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Abstract	 Nicotine and tropane alkaloids are specialized metabolites produced in certain species of Solanaceae, 
and some of these alkaloids have been used as pharmacological agents. In tobacco plants, nicotine is a defensive toxin 
against herbivorous insects, and jasmonate (JA) signaling leads to the induction of nicotine biosynthesis. JA-responsive 
structural genes of the nicotine pathway have been identified as being down-regulated in a low-nicotine tobacco mutant, 
which possesses mutant alleles at two loci, NICOTINE1 and NICOTINE2 (NIC1 and NIC2). A group of JA-responsive 
genes that encode homologous ERF transcription factors are clustered at the NIC2 locus and deleted in the mutant. These 
NIC2-locus ERFs up-regulate the structural genes of the biosynthetic pathway by recognizing GCC-like boxes in their 
promoters, forming a regulon for nicotine biosynthesis with the downstream targeted genes. The three basic components 
in JA signaling, COI1, JAZ, and MYC2, are required for JA-induced nicotine formation in tobacco. The bHLH transcription 
factor MYC2 positively regulates the structural genes, both directly by recognizing G boxes in their promoters and indirectly 
by up-regulating NIC2-locus ERF genes. Molecular elucidation of nicotine regulation would lead us to better understand the 
JA-dependent regulation of a wide range of phytochemicals.
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Human use of Solanaceae alkaloids
The family Solanaceae includes a handful of species that 
accumulate a group of highly toxic pyrrolidine alkaloids: 
tropane alkaloids in Atropa, Datura, and Hyoscyamus, 
and biogenetically related nicotine alkaloids in Nicotiana 
(Hashimoto and Yamada 1994) (Figure 1). While 
intoxication by these alkaloids is sporadically reported, 
their use by humans can be traced back to ancient times. 
The Egyptian queen Cleopatra (BC 69 to 30) is said to 
have used extract of Atropa belladonna, a representative 
medicinal plant which contains tropane alkaloids such as 
hyoscyamine and scopolamine, to dilate her pupils and 
so make herself more attractive as a political tactic. In 
the eighteenth century, a mixture including a tropane-
containing extract of Datura metel was used as a general 
anesthetic for the first time by the Japanese surgeon 
Seishu Hanaoka (1760 to 1835) to treat his wife’s breast 
cancer. Atropine, a racemic mixture of two hyoscyamine 
forms, and scopolamine, are used as anticholinergic 
medicines that generally lower the parasympathetic 
activity of muscles and glands. Even today, due to their 
complex chemistry, these alkaloids are extracted from 

tissues of medicinal plants that are mainly cultivated in 
tropical plantations.

When Columbus explored the New World, its native 
inhabitants were already smoking the leaves of wild 
Nicotiana species indigenous to the region. Because of 
its addictive nature, smoking has become widespread 
around the world and tobacco (Nicotiana tabacum) is still 
one of the major crops cultivated worldwide (Goodman 
1993). Of course, smoking is no longer recommended 
because of its markedly harmful effects on human 
health (Hecht 2003), and regulations on smoking are 
becoming increasingly restrictive nowadays. In tobacco 
products, nicotine is the major determinant of addiction 
to smoking, and reducing nicotine level is thus an 
important goal in tobacco breeding.

Biosynthetic pathway
Classical metabolic labeling experiments followed by 
enzymatic studies defined the biosynthetic pathways 
of the alkaloids (Figure 1; Hashimoto and Yamada 
1994; Leete 1983). In particular, the use of cultured 
tissues and cells selected for high alkaloid production 
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facilitated detailed biochemical studies, such as the 
purification of enzymes that allowed the molecular 
cloning of corresponding genes. Efforts to clone alkaloid 
biosynthesis genes began in the early 1990s (Hibi et al. 
1994; Matsuda et al. 1991) and became widespread 
with the advent of molecular biology (Facchini 2001; 
Hashimoto and Yamada 1994, 2003; Ziegler and Facchini 
2008).

