
Plant Biotechnology 30, 243–256 (2013)
DOI: 10.5511/plantbiotechnology.13.0904a

Review

Advances in tomato research in the post-genome era

Naama Menda, Susan R. Strickler, Lukas A. Mueller*
Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca NY 14853, USA
* E-mail: lam87@cornell.edu  Tel: +1–607-255-6557  Fax: +1–607-254-1242 

Received April 2, 2013; accepted September 4, 2013 (Edited by K. Aoki)

Abstract	 The tomato (Solanum lycopersicum) draft genome, along with a draft of the wild relative, Solanum 
pimpinellifolium, were released in 2012, almost a decade after the International Tomato Genome project was initiated. 
Tomato is an important domesticated crop species, as well as a model organism for many aspects of plant biology such 
as fleshy fruit development, ripening, disease resistance, plant architecture, and compound leaf development. For these 
reasons, there has been a substantial effort for producing a high quality reference genome that will serve as an anchor for 
tomato species, and for closely related Solanaceae plants. The utility of this genome has already been demonstrated by a 
relatively large number of studies that have been published since the release of the sequence, covering a wide range of topics 
including gene expression, genetic diversity, phylogeny, comparative genomics, and epigenetics. With the availability of 
the potato genome, it is now possible to perform detailed comparative genomic analysis of gene families in the Solanaceae, 
facilitated by conservation and synteny between their genomes. A large number of ongoing efforts will result in the 
sequencing of hundreds of wild and domesticated tomato accessions from various populations, uncovering the breeding 
history of tomatoes and introducing new genomic technologies to accelerate breeding processes. In this review, we provide 
an overview of the origins of tomato and its position in the wider Solanaceae, and demonstrate the impact of the tomato 
genome sequence on Solanaceae research on the basis of recent literature that has made use of this new resource.
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The economic value of tomato to agriculture has made 
it the centerpiece of the Solanaceae family (also known 
as the Nightshades), as well as a model organism for the 
study of plant development, fruit ripening, and disease 
resistance. As such, numerous genetic and molecular 
tools have been developed for the species over the last 
decades, including high-density genetic maps, molecular 
markers, BAC and EST libraries, mapping populations, 
introgressions lines, mutant collections, microarray 
chips, and a high-quality draft genome sequence 
released in 2012 (Tomato Genome Consortium 2012). 
Since tomatoes are diploids, with a modest genome size 
(∼900 Mb), have homozygous inbreds available, and 
share a high level of genome conservation at the macro 
and micro synteny levels with other Solanaceae (Fulton 
2002; Ku et al. 2000), the sequenced genome can serve 
as a reference for wild tomatoes and other species in the 
wider Solanaceae family. The wild tomato relatives, most 
of which can be crossed to tomato, have also retained 
allelic diversity required for adaptations to various 
environments and habitats (Labate et al. 2009; Xia et al. 
2010).

In this review, we discuss the existing resources and 
tools that have emerged based on the tomato genome 
sequence, how the new technologies and findings 
facilitate research and breeding of tomatoes and related 
species, and current research that will advance studies of 
the Solanaceae family.

Tomato domestication

Early domestication of edible wild tomato berries was 
commenced by South American indigenous populations 
in the South American Andes, where the majority of the 
12 native wild tomato species of the Lycopersicum sub-
genus have evolved. It is likely these early populations 
also transported the plants to central America and 
Mexico, followed by the Spaniards who brought 
tomatoes and also potatoes to Europe at the beginning 
of the 16th century (Blanca et al. 2012). At first they were 
perceived as poisonous and used only for decoration, 
but they rapidly became staple food in local cuisine, 
and distributed across the globe as a food crop. Recent 
SNP analysis and morphological characterization of 
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domesticated tomato, S. pimpinellifolium, and the weedy 
species Solanum lycopersicum var cerasiforme, suggests 
that the South American domestication was completed 
later on in Central America (Blanca et al. 2012).

Tomatoes now have worldwide distribution as the 
number one vegetable crop, constituting in monetary 
value 14% of all vegetables produced (FAOSTAT database 
http://faostat3.fao.org/). By the beginning of the 20th 
century, tomato breeding yielded dozens of inbreds, 
known today as heirloom lines, displaying variation 
mostly in fruit shape, size, and color properties. Despite 
the dramatic differences in fruit traits of heirloom lines, 
they vary only in a handful of Mendelian genes, such 
as the fruit shape genes OVATE, FASCIATED, LOCULE 
NUMBER, and SUN (Rodriguez et al. 2011), and the 
fruit color genes PSY1 (Fray and Grierson 1993), Beta-
carotene (Ronen et al. 2000), Delta (Ronen et al. 1999), 
and HIGH-PIGMENT (Lieberman et al. 2004).

