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Abstract �ioacidolysis is a method to detect the β-O-4 substructures of lignin, and has been employed as a diagnostic 
test for the presence of lignin. However, the conventional thioacidolysis protocol is low-throughput and is a bottleneck in 
the characterization of lignins in a large number of samples such as transgenic lines. Recently, a rapid analysis protocol for 
thioacidolysis was reported. In this study, we modi�ed mainly the work-up process. Our microscale protocol showed higher 
yields of thioacidolysis products than the conventional protocol.
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Lignin, which is a major component of the secondary cell 
wall of vascular plants, is a complex phenylpropanoid 
polymer and is biosynthesized via the cinnamate/
monolignol pathway (Umezawa 2010). Lignins are 
generally classified into three major groups: guaiacyl 
(4-hydroxy-3-methoxyphenyl), syringyl (3,5-dimethoxy-
4-hydroxyphenyl), and p-hydroxyphenyl lignins. 
Gymnosperm lignin is mainly composed of guaiacyl 
unit, while angiosperm lignin is composed of guaiacyl 
and syringyl units. Grass lignins comprise guaiacyl, 
syringyl, and p-hydroxyphenyl units. �ese lignins �ll 
the spaces between cell wall polysaccharides and confer 
mechanical strength and imperviousness to the cell 
wall (Vanholme et al. 2010), while these characteristics 
of lignins are obstacles for chemical pulping, forage 
digestion and biofuel production (Vanholme et al. 2008; 
Wang et al. 2011).

During the last two decades, there has been 
intense interest in the metabolic engineering of lignin 
biosynthesis to develop plant materials, which suit the 
purpose, as well as the elucidation of the functions of 
the genes involved in lignin biosynthesis (Chiang 2006; 
Vanholme et al. 2008, 2010; Weng et al. 2008). In each 
transgenic study, a large number of transgenic plant 
lines are produced. However, conventional methods for 
lignin analysis are time-consuming and bottlenecks in 
characterizing lignins of a large number of transgenic 
plants. Hence, the establishment of high-throughput 

analytical methods was highly required.
To characterize lignins, their quantitation and 

structural analyses are necessary. Recently, we reported 
a high-throughput thioglycolic acid protocol for 
measurement of lignin content (Suzuki et al. 2009). We 
also developed a high-throughput protocol for the basic 
analysis of lignin aromatic components, the alkaline 
nitrobenzene oxidation method (Yamamura et al. 2010, 
2011). In addition, high-throughput protocols are 
required for the methods providing degradation products 
derived specifically from β-O-4 lignin substructures, 
the most characteristic ones in lignin. The methods, 
which have been viewed as a diagnostic test for the 
presence of lignins, include acidolysis (Lundquist 1992), 
thioacidolysis (Lapierre and Monties 1986; Rolando et 
al. 1992), DFRC (Degradation Followed by Reductive 
Cleavage) (Lu and Ralph 1997a,b), and TIZ (Tosylation, 
Iodination, and Zinc-metal treatment) (Katahira et al. 
2003) methods.

Among them thioacidolysis is being used most 
frequently. The method employs an acid-catalyzed 
reaction, which results in the depolymerization of 
lignins. The detection of phenyltrithioethylpropane 
compounds (Figure 1) from the thioacidolysis of plant 
cell wall material provides unambiguous evidence for 
the occurrence of β-O-4 substructures. Recently, a rapid 
protocol for the method was reported by Robinson and 
Mans�eld (2009). �e protocol was improved in terms of 
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volume scaling, processing vessel, and sample handling, 
resulting in increase of throughput. Here, we report 
another microscale protocol of thioacidolysis, mainly 
improved in the work-up process.