A pyrrolidine ring, which is incorporated into nicotine 
or further converted to a bi-cyclic tropane ring, is 
generated from ornithine through three consecutive 
reactions catalyzed by ornithine decarboxylase 
(ODC), putrescine N-methyltransferase (PMT), and 
N-methylputrescine oxidase (MPO), and this part of 
the pathway is shared among all species producing 
pyrrolidine alkaloids (Hashimoto and Yamada 1994; 
Hibi et al. 1994; Shoji and Hashimoto 2011a; Shoji 
and Hashimoto 2013) (Figure 1). A pyridine ring, 
the other ring of nicotine, is derived from nicotinic 
acid, a primary metabolite in NAD metabolism, which 
occurs in every organism to supply the essential co-
factor. In dicotyledonous plants, including tobacco, the 
pathway that generates NAD and nicotinic acid starts 
from aspartate, which is converted to nicotinic acid 
mononucleotide through reactions catalyzed by aspartate 
oxidase (AO), quinolinate synthase (QS), and quinolinate 

phosphoribosyltransferase (QPT) (Katoh and Hashimoto 
2004; Katoh et al. 2006) (Figure 1). A cyclic pathway 
that starts from nicotinic acid mononucleotide performs 
de novo and salvage production of NAD, supplying 
nicotinic acid as an intermediate (Katoh and Hashimoto 
2004). In contrast to the early steps that form the rings, 
little is known about the late steps responsible for ring 
coupling. Two orphan reductases, A622 of the PIP 
family (named after its founding members, pinoresinol-
lariciresinol reductase, isoflavone reductase, and 
phenylcoumaran benzylic ether reductase) and berberine 
bridge enzyme-like protein (BBL) (belonging to a protein 
family including berberine bridge enzymes, carbohydrate 
oxidases, cannabinoid synthases, and 6-hydroxynicotine 
oxidases), are postulated to be involved in the late steps, 
but details of the reactions that they catalyze have yet 
to be defined (De Boer et al. 2009; Kajikawa et al. 2009; 
Kajikawa et al. 2011).

Once formed, nicotine moves dynamically through 
biological membranes via tonoplast-localized multidrug 
and toxic compound extrusion transporters (MATEs), 
MATE1, MATE2, and jasmonate-inducible alkaloid 
transporter 1 (JAT1) (Morita et al. 2009; Shoji et 
al. 2009), and plasma membrane-localized purine 
permease family member nicotine uptake permease 
1 (NUP1) (Hildreth et al. 2011). There are likely to be 

Figure   1.	 Biosynthesis pathways of nicotine and tropane alkaloids. Solid lines indicate defined steps, while broken lines indicate undefined steps 
or steps including multiple reactions. Abbreviations are as follows: ODC, ornithine decarboxylase; PMT, putrescine N-methyltransferase; MPO, 
N-methyltransferase oxidase; AO, aspartate oxidase; QS, quinolinate synthase; QPT, quinolinate phosphoribosyltransferase; H6H, hyoscyamine 
6β-hydroxylase; Pi, inorganic phosphate; Ph, phenyl group.
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further, unknown transporters for nicotine and pathway 
intermediates.

ERF transcription factor genes cluster at the 
nicotine-controlling NICOTINE2 locus
Mutants displaying altered nicotine levels are valuable 
resources for biosynthesis studies. A naturally occurring 
low-nicotine tobacco mutant was discovered in Europe 
in the early 1930s, and the trait was introduced through 
repeated introgressions into commercial tobacco 
cultivars to meet a demand for low-nicotine cigarettes. 
Through the breeding process, the genetic basis of this 
mutant became clear: mutant alleles at two distinct 
loci, NICOTINE1 and NICOTINE2 (NIC1 and NIC2, 
originally called the A and B loci), are responsible for 
the low-nicotine trait. Only a slight reduction in nicotine 
level is observed in either single mutant, nic1 having 
a stronger effect than nic2 (Legg and Collins 1971). 
Biochemical and molecular characterization of the low-
nicotine mutant revealed that multiple biosynthesis 
steps, rather than a single step, are blocked or markedly 
suppressed in the mutant, implying regulatory roles 
for the NIC loci (Saunders and Bush 1979; Shoji and 
Hashimoto 2013). Indeed, screening for genes suppressed 
in the mutant by three molecular approaches, cDNA 
subtraction (Hibi et al. 1994), differential display (Kidd 
et al. 2006; Shoji et al. 2009), and cDNA microarray 
(Kajikawa et al. 2011; Katoh et al. 2007; Shoji et al. 
2010), led to the identification of nearly all of the known 
metabolic and transport genes involved in the nicotine 
pathway: ODC, PMT, MPO, AO, QS, QPT, A622, BBL, 
MATE1, MATE2, and NUP1.