Wild tomato species

The 12 members of the Lycopersicon clade (excluding 
cultivated tomato) display a high level of phenotypic 
and genetic variation, adaptations to a wide range of 
environments, and growth in a myriad of habitats, 
from high elevations with extreme drought and heat 
conditions, down to the coasts of the Pacific Ocean, and 
the Galápagos Islands more than 1,000 miles away from 
mainland South America (Peralta and Spooner 2000). 
The three wild species most closely related to cultivated 
tomato are the red-fruited Solanum pimpinellifolium, 
and two orange-fruited species, native to the Galápagos 
Islands, Solanum cheesmaniae and Solanum galapagense. 
Phylogenetic and molecular evidence shows that the 
putative closest wild tomato relative is S. pimpinellifolium, 
(Tomato Genome Consortium 2012).

Wild tomatoes have an important role as a reservoir 
of genetic diversity and are important for breeding 
purposes, for example, many alleles contributing to biotic 
and abiotic stress have been introduced into commercial 
inbreds from S. chilense (Xia et al. 2010; Verlaan et al. 
2011), S. peruvianum (Rick 1986; Virginia Sanchez-
Puerta and Williams Masuelli 2011), S. habrochaites 
(Finkers et al. 2007), S. pimpinellifolium (Duan et al. 
2012, Lin and Martin 2007; Merk et al. 2012), and S. 
pennellii (Semel et al. 2007; Sharlach et al. 2013;  Yu et al. 
2010). Moreover, their rich environmental adaptations, 
and incomplete reproductive barriers, make tomatoes an 
excellent group for studying evolutionary processes such 
as adaptation, divergence, and speciation (Moyle 2008). 
Current resequencing efforts of multiple wild tomato 
accessions, such as the 150 Tomato Genomes Project, will 
further clarify the intra and interspecific relationships 
within the tomato sub clade. Additionally, hundreds 
of wild accessions that have been collected for decades 

in South America (Rick 1976) make up an invaluable 
resource for breeding, molecular, phylogenetic, and 
genomic research.

Tomato breeding

During extensive breeding of tomato, selection was 
focused on traits desirable for either processing tomatoes 
or fresh market tomatoes, splitting tomato cultivation 
into two major industries. Processing tomatoes are 
usually grown in open fields, need to have high sugar and 
total soluble solids content, and have simultaneous fruit 
ripening to allow lower costs associated with cultivation, 
and machinery harvesting. Fresh market tomatoes are 
bred for traits associated with consumer preference, 
such as large fruit size, uniform fruit shape (usually 
round), uniform red color, and also long shelf life and 
fruit firmness (Rick 1978). A single recessive gene, SELF 
PRUNING (Pnueli et al. 1998) regulates determinate 
plant habit, having the plant set all fruits and reach 
maximum size concurrently, while in indeterminate 
plants fruits of all growth stages develop on the same 
vine, which allow for a longer period of harvest. Yet the 
differences between the various tomato classifications 
are genome-wide, as demonstrated by genome analysis 
of SNPs among fresh market, processing, and heirloom 
tomatoes, showing distinct signatures for each group, 
which can define each as a separate subpopulation (Sim 
et al. 2012b).

As mentioned, an important advantage for tomato 
breeding is the fact that domesticated tomatoes can 
relatively easily outcross with wild tomato species. 
This property has been exploited for designing genetic 
markers and mapping populations (Eshed and Zamir 
1995; Frary et al. 2005;  Lippman et al. 2007), which 
have been the main driving force in marker-assisted 
selection for desirable traits such as fruit size (Frary et 
al. 2000), ripening (Moore et al. 2002), shape (Rodriguez 
et al. 2011), sugar content (Fridman et al. 2002), and 
resistance to biotic and abiotic stress (Labate and 
Robertson 2012; Verlaan et al. 2013). Since virtually all 
heirloom tomatoes are disease susceptible, and have lost 
genetic diversity allowing for disease resistance (Bai and 
Lindhout 2007; Ranc et al. 2012; Robbins et al. 2011), 
modern plant breeding practices require introgressing 
the lost traits back from the wild relatives (Grandillo et 
al. 2011), for example the bacterial resistance gene Pto 
was introgressed into tomato cultivars in the 1930s 
from Solanum pimpinellifolium (Lin and Martin 2007). 
A century of plant breeding and selection resulted in 
numerous commercial hybrids and cultivars which 
contain wild genome regions with favorable alleles, 
but also introgressed genome fragments, referred to as 
cryptic introgressions, that can negatively affect desirable 
traits (Labate and Robertson 2012).
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Decades of breeding for visually appealing traits 
and beneficial properties for large scale agricultural 
business has neglected the properties of flavor, resulting 
in the common complaint concerning the loss of the 
typical tomato flavor in fresh market tomatoes. The 
poor flavor may be attributed to the dramatic loss in 
genetic diversity in the commercial varieties (Klee and 
Tieman 2013; Mathieu et al. 2009). Today’s breeders 
face a challenge of re-introducing the complex trait of 
flavor, which is the result of a combination of multiple 
alleles. Concomitantly, commercial hybrids have to be 
continuously bred for novel disease resistance genes, 
as the average effectiveness of a new resistance allele is 
projected to last for no more than five years until the 
pathogen overcomes the resistance. While heirloom lines 
of S. lycopersicum still have many positive flavor-related 
alleles, it is difficult to cherry-pick those qualities to avoid 
the negative disease susceptible alleles, thus the wild 
species are the most valuable source for reintroducing 
variation for useful lost traits.