In this study, Oryza sativa cv. Nipponbare leaf 
sheaths and Acacia mangium heartwood were used 
as plant materials. A. mangium heartwood meal was 
a gi� from Koshii Wood Industry Co., Ltd. O. sativa 
was grown as follows. Four-week-old seedlings, which 
were hydroponically-cultivated, were transplanted 
into plastic pots (1/10000a Wagner’s pot ICW-2; 
ICM, Ibaraki, Japan) containing 1.0 kg of soil (Bonsol 
No.2 : vermiculite= 2 : 1, v/v) with nitrogen-phosphorus-
potassium fertilizer (8%, w/w), and were grown in a 
greenhouse under natural light conditions. A�er grain 
ripening, the plants were harvested and air-dried for 1 
month. Leaf sheaths were chopped with scissors into ca. 
5 mm long pieces, and were stored in a dry box at room 
temperature (r.t.) until use.

The sample was pulverized by a TissueLyser with 
stainless steel grinding jars with balls (Qiagen GmbH, 
Hilden, Germany) for 3 min at 25 Hz at r.t. �e powder 
obtained was extracted twenty times with methanol 
at 60°C. �en the powders were further extracted �ve 
times with hexane at r.t., and �ve times with distilled 
water at 60°C, and then freeze dried. �e freeze-dried 

powder thus obtained, which is referred to as the 
extract-free sample, was subjected to thioacidolysis by 
both conventional (Matsui et al. 1994) and microscale 
protocols (Table 1).

�e conventional protocol (Matsui et al. 1994) was 
carried out as follows. Briefly, 10 mg of the extract-
free sample was placed into a 23-ml glass test tube 
(catalog number 71-063-012, Asahi Glass Co., Ltd., 
Kanagawa, Japan). Three milliliters of dioxane/
ethanethiol (9 : 1, v/v) containing 92 mM BF3 etherate 
(referred to as thioacidolysis solution) and 12 µl of 
docosane (10 mg ml−1 in methanol, internal standard) 
were added to the tube, and the tube was tightly screw-
capped. �e reaction mixture in the tube was heated 
in an oil bath at 100°C for 4 h, then cooled on ice. �e 
reaction was stopped by adding 5 ml of 0.4 N NaHCO3. 
Next, the solution was adjusted to pH 3–4 by adding 
6 N HCl and extracted three times with diethyl ether. 
�e organic layer was washed with brine, dried over 
anhydrous Na2SO4, and concentrated in vacuo. Ten 
microliters of the solution was dried, and the resulting 
residue was dissolved in N,O-bis(trimethylsilyl)-
acetamide (BSA) (8 µl). After standing at 60°C for 
45 min, an aliquot (0.8 µl) of the solution was subjected 
to gas chromatography-mass spectrometry (GC-MS) 
analysis as previously reported (Nakatsubo et al. 2008) 
using a Shimadzu QP-5050A GC-MS system (Shimadzu 
Co., Ltd., Kyoto, Japan) with the following condition: 
Shimadzu HiCap CBP10-M25-025 column (25 m× 
0.22 mm); carrier gas, helium; injection temperature, 
230°C; oven temperature, 40°C at t=0 to 2 min, then to 
230°C at 40°C min−1; ionization, electron-impact mode 
(70 eV).

�e microscale protocol was carried out by employing 
disposable 1.5-ml microcentrifuge tubes, a vortex, and a 
mini centrifuge for the extraction process as follows. Five 
milligrams of the extract-free sample was placed into a 
1-ml glass tube with a screw cap [Mighty vial (No. 03), Figure 1.　�ioacidolysis products.

Table 1.　A comparison of the conventional and microscale thioacidolysis protocols.

