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Abstract	 Many flowering plants exhibit self-incompatibility (SI) to prevent inbreeding and promote outcrossing. This 
self/non-self discrimination mechanism is controlled by the S locus, which contains separate genes for pistil and pollen 
specificities. In the gametophytic SI (GSI) of Rosaceae, Solanaceae and Plantaginaceae, the pistil S determinant, S-RNase, 
encodes extracellular ribonuclease which is thought to act as a cytotoxin to the self pollen tube, while the pollen S 
determinant is the F-box gene called SLF/SFB/SFBB. In Petunia (Solanaceae), SLF is reported to be a component of the 
noncanonical E3 ubiquitin ligase complex with S-RNase binding protein1 (SBP1) and Cullin1 (CUL1), and interact with 
non-self S-RNases to ubiquitinate them for degradation. Here, we isolated an apple (Malus×domestica) homolog of SBP1 
(MdSBP1) from pollen RNA by RT-PCR. MdSBP1 included a RING-HC domain required for E3 ubiquitin ligase activity, 
and showed 64.0–68.2% amino acid identities with solanaceous SBP1 proteins. Expression analysis showed that MdSBP1 
was expressed in all the organs analyzed. We detected an interaction between recombinant MdSBP1 protein and S-RNase of 
apple using a pull-down assay.
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Self-incompatibility (SI) is a mechanism adopted 
by many flowering plants to prevent inbreeding and 
promote outcrossing. The S-RNase-based gametophytic 
self-incompatibility (GSI) of Rosaceae, Solanaceae and 
Plantaginaceae is controlled by a single multiallelic 
S locus which contains separate genes for pistil and 
pollen specificities. When the S haplotype of a pollen 
matches one of the two S haplotypes of the diploid 
pistil, the pollen is recognized as self and rejected (de 
Nettancourt 2001). The specificities of pistil and pollen 
are controlled by separate but tightly linked genes 
located at the S locus, S-RNase and the F-box gene 
called SLF/SFB/SFBB, respectively (Franklin-Tong 2008; 
Kao and Tsukamoto 2004; Meng et al. 2011; Sassa et al. 
2010; Tao and Iezzoni 2010). The pistil S determinant, 
S-RNase, encodes extracellular ribonuclease (Anderson 
et al. 1986; McClure et al. 1989; Sassa et al. 1996, 1997; 
Tao et al. 1997; Xue et al. 1996) which is thought to be 
taken up by pollen tubes and act as a cytotoxin to self 
pollen (Goldraij et al. 2006; Luu et al. 2000). In Petunia 
of Solanaceae and species of Rosaceae tribe Pyreae, 
i.e., apples (Malus×domestica) and pears (Pyrus spp.), 

multiple F-box genes SLFs/SFBBs are implicated in 
pollen-part specificity (De Franceschi et al. 2011; Kubo et 
al. 2010; Kakui et al. 2011; Minamikawa et al. 2010; Saito 
et al. 2012; Sassa et al. 2007).

SLF has been predicted to act as a component of the 
E3 ubiquitin ligase complex and interact with non-self 
S-RNases to ubiquitinate them for degradation (Huang 
et al. 2006; Qiao et al. 2004a, 2004b; Sijacic et al. 2004). 
Canonical E3 complex comprises Skp1, Cullin1, F-box 
protein and Rbx1 (Cardozo and Pagano 2004). In 
Petunia inflata, however, SLF-containing E3 ubiquitin 
ligase is reported to be a noncanonical SCF-like complex 
which includes S-RNase binding protein1 (SBP1) in 
place of Skp1 and Rbx1 (Hua and Kao 2006; Hua et al. 
2008). SBP1 contained a RING-HC domain found in 
Rbx1 (Deshaies and Joazeiro 2009) and was considered 
to play the roles of Skp1 and Rbx1, binding of F-box 
protein and ubiquitin activating enzyme E2, respectively 
(Hua and Kao 2006). SBP1 was first identified as an 
S-RNase binding protein in Petunia hybrida by yeast 
two-hybrid screening of an anther cDNA library (Sims 
and Ordanic 2001). The petunia SBP1 included a RING-
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HC domain and interacted with S-RNase, and showed 
no S haplotype-specific sequence polymorphism. SBP1 
homologs have been identified in Solanum chacoense 
(O’Brien et al. 2004) and Nicotiana alata (Lee et al. 
2008); however, SBP1-like protein has not yet been 
characterized outside Solanaceae. Here, we isolated an 
apple homolog of SBP1 from pollen RNA and named it 
MdSBP1. MdSBP1 included a RING-HC domain and was 
expressed in all the organs analyzed. An in vitro binding 
assay showed interaction between MdSBP1 and S-RNase.