Tomato genome sequencing

The tomato sequencing project began in 2004 by 
an international consortium of participants from 
14 countries. The accession chosen for the genome 
sequencing was ‘Heinz 1706’, a processing inbred 
cultivar, which has a number of known introgressions 
from wild relatives, including resistance genes for 
Fusarium and Verticillium wilt (Ozminkowski 2004). 
Initially the approach was sequencing a BAC tiling 
path of the euchromatin, which contains more than 
90% of the genes, but spans less than 25% of the 
900 Mb genome (Mueller et al. 2009). While the 
BAC sequencing approach yielded high quality reads 
anchored to chromosomes using a FISH map and high-
density genetic map, it could not resolve the repeat-
rich heterochromatic regions. In 2009, with more than 
1,200 BACs sequenced, whole-genome 454 sequencing 
was used to the BAC sequences, and provid higher 
coverage for assembling the entire genome. The genome 
was annotated by the International Tomato Annotation 
Group (ITAG), providing predicted gene models, 
proteins, cDNA alignments, CDs, and repeats. Both the 
genome assembly and the annotations are versioned and 
can be accessed at the sol genomics network website 
(Bombarely et al. 2011; Tomato Genome Consortium 
2012).

The tomato sequencing consortium also released a 
draft genome for S. pimpinellifolium, and determined an 
estimated divergence of 0.6% compared to the ‘Heinz 
1706’ reference genome, as well as several putative S. 
pimpinellifolium introgressed genome regions in the 
‘Heinz 1706’ genome, showing its breeding history 
involved crossing with the wild relative. This study is a 

starting point for facilitating breeding programs using 
introgression analysis and introducing beneficial alleles 
from tomato wild species into commercial germplasm.

Published research enabled by tomato 
genome

The availability of the high quality S. lycopersicum ‘Heinz 
1706’ genome has greatly promoted the development 
of tomato research in many areas. It has been utilized 
in many studies since its public release, predominantly 
in screening and identifying candidate genes related 
mostly to fruit development and ripening processes, 
databases and bioinformatics studies based on the tomato 
sequence, and serving as a reference genome for other 
Solanaceae species. These studies (Table 1, Figure 1) 
provide a proof of concept for the capacity of the tomato 
genome to serve as a true reference genome for closely-
related Solanaceae and to further enable the research of 
orthologous genes and gene families, gene mapping, and 
genome evolution both within tomato and also amongst 
more divergent plants. Also, the rapid development in 
sequencing technology is shifting modern breeding, from 
multi-generation marker-assisted selection to genome-
wide approaches for improving crops, as well as moving 
basic research towards systems approach studies of gene 
networks, transcriptomics, proteomics, and epigenomics. 
The following will discuss specific work enabled by the 
tomato genome sequence and insight gained from these 
studies.

Assembly guidance and benchmarks
Next generation sequencing produces short reads that 
are difficult to assemble without the availability of a 
quality reference genome from a closely related species. 
The tomato genome was first used for reference-guided 
assembly with S. pimpinellifolium Illumina reads, 
allowing for SNP detection between the two genomes 
and information concerning divergence of the presumed 
closest relative to cultivated tomato (Tomato Genome 
Consortium 2012). A number of other genomes are being 
assembled using this approach including S. lycopersicum 
lines and close relatives, such as the Tomato 150 genomes 
project (Finkers and van Heusden 2013), and the SOL-
100 project (http://solgenomics.net/organism/sol100/
view) (see Future Research section).

The utility of the tomato genome assembly is also 
demonstrated by its use as a benchmark in other genome 
projects and as a test set for bioinformatics program 
development. The number of predicted genes in tomato 
has been used as a guideline in assemblies of sequences 
from other related species, such as in a transcriptome 
assembly of Centaurea solstitialis (Dlugosch et al. 
2013) to determine the completeness of the assembly. 
To compare benchmarks of cloud computing using 
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GenomeThreader, the tomato genome was used as a test 
dataset for gene structure prediction (Cohen et al. 2013).

Gene annotation
Gene annotation can include analysis of gene location 
and structure as well as work to predict gene function 
based on sequence similarity to genes of known function. 
The tomato reference assembly was useful in determining 
the genomic location of SlscADH1, an alcohol 
dehydrogenase involved in fruit ripening (Moummou 

et al. 2012). In another study, analysis of the genome 
revealed a single copy of the sulfite reductase (SiR) gene 
that is necessary for protecting against sulfite toxicity 
(Yarmolinsky et al. 2013). The sequence of the gene 
phytoene synthase 1 (PSY1) from yellow-fruited mutant 
was compared to the ‘Heinz 1706’ sequence to determine 
there were no defects in the gene that may responsible for 
its phenotype (Kachanovsky et al. 2012).

Several studies have used the tomato genome data to 
predict gene function both within tomato and in related 

Table  1.  Research topics enabled by the tomato reference genome, and the primary outcomes.

