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Abstract This study investigated the time-course changes of the in situ peroxidase (POD) distribution and expression of 
POD isozymes in Betula platyphylla var. japonica plantlet No. 8 infected with a canker-rot fungus, Inonotus obliquus strain 
IO-U1. Intact (C1), wounded (C2), and infected (T) plantlets were collected at 2 h up to 30 d. In situ POD activity was 
detected in the C2 and T plantlets, and the POD activity in the T plantlets was more widely distributed compared to the C2 
plantlets. In addition, the area of POD activity localization was almost the same as that of phenolic compounds, although a 
time lag was found between the appearance of POD activity and phenolic compounds. POD isozymes were clearly detected 
within the basic range (pI>8.5) in isoelectric focusing electropherograms. The activity of cationic POD isozymes in the C2 
and T plantlets was induced strongly compared to the C1 plantlets. In addition, the pattern of time-course changes in the 
activities of in situ POD and POD isozymes was different between the C2 and T plantlets, suggesting that the responsive 
mechanisms against fungal infection are different from the responses to wounding. The obtained results suggest that cationic 
POD isozymes are related to the basal resistance in B. platyphylla var. japonica plantlet No.8 against infection with I. obliquus 
strain IO-U1.
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Plant peroxidases (PODs) are involved in the lignification 
and suberization of the cell wall and the cross-linking of 
cell wall proteins to limit pathogen invasion through cell 
wall reconstitution. Lignin and suberin are polymerized 
from phenolics via POD-mediated oxidative reactions 
in the presence of H2O2. Additionally, the generation of 
H2O2 is also catalyzed by PODs through the oxidation 
of NADH. POD-mediated phenolic oxidation also 
synthesizes anti-pathogenic phenolics, such as 
phytoalexins, in addition to polymerizing phenolic 
monomers into cell wall components (Almagro et al. 
2009; Kawano 2003; Marjamaa et al. 2009; Passardi et 
al. 2004). Therefore, PODs have very important roles in 
plant defense mechanisms.

Inonotus obliquus is a white rot fungus classified into 
Hymenochaetaceae of Basidiomycotina and causes 
stem heart rot of Betula species, producing a black solid 
scerotium called as sterile conk or canker-like body (Cha 
et al. 2011; Shigo 1969; Zabel 1976). In our previous 
study, host-pathogen interactions were investigated 
using the Betula platyphylla var. japonica plantlet Tohoku 
infected with a canker-rot fungus, I. obliquus strain 

IO-U1 (Rahman et al. 2008). We found that phenolic 
deposition and necrophylactic periderm formation 
occur as infection-induced responses in B. platyphylla 
var. japonica plantlet Tohoku as a result of infection with 
strain IO-U1.

The purpose of this study is to observe the time-
course changes of the in situ POD distribution and 
POD isozyme expression in B. platyphylla var. japonica 
No. 8 plantlets infected with canker-rot fungus I. 
obliquus strain IO-U1. In addition, phenolic compound 
accumulation was also evaluated.

Three-month-old B. platyphylla var. japonica No. 8 
plantlets and I. obliquus strain IO-U1 were used for the 
experiments. The preparation of the plantlets and fungus 
and the treatments of intact (C1), wounded (C2), and 
infected (T) plantlets were performed according to the 
methods of our previous report (Rahman et al. 2008). 
After the treatments, the plantlets were grown for 2, 4, 
6, and 12 h and 2, 10, and 30 d. Stem samples (1 cm in 
length) were collected from the third internode or treated 
position in the C1, C2, and T plantlets to observe the in 
situ POD activity and phenolic compound accumulation. 
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In addition, the same samples at 2, 10, and 30 d were used 
for analyzing the POD isozymes.

The fixation of the samples, staining for peroxidase 
activity, and section preparation were performed 
according to the methods of De Vecchi and Matta 
(1988). Longitudinal radial sections (20 µm in thickness) 
were obtained using a simple hand microtome (Nippon 
Optical Works Co., Japan). These sections were mounted 
with 75% glycerin and observed using optical light 
microscopy (BX 51, Olympus, Japan). The evaluation of 
phenolic compound accumulation by observation using 
fluorescence microscopy and optical light microscopy 
was performed by the methods described in our previous 
paper (Rahman et al. 2008).

For analyzing the POD isozymes, samples (1 cm 
in length) were cut from the stems of C1, C2, and T 
plantlets and then immediately deep-frozen in liquid N2. 
The frozen samples were homogenized in an extraction 
buffer (EXT) composed of EXT-1, EXT-2, and EXT-
3 in a volume ratio of 3 : 2 : 1. The components were as 
follows: EXT-1–3.0% Trizma Pre-Set Crystal (Sigma-
Aldrich, USA) (w/v) (pH 7.5), 0.22% EDTA-2Na (w/v), 
and 40% glycerol (v/v) in distilled water; EXT-2–3% 
Tween 80 (v/v) in distilled water; and EXT-3–0.926% 
dithiothreitol (w/v) in distilled water (Shiraishi 1987). 
The homogenates were centrifuged at 10,000×g for 
30 min at 4°C, and the supernatants were deionized using 
MicroSpin column G-25 (GE Healthcare, England) and 
centrifugation at 735×g for 2 min at 4°C. The obtained 
samples were used for the POD isozyme analysis.