Until recently, the molecular identities of the NIC 
genes had been long-standing questions. We found 
some clues to their identity through cDNA microarray 
analysis in a further search for genes suppressed in the 
low-nicotine mutant (Shoji et al. 2010). In addition to 
a series of structural genes of the biosynthetic pathway, 
the ERF189 gene, which encodes a transcription factor 
of the APETALA2 (AP2)/ethylene response factor 
(ERF) superfamily (Nakano et al. 2006), was found to 
be severely suppressed in the nic1nic2 mutant. In the 
tobacco genome, ERF189 and its close homologs belong 
to group IXa of the AP2/ERF superfamily (Rushton 
et al. 2008), members of which can be further divided 
into clade 1 and the ERF189-containing clade 2 (Figure 
2). Characterization of these ERFs revealed that at 
least seven members of clade 2, including ERF189, are 
deleted altogether in the nic2 mutant (Figure 2); PCR 
did not detect the genes in the mutant genome and 
no expression of ERF189 was detected by RT-PCR in 
the nic2 mutant, while specific detection of the others 
is equivocal. Furthermore, since genetic analysis to 
examine linkage between the mutant allele and each gene 
deletion indicated a clustering of the deleted ERF genes 

at the NIC2 locus, the molecular basis of the mutation 
is presumably the extensive chromosomal deletion of 
these so-called NIC2-locus ERFs. Genomic sequencing 
of the region will determine whether this assumption 
is correct. Apart from the seven deleted genes, the 
existence in the genome and possibly the expression of 
the other group IXa members are not affected by the nic2 
mutation, and so far no abnormality of any group IXa 
ERF tested has been found in the nic1 mutant at either 
the genomic or the transcript level (Shoji et al. 2010, and 
our unpublished data). The ancestral origin of the ERF 
genes clearly explains why only a fraction of the clade 2 
ERFs are missing in nic2. NIC2-locus ERF genes may be 
derived from N. tomentosiformis, one of the two diploid 
ancestors of allotetraploid N. tabacum (Clarkson et al. 
2005), and a hypothetical equivalent of the NIC2 locus 
from the other diploid ancestor, N. sylvestris, may contain 
the clade 2 ERF genes that are unchanged in nic2. The 
relatively mild phenotype of the nic2 mutant may be 
attributed to the existence of such N. sylvestris-derived, 
functionally redundant ERF genes.

Figure  2.	 Phylogenetic relationship of group IXa ERF proteins. 
Based on the alignment of conserved DNA-binding AP2/ERF domain 
sequences, a phylogenetic tree was constructed by the neighbor-joining 
algorithm using MEGA4 (Tamura et al. 2007). The scale bar indicates 
the number of amino acid substitutions per site. Six of the seven ERFs 
whose genes are deleted in the nic2 mutant are indicated by asterisks. 
Although the gene encoding ERF104 is also deleted in nic2, ERF104 
is not included in this tree because a stop codon in the AP2/ERF 
domain suggests that ERF104 is a pseudo-gene. AtERF1 (At4g17500), 
AtERF2 (At5g47220), and AtERF13 (At2g44840) are from Arabidopsis 
thaliana, CrORCA2 (AJ238740) and CrORCA3 (EU072424) are from 
Catharanthus roseus, NbERF1 (GQ859157) is from N. benthamiana, 
and others are from tobacco. Sequences of tobacco ERFs are available at 
TOBFAC (Rushton et al. 2008) under the same names.
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NIC2-locus ERFs and closely related factors have also 
been proposed to be nicotine regulators in other studies 
based on a high-throughput trans-activation assay of 
the PMT promoter using a transient expression system 
in tobacco protoplasts (De Sutter et al. 2005) and a 
functional screening using virus-induced gene silencing 
in N. benthamiana (Todd et al. 2010).