Topic Outcomes References

Assembly guidance and 
benchmarks

Genome and transcriptome assembly Dlugosch et al. 2013, Cohen et al. 2013, Asamizu et al. 2012
Gene prediction

Gene annotation Gene location, structure, and function. Moummou et al. 2012, Yarmolinsky et al. 2013, Kachanovsky et al. 
2012, Chalivendra et al. 2013, Fujisawa et al. 2013, Liu et al. 2013RNaseq annotation

Epigenetics and expression Genomic methylation Zhong et al. 2013, Karlova et al. 2013, Van Vu et al. 2012, Ruzicka et al. 
2012, Huang et al. 2013, Gupta et al. 2013, Kumar et al. 2012, Tzfadia 
et al. 2012, Quadrana et al. 2013, Sablok et al. 2013, Cigliano et al. 
2013, Osorio et al. 2013, Hendelman et al. 2013

miRNA and transcript identification
Tissue specific expression
Gene and networks prediction
Protein expression

Phenotype to genotype Trait-specific marker development Sharlach et al. 2013, Sim et al. 2012b, Kadirvel et al. 2013, MacAlister et 
al. 2012, Chibon et al. 2012, Asamizu et al. 2012Gene mapping and expression

QTL analysis
SNP location, linking with gene function

Gene families Gene family prediction Huang et al. 2013, Sakamoto et al. 2012, Pirrello et al. 2012, Villagarcia 
et al. 2012, Sanseverino et al. 2010Genome distribution

Phylogenetic analysis
Database framework

Comparative genomics Genome polymorphism Tomato Genome Consortium 2012, Asamizu et al. 2012, Di Matteo et 
al. 2013, Andolfo et al. 2013, Góngora-Castillo et al. 2012, Shirasawa 
et al. 2010, Sugita et al. 2013, Wei et al. 2012, Wang et al. 2013, Shahin 
et al. 2012, Goulet et al. 2012, De Smet et al. 2013

Candidate gene prediction
Resequencing
Gene and sequence conservation
Comparative mapping
Orthologs mapping

Figure  1.	 Word cloud generated from titles and keywords of peer-reviewed papers citing the tomato genome. Size of each word is proportional to its 
rate of occurrence. The cartoon was generated by http://www.tagxedo.com.
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species. Proteins found in the stigmas and styles from key 
developmental stages in these tissues aimed to identify 
protein changes associated with the onset of reproductive 
barriers. Proteins in the study were identified using 
predicted proteins from the tomato dataset (Chalivendra 
et al. 2013). RIPENING INHIBITOR (RIN) target 
loci found in a CHiP-chip study were identified and 
positioned by mapping these sequences back to the 
tomato genome (Fujisawa et al. 2013). Additionally, 
genomic and protein data from tomato was used for the 
annotation of assembled RNA-seq transcripts from a 
tomato relative, Capsicum frutescens (Liu et al. 2013).

Epigenetics and gene expression
Both epigenetics and gene expression are currently 
prevalent areas of research, both of which benefit greatly 
from the tomato genome sequence. For example, genome 
resequencing was used in conjunction with bisulfite 
sequencing to study changes in genomic methylation 
during fruit ripening in tomato (Zhong et al. 2013). 
It was found that 1% of the genome is differentially 
methylated in fruit and binding sites for the ripening-
inhibitor RIN gene are frequently found in these regions 
(Zhong et al. 2013). To study potential microRNAs 
targets in gene silencing, the annotation available 
for the tomato genome allowed for identification of 
miRNA-mRNA pairs throughout the genome (Karlova 
et al. 2013). It has also been advantageous to search 
the genome sequence to ensure there are no similar 
sequences that may results in off-target effects (Van Vu et 
al. 2012).

RNA-seq technology is now commonly used in 
gene expression analysis (Strickler et al. 2012), but 
most analysis pipelines require a high quality reference 
genome or transcriptome as a template for read mapping. 
To this end, the tomato genome has been useful in many 
studies. For example, reads from wild type and mutant 
tomatoes grown in soil where arbuscular mycorrhizal 
fungi were present were mapped to the genome to 
ensure the reads were from tomato and to identify 
novel transcripts (Ruzicka et al. 2012). SUN, OFP, 
GABBY transcription factor expression was analyzed 
by mapping reads to the tomato genome to determine 
that some may exhibit tissue-specific expression and 
there are chromosomal locations enriched with these 
genes (Huang et al. 2013). A number of novel genes were 
found to have auxin or cytokinin-induced differential 
expression, in root tissues of S. lycopersicum ‘Micro-Tom’ 
as deduced by quantifying reads mapped to the reference 
(Gupta et al. 2013). Some of these genes are orthologous 
to cytokinin or auxin-regulated genes in other plant 
species (Gupta et al. 2013). RNA-seq reads can also be 
mapped back to predicted ITAG2.3 cDNAs from the 
tomato genome data using next generation aligners, such 
as Bowtie (Kumar et al. 2012).

