic lines, 11 highly
expressed the CrylAb protein. In addition, all tobacco
budworm larvae (Helicoverpa armigera) that fed on
the leaves were dead during the first instar, resulting
in a high insecticidal effect against lepidopteran insect
larvae. Shinoyama and Mochizuki (2006) obtained
1,586 transgenic chrysanthemum lines in another 5
chrysanthemum cultivars and successfully induced 10
lines of 20 randomly sampled transgenic lines to confer
a high lepidopteran insect resistance using the same
protocol.

The second example of practical chrysanthemum
transformation is flower color modification.
Chrysanthemums contain anthocyanins and
carotenoids as pigments in their ray florets. The pink
to violet flower color is controlled by the existence
of anthocyanins alone, the cream to yellow color is
controlled by carotenoids alone, and the blond to
orange color is directed by both anthocyanins and
carotenoids. White flowers lack both anthocyanins
and carotenoids. Ohmiya et al. (2006) demonstrated
white petals could be converted into yellow petals
by suppressing the expression of carotenoid cleavage
dioxygenase (CmCCD4a) using RNAi technology.
Although carotenoids are initially synthesized in both
yellow and white flowers, carotenoids are degraded by
the carotenoid cleavage dioxygenase (CCD) protein in
white flowers. This strategy was used to produce “Yellow
Jimba” from ‘Jimba’, which is the most popular white-
flower chrysanthemum cultivar in Japan (Ohmiya et al.
2009; Fig. 1). They first obtained 61 transformed plants
carrying a CmCCD4a RNAIi construct, but the petals of
the transformed plants were very pale yellow. They then
chose the most yellow transformed plant to perform
the second transformation with another CmCCD4a
RNAi construct bearing different DNA sequences.
They finally obtained 50 double-transformed plants,
and more than half showed yellow-colored petals.
Recently, expression of the flavonoid 3',5'-hydroxylase
gene in chrysanthemums generated delphinidin-based
anthocyanins, which resulted in a flower color shift
toward blue (Noda et al., in preparation).

3. Prevention of transgene flow for
practical use of GM chrysanthemums

Transgenic crops were first cultured commercially in
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Table 3. Transformation time table using the callus induction (CI) system.
Day Procedure Key points
0 [Inoculation with Agrobacterium]

Culture of Agrobacterium in liquid YEP liquid medium for 5 h.

Prepare leaf discs with cork-borer from the aseptic plants.

Immerse the leaf discs into MS liquid medium containing

Agrobacterium for 15 min.

Plant materials are produced by meristem culture. The newly
formed expanding leaves are used for leaf discs.

Coculture the leaf discs with Agrobacterium on cocultivation

callus induction (CI) medium.
3 [Elimination of Agrobacterium after cocultivation]
Transfer the discs to bacteria elimination CI medium.

Calli are induced on the edge of leaf discs.

Shoots are formed on the calli.

10 [Selection of transformed cells]
Transfer to selection CI medium.

24 Transfer to fresh selection CI medium 1.

38 Transfer to fresh selection CI medium 1.

52 Transfer to fresh selection CI medium II.

66 Transfer to fresh selection CI medium II.

80 [Regeneration of plantlet from the transformed calli]
Transfer to plant regeneration medium.

101 Transfer to plant regeneration medium.

122 Transfer to plant regeneration medium.
Collect elongated shoots (first collection) and trasfer to rooting

medium.
143 Transfer to plant regeneration medium.

Collect elongated shoots (second collection) and trasfer to

rooting medium.
143-180 [Acclimatizing the transgenic plants]
Transfer rooted plants to a closed greenhouse.

200 onwards  [Plants available for testing]

The shoots are rooted.

In some cultivars, the low-temperature treatment (10°C, 40
days) must be performed.