Conventional protocol 
(Matsui et al. 1994)

Microscale protocol 
(present study)

Robinson’s protocol 
(Robinson and Mans�eld 2009)

Reaction
Vessel 23-ml glass tube with the screw 

cap
1-ml glass tube with the screw cap 5-ml glass tube with the screw cap

Amount of sample 10 mg 5 mg 10 mg
Device and condition Oil bath (100°C, 4 h) Heat block (100°C, 4 h) Heat block (100°C, 4 h)
Internal standard Docosane (120 µg) Docosane (60 µg) Docosane (120 µg)

Work up Extraction with diethyl ether three 
times using a separatory funnel

Extraction with diethyl ether 
three times using 1.5-ml 
microcentrifuge tube (or 
1-ml glass tube), vortex and 
mini-centrifuge

Extraction with the mixture of 
H2O–CH2Cl2 (2 : 1, v/v) once 
using vortex

Solvent (about 30 ml) evaporation 
with a rotary evaporator

Solvent (about 0.1 ml) evaporation 
with a centrifugal concentrator

Solvent (about 1.5 ml) evaporation 
with a centrifugal concentrator

�roughput/8 h 4–6 samples At least 40 samples 50 samples
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catalog number 0102-01, Maruemu Co., Osaka, Japan]. 
�e thioacidolysis solution (0.9 ml) and 6 µl of docosane 
(10 mg ml−1 in methanol) were added to the tube, and 
the reaction mixture in the tube was heated in a heat 
block (Dry Thermo Unit DTU-Neo, catalog number 
0063286-000; Aluminum block B-1120A, catalog number 
0063293-000; Taitec Co., Saitama, Japan) at 100°C for 
4 h. �en, the tube was cooled on ice. Two hundred 
microliters of the reaction mixture was transferred 
to a 1.5-ml polypropylene microcentrifuge tube with 
low DNA adsorptivity (1.5-ml DNA LoBind tube, 
catalog number 022431021, Eppendorf AG, Hamburg, 
Germany). �e reaction was stopped by adding 100 µl of 
1 N NaHCO3. �en the solution was adjusted to pH 3–4 
by adding 1 N HCl. To the solution 250 µl of diethyl ether 
was added, and the tube was vortexed and centrifuged 
in a mini centrifuge. �en, the extraction was repeated 
twice. �e organic layer was washed with brine and dried 
over anhydrous Na2SO4. One hundred microliters of the 
solution was dried under high vacuum, and the residue 
was analyzed by GC-MS as described above.

In separate experiments, work-up of the microscale 
protocol was carried out exactly as described above but 
with the following tubes: polypropylene microcentrifuge 
tube with low protein adsorptivities (1.5-ml Protein 
LoBind tube, catalog number 022431081, Eppendorf AG, 
Hamburg, Germany), polypropylene microcentrifuge 
tube (1.5-ml Microtube, catalog number 131-415C, 
WATSON Co., Ltd., Tokyo, Japan), and glass tube (1-ml 
microtube No. 1, catalog number 0407-02, Maruemu 
Co., Osaka, Japan). In addition, the polypropylene 
microcentrifuge tubes (WATSON Co., Ltd.) and the 
glass tubes were also used a�er siliconization as follows: 
beakers containing the tubes and Sigmacote (catalog 
number SL2-25, Sigma-Aldrich Corp., St. Louis, MO, 
USA), respectively, were placed in a desiccator. The 
beakers were kept in vacuo in the desiccator for 2 h at r.t. 
�en, the tubes were taken out of the beaker and kept 
in a plastic bag until use. For comparison, the extract-
free samples were also analyzed exactly according to 
the protocol of Robinson and Mans�eld (2009), and the 
reaction protucts were analyzed by GC-MS as described 
above.

�e GC-MS analysis of the products obtained from 
the leaf sheaths of O. sativa by the conventional and our 
microscale protocols showed the presence of erythro 
and threo diastereomers of p-hydroxyphenyl- (tR=16.97 
and 17.22 min; m/z 388 [M]+, 265, 239, 205; Figure 2A, 
2Ba), guaiacyl- (tR=20.15 and 20.54 min; m/z 418 [M]+, 
403, 269; Figure 2A, 2Bb), and syringyl- (tR=24.83 and 
25.55 min; m/z 448 [M]+, 299, 269, 265; Figure 2A, 2Bc) 
trithioethylpropane compounds (Figure 1). �ey were 
identi�ed by comparison of the mass spectra with the 
previous reports (Nakatsubo et al. 2008; Rolando et al. 
1992). Both conventional and microscale protocols gave 

the same products (Figure 2A, 2Bd–2Bf), indicating that 
the microscale thioacidolysis proceeds successfully as the 
reaction with the conventional protocol.