Insights in expression can also be gained through 
microarray experiments and identification of gene 
regulatory elements. To explore gene expression 
networks, microarray probes from the tomato Affymetrix 
chip were mapped to the tomato genome and the 
corresponding genes were identified for use in a pathway 
prediction tool called MORPH (Tzfadia et al. 2012). 
Regulatory elements for 47 genes involved in tocopherol 
synthesis were predicted based on ITAG2.3 annotations 
and tomato genome sequence. Expression networks 
were generated and as a result, several key genes were 
identified that may be good targets for improving the 
nutritional value of tomato (Quadrana et al. 2013). Lastly, 
to study protein expression, translation usage bias was 
calculated for mutaions in the varieties ‘Micro-Tom’ and 
‘Heinz 1706’ (Sablok et al. 2013).

Data generated directly as part of the tomato genome 
project has proven useful in expression analysis for 
other projects. Expression data generated in the tomato 
genome project was used to look at expression of histone 
modifiers and the map position for these genes was 
determined for S. pennellii introgression lines (Cigliano 
et al. 2013). The tomato genome project RNA-seq data 
was also used to look at expression of SlNADP-ME 
genes in different stages of fruit development to better 
understand their role in ripening (Osorio et al. 2013),  
and to identify and observe expression of two tomato 
Argonaute1 (SlAGO1) transcripts in different tomato 
tissues (Hendelman et al. 2013).

Phenotype to genotype studies
The ability to determine the genomic location of a DNA 
sequence is an asset when developing markers for use 
in trait mapping. The tomato physical map was used 
to identify positions for markers linked to yellow leaf 
curl (Ty) resistance from a wild species introgression 
(Kadirvel et al. 2013), and also for designing markers 
such as those used in fine mapping a bacterial spot 
resistance locus derived from a S. pennellii introgression 
in cultivated tomato (Sharlach et al. 2013). Markers were 
also developed based on the S. pimpinellifolium assembly 
to map TERMINATING FLOWER (TMF), a gene 
involved in flowering, and ITAG2.3 coding sequence 
annotations were used to observe expression of the 
mapped gene (MacAlister et al. 2012). The functionality 
of the QTL tool, Marker2sequence, was demonstrated 
using the tomato genome annotations to identify genes 
linked to QTL of interest (Chibon et al. 2012).

To find the physical locations of SNPs on the SolCAP 
tomato array, sequences flanking SNPs were mapped 
back to the tomato genome assembly using BLAST 
(Sim et al. 2012b). These SNPs were then used to look 
at population structure within cultivated tomato and S. 
pimpinellifolium. A similar approach to locate SNPs was 
used with another SNP chip dataset that included many 
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tomato lines, hybrids, and some wild species (Asamizu 
et al. 2012). SNPs that occurred near genes were further 
analyzed to determine possible effects on gene function.

Gene families
The tomato genome sequence can be mined to find 
gene families, analyze gene relationships, and determine 
gene family distribution across the chromosomes. For 
example, protein homology can also be used to identify 
genes of interest such as in a study that identified putative 
Receptor-like Kinases (RLKs) found by BLAST of the 
ITAG2.3 protein dataset (Sakamoto et al. 2012). Putative 
SUN, OFP, GABBY transcriptions factors in tomato 
predicted proteins and genome assembly, were identified 
for phylogenetic analysis and also to determine these 
transcription factors often cluster within the genome 
(Huang et al. 2013). Phylogenies were produced for both 
Ethylene Response Factor (ERF) factors using the tomato 
genome to identify 146 putative ERF proteins (Pirrello et 
al. 2012), and for ERECTA genes, which are involved in 
plant architecture and found in tomato and a number of 
other species (Villagarcia et al. 2012).

Gene family databases can also be created based 
on data gained from the tomato genome. Specifically, 
members of the disease resistance R gene family found 
in tomato genome and other species were used to create a 
database for this gene type (Sanseverino et al. 2010).

Comparative genomics
The availability of the tomato genome sequence is pivotal 
for Solanaceae and fleshy fruit comparative genomics as 
well as studies amongst more divergent species. Within 
the tomato clade, genome comparisons have been 
useful in determining information about variation both 
within cultivated and in comparison to wild tomatoes. 
For example, ‘Micro-Tom’ BAC-end sequences were 
mapped to the ‘Heinz 1706’ genome as a reference to 
find polymorphism and rearrangement between the 
two genome (Asamizu et al. 2012). As expected, more 
polymorphism was observed in the heterochromatin. 
Two putative genome rearrangements were found, 
an inversion on chromosome 2 and an inversion and 
translocation on chromosome 3. Another study predicted 
genes from a S. pennellii introgression involved in higher 
expression of fruit phenolics based on ‘Heinz 1706’ 
annotations (Di Matteo et al. 2013). Genome comparison 
can also be done through resequencing studies, i.e. 
short read sequencing at a low depth of coverage, 
both within S. lycopersicum and with closely related 
species by mapping reads to the ‘Heinz 1706’ reference 
genome. This has been demonstrated by mapping S. 
pimpinellifolium reads to ‘Heinz 1706’ to calculate SNPs 
(Tomato Genome Consortium 2012).