A regulon for nicotine biosynthesis
NIC2-locus ERFs directly up-regulate structural genes 
of the nicotine pathway, forming a nicotine biosynthesis 
regulon with their downstream target genes (Shoji et al. 
2010; Shoji and Hashimoto 2011b; Shoji and Hashimoto 
2012a). Over-expression of a certain member of NIC2-
locus ERF genes increased alkaloid level dramatically 
in the low-nicotine nic1nic2 mutant and several-fold in 
wild-type tobacco, which accumulates nicotine to a high 
level even without the over-expression (De Boer et al. 
2011; Shoji et al. 2010). Conversely, loss-of-function of 
NIC2-locus ERFs, achieved by collective down-regulation 
of the genes either by RNA interference or by expression 
of the ERFs under the control of a dominant-repressive 
motif, drastically decreased the alkaloid content (Shoji 
et al. 2010). Using the glucocorticoid receptor fusion 
system, we observed activation of the nicotine pathway 
genes in response to steroid-induced activation of NIC2-
locus ERFs even in the presence of a protein synthesis 
inhibitor, suggesting that the structural genes of the 
pathway are activated directly by the ERF transcription 
factors (Shoji et al. 2010).

All NIC-controlled nicotine biosynthesis genes 
examined to date are immediate targets of NIC2-locus 
ERFs. At least eight GCC-like boxes recognized in vitro 
by NIC2-locus ERFs are present in the examined NIC-
controlled promoter regions, and their consensus 
sequence, 5′-A/CGCA/CNNCCA/T-3′ (Shoji and 
Hashimoto 2012a), is similar but not identical to the 
sequence of the canonical GCC box, 5′-AGCCGCC-3′, a 
typical binding sequence for ERF factors, indicating that 
the NIC2-locus ERFs have a unique binding preference.

Based on the distribution of GCC-like boxes 
recognized by NIC2-locus ERFs in the NIC-controlled 
promoters, we could distinguish two QPT genes, QPT1 
and QPT2, that encode an enzyme involved in the 
formation of the pyridine ring that is utilized for both 
NAD and alkaloid synthesis (Shoji and Hashimoto 
2011b). Only the QPT2 promoter bears GCC-like 
boxes; in tobacco, three such boxes are in the proximal 
promoter region of QPT2, whereas none occur in that of 
QPT1. Accordingly, QPT2 is controlled by NIC2 locus-
ERFs and is expressed in concert with other nicotine 
biosynthesis genes, while QPT1 expression is nearly 
constant in all tissues examined (Ryan et al. 2012; 
Shoji and Hashimoto 2011b). We infer that the QPT2 
gene acquired the GCC-like boxes in its promoter to 

become involved in the nicotine biosynthesis regulon 
under the control of NIC2-locus ERFs, and that QPT2 
supplies the pyridine ring that is increasingly demanded 
for nicotine synthesis, whereas the original role of 
sustaining metabolic flow for NAD synthesis is fulfilled 
by continuous QPT1 expression.

Jasmonate signaling
Chemical defense based on nicotine has been well 
studied in ecological terms (Baldwin 1998; Steppuhn 
et al. 2004). In addition to a basal level of production, 
nicotine synthesis readily increases in response to insect 
attack or wounding through signaling mediated by 
jasmonates (JAs) (Baldwin 1989; Baldwin et al. 1996). 
Damage-induced JA elevation in the leaf initiates the 
signaling, and movement of JA through the phloem 
ensures the systemic spread of the signal (Baldwin et 
al. 1994). Yet JA’s role as systemically transmitted signal 
is still controversial and other possibilities cannot be 
excluded. In Nicotiana roots and cultured cells, JAs 
coordinately up-regulate the nicotine metabolic and 
transport genes ODC, PMT, MPO, AO, QS, QPT, A622, 
BBL, MATE1, MATE2, JAT1, and NUP1, all of which 
except JAT1 are also under the control of NIC genes 
(see above) (Shoji and Hashimoto 2011a; Shoji and 
Hashimoto 2013).