Medium constructions. CI medium: MS+1.0mgl™! NAA, 0.5mgl™! BA, 3% Sucrose (Suc.), 0.3% Gellan Gum (Gel.). Cocultivation CI medium:
CI medium+1.0gl™! Casamino acids. Bacteria elimination CI medium: CI medium+250 mgl~' Cefotaxine sodium salt (Cf.). Selection CI medium
I: CI medium+250mgl~' Cf,, 20mgl™" G418. Selection CI medium II: CI medium+100mgl™' Cf,, 20mgl™" G418. Plant regeneration medium:
MS+0.5mgl ! BA, 0.2mgl ™" GA;, 100mgl™" Cf,, 3% Suc., 0.4% Gel. Rooting medium: MS+100mgl ™" Cf,, 3% Suc., 0.4% Gel.

Non-transgenic
chrysanthemum ‘Jimba’

Transgenic chrysanthemum
“Yellow Jimba”

Figure 1. The suppression of the carotenoid cleavage dioxygenase gene
converted white petals to yellow. Scale bars indicate 50 mm.

1996, and since then, the number of planted transgenic
crops has been increasing worldwide. These increases
are due to the many benefits of culturing transgenic
crops, such as reduced production costs and farm labor.
Recently, concerns have been raised about their potential
harmful effects on biodiversity and the environment
because transgenic crops are generated without ordinary
crossings or intraspecies gene flow (Kamada 2001). Thus,
risk assessment has been required for transgenic crops

before their field cultivation.

Items on the risk assessment of transgenic crops are
well documented in the international templates of the
Cartagena Protocol on Biosafety (Article 15 and Annex
II). The actual assessment methods and procedures,
however, vary depending on the types of genes
introduced, the plant species, and the environment where
the transgenic crops will be released.

Florist chrysanthemums are predominantly self-
incompatible plants and are easily cross-pollinated by
certain insects, such as bees (Nakata and Takeuchi 1998).
Many wild chrysanthemum relatives in the Compositae
family are cross-compatible with chrysanthemum
cultivars and are widely distributed throughout
Japan. F, plants from natural crossbreeding between
chrysanthemum cultivars and their wild relatives have
been found in several relatively wild habitats (Taniguchi
et al. 2009). As one of the risks of GM chrysanthemums,
the pollen of transgenic chrysanthemums could be
carried by insect pollinators and crossed with wild
relatives, resulting in the production of F, plants with
the transgene in relatively wild habitats. These F, plants
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Table 4. Percentage of mature pollens in GM and non-GM chrysanthemums (modified from Shinoyama et al. 2012a and 2012b)
Line The CmETRI1/H69A gene The CmDMCI-RNAi segements and the modified crylAb gene
Temp. non-GM
©C) ETRI1 ETR191 ETR324 DB194 DB260 DB315 DB395 DB569 DB576 DB613
35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 62.0 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*
20 81.5 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*
15 50.4 10.3%* 12.7%% 10.9%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*
10 37.8 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%* 0.0%*

ETR: transgenic lins bearing the CmETRI1/H69A gene, DB: transgenic lines bearing the CmDMCI-RNAi segments and the modified crylAb gene.
Data are the percentages of no. of mature pollens/no. of total pollens per anther sac. Mature and immature pollens were differentially stained by
Alexander staining (Alexander 1969). ** Significant at 1% level by Student  test.

Non-transgenic chrysanthemum Transgenic chrysanthemum
“Yamate-shiro’

Figure 2. The pollen induction of tubular flowers of non-transgenic
and transgenic chrysanthemum plants carrying both a modified crylAb
gene and CmDMCI-RNAi segments. Scale bars indicate 1 mm.

are thought to have various direct and indirect effects on
biodiversity. For example, the insect-resistant plants may
kill rare insect species that feed only on the wild plants.
Alternatively, because the plants are not damaged by
insects, they may grow thick and deprive the habitat of
other wild plants.