The tomato genome has been used in comparison 
with a number of other Solanaceae genomes. Potato 

studies have been particularly information-rich, since 
full genome sequence is available for this species as well 
(Potato Genome Sequencing Consortium et al. 2011). 
Identification and chromosomal distribution of tomato 
and potato pathogen recognition genes was performed 
using ITAG annotations and it was observed many of 
these genes are undergoing adaptive divergence (Andolfo 
et al. 2013). Orthologous clusters of genes involved in 
geminivirus response were generated using tomato, C. 
annuum, and S. tuberosum to find conservation of genes 
involved in this disease response pathway (Góngora-
Castillo et al. 2012). Other studies have found the tomato 
genome data to be useful in generating comparative 
maps between species. SSR markers were created for 
comparative mapping between pepper and tomato 
(Shirasawa et al. 2010) and COS markers between pepper 
and tomato were anchored for linkage map construction 
(Sugita et al. 2013). DNA sequences from Physalis were 
used to find orthologous matches to the tomato genome 
allowing for the conclusion that sequence similarity 
between the two species is sufficient for marker transfer 
from tomato (Wei et al. 2012).

Interesting information can be obtained by comparing 
tomato to more divergent species. By searching tomato 
sequence to identify chromoplast proteins, putative 
homologs were identified and subsequently compared 
to five other carotenoid-rich plant species, including 
watermelon, carrot, orange cauliflower, red papaya, and 
red bell pepper (Wang et al. 2013). Statistics on potato 
and tomato orthologous group comparisons were useful 
in comparing results in a study with lily and tulip to 
determine that the number of orthologous groups shared 
in the Liliaceae may to be lower than in tomato-potato 
comparisons, likely due to a greater divergence time in 
the Liliaceae family (Shahin et al. 2012). The tomato 
genome was used to deduce that an insertion found in 
the esterase gene, SlCXE1, may be Solanum-specific 
based on sequence comparisons to species represented 
in the NCBI database (Goulet et al. 2012). Another 
study focused on single copy genes found in tomato, 
Chinese cabbage, and banana. These genes often exhibit 
higher expression and sequence conservation and may 
be resistant to duplication since they are often essential 
housekeeping genes (De Smet et al. 2013).

Future improvements to the reference 
genome

There is no doubt the availability of a high quality 
reference tomato genome has had a huge impact on 
Solanaceae research. Despite this observation, as with 
any whole genome sequencing project, there is still 
room for improvement. Many gaps still exist in the 
genome assembly and a substantial number of genes 
have not been placed on an actual chromosome, hence 
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the existence of a chromosome 0 in the assembly. It is 
hoped that FISH data will aid in locating some of these 
regions. Some important genes have been lost during 
domestication and breeding that are known to be 
represented in wild tomato species, such as some parts 
of the PTO locus (Lin and Martin 2007), and the SUN 
locus which is completely missing from ‘Heinz 1706’, 
but exists in other tomato varieties (Xiao et al. 2008). 
Furthermore, S. lycopersicum exhibits reduced genetic 
diversity likely due to the bottlenecks it underwent 
during domestication (Miller and Tanksley 1990). As 
mentioned, introgression of wild species in breeding 
has helped to alleviate the lack of diversity in tomato 
and current and future efforts will aim to gain a better 
understanding of these species and the diversity they 
capture. While the tomato genome has been useful for 
reference-guided assembly of near relatives, reference 
genomes for more divergent wild relatives will be needed 
for comparative studies. It is important to note, these 
wild tomato species tend to be heterozygous, often an 
effect of obligate outcrossing, which can complicate 
genome assembly. Lastly, there currently exists whole 
genome data for a limited number of cultivated and wild 
species, so it will be necessary to generate more complete 
data concerning variation within tomato species and 
wild tomato accessions so that population genetics-based 
models can be properly applied.

Resources

In addition to sequenced genomes, a number of 
resources exist for the Solanaceae research community, 
which can aid and impact research in a variety of 
ways (Table 2). The sol genomics network database 
contains a number of tools useful both to breeders and 
basic researchers (Bombarely et al. 2011). Many maps 
and markers can be found there, as well as a genome 
browser for the tomato genome and annotations, pages 
concerning information for tomato loci, and a BLAST 
search tool. A centralized area for breeders, called the 
Breeder’s Toolbox, provides an easy access point for a 
number of breeding tools and information. Members of 
the Solanaceae research community can edit some data 
types, such as genetic loci, and phenotyped accessions, 
allowing information to be easily disseminated to other 
researchers (Menda et al. 2008). Another part of the site 
consists of the SolCyc pathway databases, which contain 
detailed information on metabolic pathways in the 
Solanaceae. The sol genomics database is clade-oriented, 
meaning that it contains data for a number of other 
related species, as well as common model plant species. 
Furthermore, ontology terms have been developed for 
the Solanaceae to provide a standardized vocabulary for 
describing their phenotypes (Cooper et al. 2013; Jung et 
al. 2011; Menda et al. 2008).