Molecular genetic studies using Arabidopsis have 
unveiled the basic framework of JA signaling from 
perception to gene activation (Browse 2009; Chung et al. 
2009). A bioactive form of JA, JA-Ile, is perceived by a 
co-receptor complex of coronatine insensitive1 (COI1), 
an F-box component of an SCF-type E3-ubiquitin ligase 
complex (SCFCOI1), and JA ZIM-domain (JAZ) proteins, 
triggering ubiquitination of JAZs by the ligase activity 
and their subsequent removal by 26S proteasome-
mediated degradation (Chini et al. 2007; Thines et al. 
2007). JAZ sequences are not highly conserved except for 
the Jas and TIFY motifs, which are important for protein-
protein interactions: homo- and heterodimer formation 
of JAZs depends on interactions involving the TIFY 
motif, whereas the Jas motif is at the interface for JAZ-
COI1 and JAZ-MYC2 (see below) interactions (Chini et 
al. 2009; Melotto et al. 2008). JAZs interact with various 
transcription factors and thereby connect them through 
an adaptor protein, novel interactor of JAZ (NINJA), to 
a Groucho/Tup1-type co-repressor, which suppresses 
transcription of nearby targeted genes, possibly through 
chromosomal remodeling (Pauwels et al. 2010). The 
transcription factors are liberated from the repressor 
complex after JA-dependent removal of JAZs, and 
regulate downstream genes both positively and negatively 
(Dombrecht et al. 2007). A list of the transcription factors 
targeted by JAZs includes the basic helix-loop-helix 
(bHLH) family member MYC2 and the related MYC3 
and MYC4; the MYB family members MYB21 and 
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MYB24, which are required for stamen development; and 
complex-forming bHLH and R2R3-MYB family factors 
that mediate anthocyanin accumulation and trichome 
initiation (Chini et al. 2007; Fernandez-Calvo et al. 2011;  
Qi et al. 2011; Song et al. 2011; Thines et al. 2007).

The basic components in JA signaling are conserved 
evolutionarily and Nicotiana COI1, JAZs and MYC2 are 
all required for JA-induced nicotine formation (see below 
for MYC2) (Figure 3). Suppression of Nicotiana COI1 
effectively impaired JA- and wound-induced nicotine 
formation along with other JA responses (Paschold 
et al. 2007; Shoji et al. 2008). Like their Arabidopsis 
counterparts, Nicotiana JAZ transcripts and proteins 
are induced and degraded, respectively, in response 
to JA (Oh et al. 2012; Shoji et al. 2008). Expression of 
truncated forms of JAZs lacking the C-terminal Jas 
motif, which may act in a dominant-negative manner 
by forming non-functional JAZ dimers, also clearly 
inhibited nicotine induction by JA (Shoji et al. 2008). 
Interestingly, RNA interference-mediated knockdown of 
a single JAZ member in N. attenuata, JAZh, significantly 
reduces nicotine levels, but enhances other JA-dependent 

responses (Oh et al. 2012). These latter observations, 
which seem contradictory at first glance, implicate 
mutual cross-regulation of JAZs, where JAZh may 
negatively regulate other JAZs that act as repressors of the 
nicotine response.

Transcriptional regulators for the jasmonate 
response
JA positively regulates nicotine pathway genes at the 
transcriptional level (Shoji et al. 2000a). As revealed for 
PMT and QPT2 genes, JA-mediated induction of these 
genes depends on two distinct cis-elements in their 
proximal promoter regions, the G box and GCC-like 
box (Oki and Hashimoto 2004; Xu and Timko 2004), 
which are recognized by MYC2 and NIC2-locus ERFs, 
respectively (De Boer et al. 2011; Shoji et al. 2010; Shoji 
and Hashimoto 2011b; Shoji and Hashimoto 2011c; 
Todd et al. 2010; Zhang et al. 2012) (Figure 3). These 
transcription factors are also induced at the transcript 
level by JA and cooperatively activate their target 
promoters when expressed transiently in tobacco cells. 
Suppression of the transcription factor genes decreases 

Figure  3.	 Model of JA-mediated regulation of nicotine biosynthesis. In the absence of JA signal input, JAZs interact with MYC2 and recruit a 
Groucho/Tup1-type co-repressor, which suppresses genes targeted by MYC2, through an adaptor protein NINJA. After JA-Ile is recognized by a 
co-receptor complex of COI1 and JAZ, JAZs are ubiquitinated by an SCF complex containing COI1 and then degraded by the 26S proteasome. The 
removal of JAZs allows downstream MYC2 to activate the genes for nicotine biosynthesis, either directly by binding to the corresponding promoters 
at the G box or indirectly by activating NIC2-locus ERFs. NIC2-locus ERF transcription factors up-regulate all metabolic and transport genes 
of nicotine pathway by binding at GCC-like boxes in their promoters. Ethylene signaling may suppress the transcription of NIC2-locus ERFs to 
negatively regulate the JA response of nicotine biosynthesis.
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both alkaloid level and the expression of genes involved 
in nicotine biosynthesis. While MYC2 is directly targeted 
by JAZ repressors and plays wide-ranging roles in JA 
signaling unrestricted to nicotine regulation, NIC2-locus 
ERFs are more specialized to regulating the nicotine 
pathway and do not interact with tested JAZs in the 
yeast two-hybrid assay (De Boer et al. 2011; Shoji and 
Hashimoto 2011c).