The protein concentration in each sample was 
determined according to the method of Bradford 
(Bradford 1976). Isoelectric focusing (IEF) of the 
protein preparations was conducted using a Multiphor 
II Electrophoresis System (GE Healthcare) and PowerPac 
HV (Bio-Rad, USA) with native PAGE [T= 5% and C= 
3%, containing 2.2% Pharmalyte (pH range 3.5–9.5, GE 
healthcare)] (Westermeier 1997). The isoelectric points 
were estimated using protein standards (IEF Standards, 
pI 4.45–9.60, Bio-Rad). Aspartic acid (0.04 M) was used 
as the anolyte, and 1 M NaOH was used as the catholyte. 
The samples were focused at 1,500 V, 50 mA, 25 W, and 
3,000 Vh. After IEF, the gel was stained with staining 
solution to detect the POD isozymes. The staining 
solution was composed of B-POD, POD-1, and POD-2 
in the volume ratio of 80 : 20 : 1. The components were as 
follows: B-POD–0.151% 2-amino-3-hydroxymethyl-1,3-
propanediol (w/v) and 0.162% (v/v) acetone in distilled 
water; POD-1–0.21% 3-amino-9-ethylcarbazole (w/v) 
and 0.145% 2-naphthol (w/v) in ethanol; and POD-2–
3% H2O2 (v/v) in distilled water (Shiraishi 1987). After 
drying, photographs of the stained gels were taken using 
a digital camera.

Figures 1 to 3 show the time-course changes of the in 
situ POD activity, specific autofluorescence of phenolic 

compounds, and phenolic compound accumulation. In 
the T plantlets, specific POD activity was first detected 
in the cortical layer, cambium zone, lumen of vessels, 
and pith area at 2 h post-infection (hpi). Thereafter, the 
localization area of specific POD activity continuously 
expanded up to 30 d post-infection (dpi), and activity 
was also detected in the wound-induced callus at 
10 and 30 dpi in the T plantlets (Figure 1). Specific 
autofluorescence of phenolic compounds was detected 
in the periderm at 2 hpi and then in the cortex and 
cambium at 1 dpi, in the pith at 10 dpi, and in the outer 
layer of the wound-induced callus at 30 dpi in the T 
plantlets (Figure 2). The presence of phenolic compounds 
was confirmed in the cortical layer and lumen of vessels 
at 2 hpi; thereafter, phenolic compounds were found in 
the cambial zone at 12 hpi and in the pith area at 2 dpi in 
the T plantlets. The deposition of phenolic compounds 
was also observed in the wound-induced callus at 30 dpi 
in the T plantlets (Figure 3). The tissues that accumulated 
phenolic compounds at 2 dpi continued to exhibit 
these compounds up to 30 dpi. In addition, phenolic 
compounds were observed only at 2 hpi in the T plantlets 
(Figure 3), whereas they were observed at 4 h after 
wounding in the C2 plantlets (data not shown).

POD localization and the accumulation of phenolic 
compounds were more rapidly and extensively observed 
in the T plantlets compared to the C2 plantlets (Figures 
1 to 3). Although a time lag was found for POD 
localization and accumulation of phenolic compounds, 
the POD localization area was almost the same as that 
of phenolic compound accumulation. Moreover, POD 
was activated more rapidly than phenolic compound 
accumulation in all the treated plantlets (Figures 1 to 3). 
These results were in agreement with the previous reports 
that PODs are involved in polymerization of phenolics, 
and synthesis of phenolic compounds in relation to 
plant defense responses against infection and wounding 
(Bruce and West 1989; Deborah et al. 2001; Egea et al. 
2001; Gayoso et al. 2010; Lagrimini 1991; Morkunas 
and Gmerek 2007). However, B. platyphylla var. 
japonica plantlet could not prevent itself from progress 
of mycelial growth of I. obliquus strain IO-U1. In our 
previous report, the fungal localization was observed 
in B. platyphylla var. japonica plantlet Tohoku infected 
with I. obliquus strain IO-U1. In that study, the fungal 
hyphae were detected at 10 dpi in cortex, xylem ray, and 
pith area, although the hyphae did not detected at 2 
dpi (Rahman et al. 2008). Therefore, B. platyphylla var. 
japonica plantlets No. 8 and Tohoku are considered to be 
compatible to I. obliquus strain IO-U1. In addition, POD 
activation and phenolic compound accumulation are 
considered to be related to basal defense in B. platyphylla 
var. japonica plantlet No. 8 as responses to the infection 
with I. obliquus strain IO-U1.