A number of other databases exist that store 
Solanaceae genetic, phenotypic, and phylogenetic data 
(Table 2). Some databases contain an abundance of 
expression data, such as the Sequence Read Archive 
(SRA) housed at the NCBI (Leinonen et al. 2011), and 
the Tomato Functional Genomics Database (Fei et al. 
2011), while others focus on the results of tomato-related 
projects. The SolCAP project has mined SNPs between a 
large number of cultivated tomato lines and some wild 
species and has also generated extensive phenotypic 
data for both tomato and potato (Hamilton et al. 2011a; 
Hamilton et al. 2012; Merk et al. 2012). An array has 
been created from the SNPs identified in this project 
and the SNP data can also be found in the sol genomics 
database. Tomato stocks and wild accessions can be 
found and obtained by querying the databases at the 
Tomato Genetic Resource Collection (http://tgrc.ucdavis.
edu) as well as the Germplasm Resources Information 
Network (USDA database, http://www.ars-grin.gov/).

In addition to databases, several other genetic 
and genomic resources are available for the tomato 
community. Of particular use to breeding, linkage 
maps have been created mainly from populations 
derived from crosses to wild species. These studies 
have allowed a number of quanitative trait loci (QTL) 
affecting important traits, such as yield, morphology, and 
fruit characterisitics to be identified for use in tomato 
breeding (Table 2).

Future of Solanaceae research

Genome sequencing technology enables more rapid 
breeding for desirable traits using previously known 
genetic knowledge, and utilizing the high level of 
genome conservation in the Solanaceae family. As more 
accessions are re-sequenced using the tomato reference 
genome, it is expected to impact breeding programs, 
addressing current challenges in ensuring food security 
in a world of climate change. Currently, several projects 
exist that attempt to explore the limits of genetic 
diversity in cultivated tomato, wild tomato species, and 
other Solanaceae family members. The 150 Tomato 
Resequencing Project aims to re-sequence many tomato 
lines including 10 heirlooms, 43 landraces, and 30 wild 
accessions, in addition to three wild species, which will 
be sequenced at higher coverage for de novo genome 
assembly, and 60 F8 generation individuals from a S. 
pimpinellifolium RILs (http://www.tomatogenome.net/) 
(Finkers and van Heusden 2013). The data generated 
from these efforts should be publicly available in the 
near future. A community effort to create a common 
Solanaceae-based genomic framework has resulted in 
the creation of a project called SOL-100 for sequencing 
genomes encompassing the phylogenetic diversity of the 
group (http://solgenomics.net/organism/sol100/view). 
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Table  2.  Major resources of genomic, genetic, and phenotypic tools for tomato and close relatives.

Topic Resource Data types References

Databases sol genomics network 
(SGN)

Solanaceae genomics, genetic, phenotypic, 
taxonomic information and tools.

Bombarely et al. 2011

Solanaceae Source Phylogenetic and taxonomic information PBI Solanum Project. 2013
Tomato Functional 

Genomics Database
Expression and metabolites Fei et al. 2011

SolCyc Solanaceae biochemical pathways Bombarely et al. 2011
NCBI Sequence Read 

Archive (SRA)
580 Solanaceae experiments (RNA, DNA, and 

whole genome reads).
Leinonen et al. 2011

TGRC Tomato monogenic mutants (>800). Wild 
tomato accessions (>1,000). Tomato cultivars 
(>200)

http://tgrc.ucdavis.edu/

GRIN Thousand of accessions for tomato, potato, 
pepper, eggplant, petunia, and tobacco

http://www.ars-grin.gov/

EU-SOL Core collection of >7,000 tomato accessions 
from public and private collections

https://www.eu-sol.wur.nl/

SolCAP ∼8,000 verified SNPs for tomato and potato Sim et al. 2012b, Hamilton et al. 2011b
Tomato M82 mutants EMS and Fast-neutron monogenic mutants Menda et al. 2004
LycoTILL TILLING of a tomato EMS population Minoia et al. 2010
UCD TILLING core Solanum lycopersicum, cv. VFNT Cherry mutant 

populations
http://tilling.ucdavis.edu/index.php/

Tomato_Tilling
UTiLLdb Tomato and pepper EMS mutants Dalmais et al. 2008
TOMATOMA Tomato ‘Micro-Tom’ variety population Okabe et al. 2011
MiBase EST and unigene dataset from ‘Micro-Tom’ Yano et al. 2006
KafTom The Kazusa Micro-Tom full-length cDNA Site http://www.pgb.kazusa.or.jp/kaftom/
Kappa-View 4 SOL Metabolic pathway maps of Solanaceae and 

related species
http://kpv.kazusa.or.jp/kpv4-sol

MassBase A mass spectral tag archive for metabolomics. http://webs2.kazusa.or.jp/massbase/
Nijmegen Experimental 

Garden and Genebank
ex situ plant collection of non-tuberous 

Solanaceae species in the world
http://www.ru.nl/bgard/

Genomes S. lycopersicum The reference tomato genome of Heinz1706 Tomato Genome Consortium 2012
S. pimpinellifolium De novo 40X draft genome Tomato Genome Consortium 2012
Solanum tuberosum group 

phureja
The reference potato genome Potato Genome Sequencing Consortium 

et al. 2011
Nicotiana benthamiana 63X draft genome Bombarely et al. 2012
MicroTom tomato Resequencing of a model tomato cultivar  http://trace.ddbj.nig.ac.jp/DRASearch/

study?acc=DRP000312
Introgression lines S. pennellii 76 introgression lines, M82 background Eshed and Zamir 1995