Materials and methods

Plant materials
Leaves and floral organs of an apple cultivar ‘Fuji’ (S1S9) were 
collected in spring and stored at −80°C until used.

RACE and sequence analysis
RNA was isolated from the leaves and the floral organs of 
‘Fuji’ (S1S9) as described by McClure et al. (1990). Total RNA 
samples were treated with DNaseI (Nippongene, Tokyo, Japan), 
and used for RACE and RT-PCR as described by Ushijima et 
al. (2003). A partial EST sequence homologous to solanaceous 
SBP1 was selected from apple EST libraries (Moriya et al. 2012). 
A gene-specific primer MdSBP1-5RACEr1 (5′-CAG ​GAA ​ATC ​
AAT ​GGA ​CGA ​TAT ​T-3′) was designed based on the EST 
sequence, and used for 5′RACE with pollen cDNA of ‘Fuji’ 
(S1S9) as a template. A primer MSB5URHS (5′-AGT ​TGT ​GCC ​
TTT ​CAC ​ACA ​AGC ​-3′) was designed from the sequences of 
the 5′RACE clones, and used to amplify full length cDNA for 
the apple SBP1 homolog from pollen cDNA of ‘Fuji’ (S1S9) by 
3′RACE.

The amino acid identities among SBP1 proteins were 
analyzed by GENETYX-MAC (version 16; Genetyx, Tokyo, 
Japan). The amino acid sequences of SBP1 proteins were 
aligned using Clustal W (Thompson et al. 1994). A neighbor-
joining tree was constructed (Saitou and Nei 1987) based on the 
alignment using MEGA ver. 5.05. (Tamura et al. 2011).

RT-PCR
Expression of MdSBP1 was analyzed by RT-PCR with gene-
specific primers ctMdSBP1-a (5′-CTA ​TGG ​CTG ​TTC ​CCC ​
AGC ​ACC ​-3′) and MdSBP1Fjr1 (5′-TTT ​ATA ​TGA ​TGT ​ATG ​
GCT ​TTG ​AAT ​-3′). Actin 2 (GenBank accession number 
GU830959) used as control was amplified using primers 
PbActin2f1 (5′-ATG ​GCC ​GAT ​GCT ​GAG ​GAC ​ATT ​CAA ​CCC ​
CTCG-3′) and PbActin2r1 (5′-ATT ​GGC ​ACA ​GTG ​TGA ​CTC ​
ACA ​CCA ​TCA ​CCAG-3′).

Production of antiserum against apple S-RNase
A cDNA clone of MdS9-RNase (synonym of Sc-RNase; Sassa et 
al. 1996) was amplified by PCR using FMdSpRNNd (5′-CAT ​
ATG ​TAC ​GAT ​TAT ​TTT ​CAA ​TTT ​ACG ​-3′) and RMdS9RNSal 
(5′-GTC ​GAC ​ATA ​CAG ​AAT ​ATT ​ATT ​GGT ​GGG ​-3′), cloned 
to the EcoRV site of pZErO-2 (Invitrogen, Carlsbad, CA, USA), 

and sequence-verified. The NdeI-SalI fragment of MdS9-RNase 
and a SalI–BamHI fragment of the coding sequence of StrepII 
tag (WSHPQFEK) were cloned into NdeI and BamHI sites of 
pET15b (Novagen, Madison, WI, USA). The construct was 
introduced into Escherichia coli strain SHuffle T7 (New England 
BioLabs, Beverly, MA, USA). The recombinant MdS9-RNase 
protein was expressed in E. coli, solubilized from inclusion 
bodies with a buffer containing 8 M urea, and purified by 
HisTrap FF Crude column (GE Healthcare, Little Chalfont, 
Buckinghamshire, UK). The purified MdS9-RNase protein was 
dialyzed against a buffer containing 0.5 M Arg-HCl to remove 
urea, and used to immunize a rabbit to obtain antiserum.