To eliminate the risks of transgene flow, Shinoyama
et al. (2012a) tried to create male-sterile transgenic
chrysanthemums using the modified melon ethylene
receptor gene, CmETRI/H69A. The overexpression of the
CmETRI/H69A gene delayed the tapetum degradation
of the anther sac, resulting in a reduction of mature
pollen grains in some of the transgenic lines. In 15 of
the 335 CmETRI/H69A-overexpression chrysanthemum
lines, male and female fertility was significantly lower
than in non-GM chrysanthemum. In particular, three
of these lines produced no mature pollen grains in the
temperature ranging 10 to 35°C, with the exception
that 10% pollen grains in an anther sac were matured
at 15°C (Table 4). Moreover, the female fertility of
these three lines was decreased to half that of non-GM
chrysanthemums. Overexpression of CmETRI/H69A
gene most likely delays the maturation of the ovule.

Then, to produce transgenic chrysanthemums with
both insect resistance and temperature-independent,
complete male-sterility, Shinoyama et al. (2012b)

Non-transgenic chrysanthemum  Transgenic chrysanthemum

‘Shuho-no-chikara’

Figure 3. Bioassay of insects feeding on non-transgenic and
transgenic chrysanthemum plants carrying both a modified crylIAb
gene and CmDMCI-RNAi segments using Helicoverpa armigera first
instar larvae. Scale bars indicate 10 mm.

transformed the mcbt gene and a 582-bp fragment of
chrysanthemum meiosis-specific recombinase gene,
CmDMCI, as an RNAi trigger segment (Fig. 2). We used
the novel bi-directional mas promoter (Shinoyama et al.
unpublished) to regulate the expression of the mcbt gene
and the CmDMCI-RNAi segment located at both ends of
the promoters. Transgenic lines showed high resistance
for lepidopteran pest insects of chrysanthemums, such
as the tobacco budworm (H. armigera), the cotton
cutworm (Spodoptera litura) and the beet armyworm
(S. exigua) (Fig. 3). Complete temperature-independent
male sterility was achieved in seven of 682 transgenic
lines (Table 4, Fig. 2). These seven lines produced no
mature pollen grains from 10 to 35°C, which is the
temperature range for chrysanthemum flowering. In the
cross between GM lines and their wild relatives, a few
F, seeds on the flowers of the GM lines, corresponding
to 1/10 to 1/20 of non-GM chrysanthemum plants, were
obtained (pollen parents were the wild relatives, and seed
parents were the GM lines); no F, seeds were obtained
on the flowers of the wild relatives (pollen parents were
the GM lines, and seed parents were the wild relatives).
Thus, these results suggested that these lines were
completely male sterile and that their female fertility
was partially retained. The F, plants obtained from the
seeds of GM flowers showed male sterility, very weak
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female fertility and strong insect resistance, indicating
the stable inheritance of the transgenic phenotypes in the
progeny. The CmDMCI-RNAi segment caused complete
male sterility with incomplete female sterility. Because
northern blot analysis showed the mas bi-directional
promoters directed a lower transcription level of the GUS
gene in ovules compared with leaves, stems, roots and
pollens (Shinoyama et al. unpublished), the insufficient
expression of the CmDMCI-RNAIi segment in ovules
might cause incomplete female sterility. Identifying more
appropriate promoter(s) is desirable to realize high-
level expression of the CmDMCI-RNAi segment in both
pollen and ovules and to create completely male- and
female-sterile transgenic chrysanthemums.

As a new method to suppress the function(s) of the
transcription factor(s) of interest, Chimeric REpressor
gene-Silencing Technology (CRES-T) has been
successfully applied in chrysanthemums (Narumi et al.
2011). It would be very useful to silence the expression of
a set of downstream genes under the control of the target
transcription factor(s).

Advances in transgenic technology could reduce
production costs and improve yield, cut-flower quality
and commercial value. In the future, superior transgenic
chrysanthemums would appear on the markets that
possess agronomic traits with environmental safety.
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