The isoelectric focusing electropherograms of POD 
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Figure 1. In situ peroxidase distribution in transverse and longitudinal sections of C1-, C2-, and T-treated B. platyphylla var. japonica No. 8 plantlets 
after 2 h to 30 d. The arrows indicate the localization of peroxidase; the arrow-heads indicate the wound and infection sites; the asterisks indicate the 
callus; Bar=100 µm.
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Figure 2. Fluorescence micrographs of phenolic compounds in transverse and longitudinal sections of C1-, C2-, and T-treated B. platyphylla var. 
japonica No. 8 plantlets after 2 h to 30 d. The arrows indicate the specific autofluorescence of phenolic compounds; the arrow-heads indicate the wound 
and infection sites; the asterisks indicate the callus; Bar=100 µm.
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Figure 3. Phenolic compound accumulation in transverse and longitudinal sections of C1-, C2-, and T-treated B. platyphylla var. japonica No. 8 
plantlets after 2 h to 30 d. The arrows indicate the accumulation of phenolic compounds; the arrow-heads indicate the wound and infection sites; the 
asterisks indicate the callus; Bar=100 µm.
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isozymes in the C1, C2, and T plantlets at 2, 10, and 30 d 
after treatment are shown in Figure 4. Clear isozyme 
bands were observed in the basic region (pI>8.5), and 
three POD isozymes (pI 8.5, pI 9.1, and pI 9.3) were 
induced by wounding and fungal infection. The absence 
of cationic POD isozymes in the C1 plantlet reflects 
the observation of the in situ POD activity. In the C2 
plantlets, the activity of PODs with pI 9.1 and pI 9.3 
increased with time after wounding, and the activity 
of POD with pI 9.1 also increased at 10 to 30 dpi in the 
T plantlets. However, the activity of POD with pI 9.3 
was strongly induced within 2 dpi and then decreased 
gradually up to 30 dpi in the T plantlets.

It has been reported that anionic POD is involved 
in responses to wounding (Bernards et al. 1999; 
Espelie et al. 1986), elicitor treatments (Egea et al. 
2001; Fernandes et al. 2006; Kukavica et al. 2012), and 
pathogen attack (Lagrimini and Rothstein 1987; Ye et 
al. 1990). However, some studies have revealed that 
cationic POD is also related to resistance responses to 
abiotic and biotic stress (Quiroga et al. 2000; Ros Barceló 
et al. 1996; Wally and Punja 2010). Wally and Punja 
(2010) examined the mechanisms of disease resistance 
in a transgenic carrot (Daucus carota L.) line (P23) that 
constitutively over-expresses rice cationic peroxidase 
OsPrx114. When the carrot suspension-cultures were 
treated with cell wall fragments of the fungal pathogen 
Sclerotinia sclerotiorum as an elicitor, the transcript levels 
of pathogenesis-related (PR) genes were dramatically 
increased in line P23 compared to the controls. 
Simultaneously, H2O2 accumulation was reduced in 
line P23 despite the observation of the typical medium 
alkalization associated with oxidative burst responses. 
According to these results, particular cationic PODs 
may contribute to the enhancement of disease resistance 
through increased PR transcript accumulation, rapid 

removal of H2O2 during the oxidative burst response, 
and enhanced lignin formation. On the other hand, it 
has been also reported that some PODs contribute to 
basal resistance in plant (Johrde and Schweizer 2008). 
In barley (Hordeum vulgare) infected with the powdery-
mildew fungus Blumerina graminis f. sp. hordei (Bgh), a 
new POD mRNA, HvPrx40, was specifically expressed 
in Bgh-attacked epidermis. The results of transient 
overexpression and transient-induced gene silencing of 
HvPrx40 showed that HvPrx40 is indeed a factor of basal 
resistance in barley (Johrde and Schweizer 2008).

In the present study, cationic POD isozymes (pI 8.5, 
pI 9.1, and pI 9.3) were activated by wounding and 
fungal infection in B. platyphylla var. japonica plantlet 
No. 8. Therefore, these cationic PODs are considered to 
be involved in the responses to wounding and fungal 
infection especially as basal resistance in T plantlets, even 
though the changes in the POD isozyme activity did not 
exactly correspond to the changes in the in situ POD 
activity.

In addition, the POD with pI 9.3, which was rapidly 
induced by fungal infection, might be correlated with 
the basal resistance in the No. 8 plantlet. Furthermore, 
as shown in Figure 1, the patterns of the time-course 
changes in the in situ POD activity observed using a 
histochemical method were different between the C2 and 
T plantlets, suggesting that the responsive mechanisms 
against fungal infection are different from the responses 
to wounding. Based on the results obtained, it is 
considered that cationic POD isozymes are involved in 
the basal resistance of B. platyphylla var. japonica plantlet 
No. 8 against infection with I. obliquus strain IO-U1.
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