Pull-down assay
The open reading frame of MdSBP1 was amplified by PCR 
using primers XbMdSBP1 (5′-CCG ​CTC ​GAG ​GAT ​CCA ​TGG ​
CTG ​TTC ​CCC ​AGCACC-3′) and RMdSBP1Xb (5′-GCT ​CTA ​
GAT ​TAC ​AAA ​TAT ​ACC ​TCC ​ATG ​CTG ​ATA ​AAC ​-3′). The 
MdSBP1 fragment was then cloned into pColdIIMBP (Heang 
and Sassa 2012) at BamHI and XbaI sites for expression of 
maltose binding protein (MBP)-fused MdSBP1 protein (MBP: 
MdSBP1). pColdIIMBP is a derivative of pCold II (Takara Bio, 
Otsu, Japan) and contains the coding sequence of MBP. The 
construct was introduced into BL21 (DE3) pLysS (Novagen). 
pColdIIMBP was also transferred to BL21 (DE3) pLysS for 
expression of MBP as a negative control of the pull-down assay. 
Expression of MBP: MdSBP1 and MBP proteins were induced 
by addition of 0.5 mM isopropyl-β-d-thio-galactopyranoside 
(IPTG) (Wako) and culture at 15°C for 24 h. Crude proteins 
were extracted from bacteria suspended in a binding buffer 
(50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 1 mM EDTA and 1 mM 
DTT) by sonication followed by centrifugation, and reacted 
with amylose resin (New England BioLabs). Style proteins of 
the apple cultivar ‘Fuji’ (S1S9) were extracted with an extraction 
buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM MgCl2, 
0.3% β-mercaptoethanol), and incubated with the protein-
bound amylose resin at 4°C for 2 h. The beads were then 
washed five times with a washing buffer (50 mM Tris-HCl, pH 
7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM DTT and 0.01% Triton 
X-100). Bound proteins were eluted from the beads by heating 
at 65°C for 5 min in 30 µl of 2×SDS loading buffer (100 mM 
Tris-HCl pH 6.8, 4% SDS, 12% β-mercaptoethanol and 20% 
glycerol), and separated by SDS-PAGE with a 13% gel and 
detected by anti-apple S9-RNase antiserum.

Results and discussion

Identification of the apple SBP1 homolog
To isolate the apple SBP1 homolog, we searched the 
apple EST libraries (Moriya et al. 2012) and selected a 
partial cDNA sequence homologous to solanaceous 
SBP1. Based on the sequence, primers were designed 
for RT-PCR. We obtained an SBP1 homolog from apple 
pollen RNA and named it MdSBP1 (Figures 1, 2). The 
amino acid identities among SBP1 proteins were 64.0–
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68.2% (Table 1). Sequence analysis showed that MdSBP1 
included two probable protein–protein interaction 
domains, coiled–coil and RING-HC domains (Figure 1), 
the same as solanaceous SBP1 proteins. The coiled–coil 
region of petunia SBP1 was reported to be required for 
binding to SLF (Hua and Kao 2006), while the RING-
HC domain is thought to be required for E3 ubiquitin 
ligase activity (Deshaies and Joazeiro 2009). These 
features are consistent with the idea that MdSBP1 is a 
component of noncanonical E3 ligase, and is involved 
in ubiquitinylation of S-RNase in apple pollen, as 
hypothesized in P. inflata (Hua and Kao 2006).