S. habrochaites LA1777 99 NILs and BCRILs in E6203 background Monforte and Tanksley 2000
S. habrochaites LYC4 30 introgression lines, Money Maker background Finkers et al. 2007
S. habrochaites LA407 64 IBC lines Francis et al. 2001
S. lycopersicoides LA2951 90 introgression lines, VF36 background Canady et al. 2005

Linkage maps Eggplant F2 mapping populations Doganlar et al. 2002b, Doganlar et al. 
2002a, Brand et al. 2012, Wu et al. 
2009b, Wu et al. 2006

Pepper F2 mapping populations Wu et al. 2006, Wu et al. 2009a
Petunia F2 mapping populations http://solgenomics.net
Potato BC1 map, meta-QTL consensus map Tanksley et al. 1992, Danan et al. 2011
Tobacco F2 mapping populations Bindler et al. 2007
Tomato F2, BC1, and BC2 populations, introgresion 

lines, QTL maps, SolCAP markers, FISH, 
FCP, physical BAC map, AGP, pachytene 
chromosomes, ITAG.

Fulton et al. 2002, Eshed and Zamir 1995, 
Shirasawa et al. 2010, Sim et al. 2012a, 
Ashrafi et al. 2009, Stack et al. 2009, 
Doganlar et al. 2002c, Bernacchi and 
Tanksley 1997, Jimenez-Gomez et al. 
2007, van der Knaap and Tanksley 
2003, Van Der Knaap et al. 2002, 
Tanksley et al. 1996, Grandillo and 
Tanksley 1996

QTLs SolQTL In silico analysis of QTLs, Tecle et al. 2010
Real Time QTL QTLs scored for S. pennellii introgression lines Gur et al. 2004
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Figure 2 depicts a subset of the species representing the 
major sub-clades of the family. The Solanaceae family is 
one of the most morphologically diverse plant families, 
with more than 3,000 described species (Knapp et 
al. 2004; PBI Solanum Project 2013), and worldwide 
distribution. In addition to tomato, the family includes 
many plants of high economic value, such as food crops 
(potato, eggplant, and pepper), ornamentals (Petunia 
and Schizanthus), and plants with unique biochemical 
metabolites, many of which are medicinal alkaloids, such 
as nicotine, atropine, and scopolamine. The goals of the 

project are to study how a common set of genes gave rise 
to such phenotypically diverse species in the taxon, and 
to understand the genetic basis for plant biodiversity 
as well as to generate sequence information for the 
linking of both genetic and physical maps of sequenced 
species. This will be used in the genetic mapping of 
traits especially to compare information gained from 
phenotyping studies in other species to a lesser-studied 
species. Sequence for several SOL-100 species, such as 
Nicotiana benthamiana (Bombarely et al. 2012) and S. 
pimpinellifolium (Tomato Genome Consortium 2012), 
is already available, with several other projects currently 
underway (Table 2). By uploading data to the SOL-
100 project page, researchers preparing to sequence a 
Solanaceae species can inform other researchers of their 
plans.

As more Solanaceae genome sequences become 
available, will be of outmost importance the generation 
of high quality annotations for these genomes. 
Also, improvements can continue to be made to the 
currently available genomes. For the tomato genome, 
the community has contributed improvements to the 
genome based on new research. For example, some genes 
were annotated with incorrect exon-intron boundaries, 
which users have reported, and these updates will be 
incorporated in future genome releases. Identification 
of gene regulatory regions, such as promoter locations, 
would also be a useful information for the improvement 
of gene annotation, understanding levels of control on 
gene expression, and also for interesting studies of 
regulatory element evolution. Additionally, knock-out 
lines, such as the SALK lines available for Arabidopsis 
(Alonso et al. 2003), would prove immensely useful in 
determining gene function and phenotypic effect.

An important step in tomato research will be linking 
genotype and phenotype information in a form that 
will be useful to breeding programs. Genome-wide 
association mapping (GWAS) is a commonly used 
method to link phenotype data to genotype, and a large 
amount of SNP data has been generated as a result of the 
SolCAP project providing a valuable resource (Sim et al. 
2012a). Although the low variation in cultivated tomato 
and relatively higher linkage disequilibrium may reduce 
the resolution of GWAS, some recent work has shown the 
potential of genome wide association mapping in tomato 
(Ranc et al. 2012; Sim et al. 2012c; Xu et al. 2013).

Only one year after the publication of the genome, 
it has already had a tremendous impact on tomato 
research. Now that the tomato genome is available, 
additional data is rapidly being generated. Data such as 
expression, eQTLS, metabolomic data, and epigenetics 
all interplay to result in phenotype and it will be critical 
to develop methods that link these various data types so 
that we can gain a greater understanding of tomato and 
how it may be improved, especially in terms of flavor, 

Figure  2.	 Cladogram representing the Solanaceae comprising the 
SOL-100. Species with a sequencing project are shown in bold. The tree 
was generated with data from NCBI Taxonomy (Federhen 2012).
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disease resistance, and adaptations to climate change.
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