Because each sample must be extracted one-by-one 
using a separatory funnel, the conventional protocol 
requires long time for the work-up. On average, only 
four to six samples are handled within a standard 
workday (8 h). On the other hand, our microscale 
protocol can simultaneously deal with many samples. 
At least 40 samples can be handled in a single cycle 
within a standard workday. As a result, the throughput 
is approximately ten-fold greater compared with the 
conventional protocol, which is similar to the previous 
report (Robinson and Mans�eld 2009).

Figure 2. GC-MS chromatograms and mass spectra of thioacidolysis 
products from Oryza sativa leaf sheath. (A) Total ion chromatograms of 
TMS ethers of thioacidolysis products. Two peaks of guaiacyl, syringyl, 
and p-hydroxyphenyltrithioethylpropane compounds are due to 
erythro and threo diastereomers. Conventional, conventional protocol; 
Microscale, microscale protocol. (B) Mass spectra of TMS ethers of 
thioacidolysis products. a–c, conventional protocol; d–f, microscale 
protocol. a and d, p-hydroxyphenyltrithioethylpropane; b and e, 
guaiacyltrithioethylpropane; c and f, syringyltrithioethylpropane.
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Next, we examined the effects of work-up 
tube materials on the yields of guaiacyl- and 
syringyltrithioethylpropane compounds in our 
microscale protocol based on the peak area ratios 
of guaiacyl and syringyl compounds (guaiacyl, M+, 
m/z 418; syringyl, M+, m/z 448) to internal standard 
(docosane, M+, m/z 310), referred to as G/IS and S/
IS, respectively (Table 2). The yields of the products 
from O. sativa leaf sheaths varied among the work-up 
tubes. However, the variation was smaller than the yield 
di�erence between the microscale and the conventional 
experiments. �us, the microscale experiments with each 
work-up tube gave higher yields (G/IS and S/IS values in 
the ranges of 0.49 to 0.71 and 0.36 to 0.54, respectively) 
than conventional protocol (G/IS, 0.39 and S/IS, 0.30) 
for O. sativa leaf sheaths (Table 2). Statistical analysis by 
Student’s t-test showed that the di�erences are signi�cant 
(p<0.05, n=3). A similar result was obtained for a wood 
sample. �e yields with the microscale protocol with 
DNA LoBind tube using A. mangium (G/IS, 2.12± 0.09; 
S/IS, 3.68± 0.17) were higher than those of conventional 
protocol (G/IS, 1.76± 0.14; S/IS, 3.12± 0.42) (Student’s t-
test, p<0.05, n=3; Table 2).

On the other hand, G/IS and S/IS values obtained 
by Robinson’s protocol were 0.36± 0.02 and 0.23± 
0.01 in O. sativa, and 1.35± 0.07 and 2.32± 0.17 in A. 
mangium, respectively (Table 2). �us, the yields with 
our microscale protocol were higher yield than those 
of Robinson’s protocol (Student’s t-test, p<0.05, n=3). 
�e reaction mixture in a 5-ml glass vial was extracted 
once with a mixture of H2O and methylene chloride (2 : 1, 
v/v) using vortex in Robinson’s, while, in our protocol, 
the reaction mixture was extracted three times with 

diethyl ether by vortexing, and organic and aqueous 
layers were clearly separated in a mini centrifuge. �e 
repeated extraction with clear biphasic separation in 
our protocol might result in higher product yields. In 
addition, siliconization of work-up tubes increased the 
product yields (Student’s t-test P<0.05, n=3; Table 2). 
Our protocol with the high yield facilitates thioacidolysis 
of small scale samples.
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