Little is yet known about how NIC2-locus ERFs 
are regulated. Some NIC2-locus ERF transcripts are 
immediately induced by JA, while others are gradually 
induced at later time points (Shoji et al. 2010). Ethylene 
signaling may integrate with JA signaling in the 
transcriptional regulation of NIC2-locus ERFs (Figure 
3), since JA-mediated induction of the ERF transcripts 
along with those of downstream structural genes is 
suppressed by ethylene precursor treatment, even 
though these suppressive effects are incomplete and only 
apparent after prolonged treatment (Shoji et al. 2000b; 
2010). When MYC2 was silenced by RNA interference in 
tobacco hairy roots, all NIC2-locus ERFs and thus their 
downstream structural genes were down-regulated. In 
contrast, MYC2 expression level was not altered either 
in nic mutants or in transgenic tobacco hairy roots in 
which a dominant-repressive form of a NIC2-locus ERF 
was over-expressed. These results suggest that MYC2 
regulates NIC2-locus ERF genes, but not vice versa 
(Shoji and Hashimoto 2011c) (Figure 3). Further studies 
are necessary to address how individual NIC2-locus 
ERF genes are regulated by MYC2, either directly or 
indirectly, and whether they are regulated at levels other 
than transcription.

Regulatory function of proteins related to tobacco 
NIC2-locus ERFs
Tobacco NIC2-locus ERFs are related to Catharanthus 
roseus ORCA2 and ORCA3 (Figure 2), which are known 
to regulate the JA response of terpenoid indole alkaloid 
biosynthesis in this species (van der Fits and Memelink 
2000). The GCC-like boxes to which tobacco NIC2-locus 
ERFs bind can also be recognized by ORCA3 (Shoji and 
Hashimoto 2012a). ORCA3 is responsive to JA (van der 
Fits and Memelink 2000), and C. roseus MYC2 directly 
activates ORCA3 expression by recognizing a G box in 
its promoter (Zhang et al. 2011). These results indicate 
functional similarities between tobacco NIC2-locus ERFs 
and C. roseus ORCAs, in terms of their DNA-binding 
properties and of how they are regulated by JA and 
MYC2, and imply that functionally similar ERFs can be 
recruited to regulate JA-inducible metabolism in at least 
two distinct plant lineages, tobacco (Solanaceae) and 
periwinkle (Apocynaceae) (De Geyter et al. 2012; Shoji 
and Hashimoto 2012b).

Arabidopsis has three ERFs of group IXa, AtERF1, 
AtERF2, and AtERF13 (Figure 2), all of which are 

inducible by JA. AtERF1 and AtERF2 included in clade 
1 are well-known founding members of AP2/ERF 
superfamily and can recognize a canonical GCC box 
(5′-AGCCGCC-3′) found in various defensive genes 
(Fujimoto et al. 2000). AtERF13 that belongs to clade 
2 including tobacco NIC2-locus ERFs and periwinkle 
ORCAs, was reported to be involved in abiotic tolerance 
(Lee et al. 2010). These facts suggest wider defensive roles 
of group IXa ERFs that are not restricted to JA-inducible 
alkaloid regulation.

Perspectives
We hope that the knowledge on nicotine regulation 
could be applicable to genetic engineering of other 
phytochemicals. Reflecting the defensive functions of 
natural products, elicitors that induce JA production 
and JA itself have been widely used to improve the 
productivity of useful phytochemicals in plant cells and 
tissue cultures (Blechert et al. 1995; Gundlach et al. 1992; 
Yukimune et al. 1996). It would be interesting to reveal 
whether the same kinds of ERFs as those described 
above are recruited for JA-dependent regulation of 
valuable phytochemicals. If they are, engineering aimed 
at transcription factors (Grotewold 2008) may give us 
promising ways to dynamically improve metabolic flow 
in selected pathways.
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Addendum

After the submission of this manuscript, Shoji et al. (2013) reported 
similar but divergent DNA-binding specificities of NIC2-locus 
ERFs and related transcription factors, such as ORCA3, AtERF1, 
and AtERF13.  In this study, amino acid residues in the DNA-
binding domain critical for such divergence were also determined.
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