SBP1 of Nicotiana alata, NaSBP1, was reported 
to interact with the C-terminal domain of pistil 
arabinogalactan proteins (AGPs), transmitting tract-
specific glycoprotein (TTS) and 120-kDa glycoprotein 
(120K), by yeast two-hybrid assay and in vitro binding 
assay (Lee et al. 2008). An in vitro binding assay also 
showed that the helical and RING domain of NaSBP1 
were sufficient for binding to TTS and 120K. Lee et al. 

(2008) suggested that binding between NaSBP1 and the 
pistil AGPs may contribute to signaling and trafficking 
processes inside pollen tubes. Thus, MdSBP1 may also be 
involved in the processes inside pollen tubes, although 
TTS and 120K-like proteins have not yet been identified 
in styles of apple.

Expression pattern of MdSBP1
RT-PCR analysis revealed that MdSBP1 was expressed 
in all the organs analyzed (Figure 3), the same as 
solanaceous SBP1 homologs (Hua and Kao 2006; Lee 
et al. 2008; O’Brien et al. 2004; Sim and Ordanic 2001). 
The expression pattern suggests that MdSBP1 is involved 
in general cellular function besides a possible role in 
pollination.

Interaction of MdSBP1 with S-RNase
We examined the interaction between MdSBP1 
and S-RNase using an in vitro binding assay. MBP-
fused MdSBP1 (MBP: MdSBP1) and MBP (negative 
control) proteins were expressed in E. coli and reacted 
with amylose resin. The recombinant protein-bound 
beads were then incubated with the apple style extract. 

Figure  1.	 Amino acid sequence alignment of MdSBP1 and other SBP1 homologs of Solanaceae. Amino acid sequences were aligned using Clustal 
W. Conserved sites and relatively conservative sites are marked with asterisks and dots, respectively. The RING-HC finger motif detected by Pfam 
(http://pfam.sanger.ac.uk) is denoted by a box. The triangles indicate the cysteine-histidine signature of the motif. The underline indicates the 
predicted coiled-coil region detected by Pfam. Md, Malus×domestica; Na, Nicotiana alata; Pi, Petunia inflata; Ph, Petunia hybrida; Sc, Solanum 
chacoense. Accession numbers: NaSBP1 (EU591514), PiSBP1 (DQ250022), PhSBP1 (AF223395), ScSBP1 (AY545464)

Figure  2.	 Neighbor-joining tree of SBP1 proteins. The tree was 
constructed based on the aligned deduced amino acid sequences 
of SBP1 proteins (Figure 1). The numbers at the nodes are bootstrap 
values for 100 bootstrap resamplings.

Table  1.	 Amino acid sequence identities (%) among MdSBP1 and 
other SBP1 homologs of Solanaceae.

MdSBP1 NaSBP1 PiSBP1 PhSBP1

NaSBP1 67.6 —
PiSBP1 68.2 92.5 —
PhSBP1 68.0 91.8 99.4 —
ScSBP1 64.0 89.0 91.4 90.6
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Bound proteins were separated by SDS-PAGE and 
detected by anti-apple S9-RNase antiserum. The result 
showed that MdSBP1 interacts with S-RNase (Figure 
4). Given that MdSBP1 is homologous to solanaceous 
SBP1, includes RING-HC domain and interacts with 
S-RNase, biochemical function of MdSBP1 may be 
similar to that of solanaceous SBP1 proteins. Although 
the biological significance of the interaction between 
SBP1 and S-RNase is not clear even in Solanaceae, it 
was suggested that SBP1 of Petunia hybrida, PhSBP1, 
could be a candidate for the non-allele-specific inhibitor 
of all S-RNase since it was expressed in pollen and 
showed no polymorphism in different S alleles (Hua 
et al. 2008; Sims and Ordanic 2001). The RING finger 
protein was also reported to contribute to ubiquitination 
specificity (Deshaies and Joazeiro 2009; Noureddine et 
al. 2002; O’Brien et al. 2004). Biological implication of 
the interaction between MdSBP1 and S-RNase, and 
interactors with MdSBP1 other than S-RNase should be 
experimentally analyzed to clarify the role of MdSBP1.
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