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Abstract Forest trees produce an important feedstock, wood. Forest tree breeding programs have been traditionally 
carried out by selecting elite trees to enhance productivity and processability. Recently, however, a biotechnological approach 
has attracted much attention because it enables efficient and versatile improvement of forest trees. In the last decade, forest 
tree biotechnology has considerably progressed: genomic sequences of several forest tree species have been decoded, efficient 
Agrobacterim-mediated genetic transformation and regeneration systems have been established in a number of forest 
tree species, and many reports have been published on the metabolic engineering of a major wood component, lignin, 
in forest trees. However, in contrast to the metabolic engineering of lignin, the metabolic engineering of cellulose and 
hemicelluloses in forest trees awaits further development. The detrimental effects on tree growth are often concomitant with 
the metabolic engineering of wood components. To mitigate such effects, fine-tuned regulation of transgene expression, and 
the production of value-added products may be targeted in future forest tree biotechnology.
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Forest trees are important for the environment of the 
earth as well as for human life. Forest trees comprise 
about 70–90% of terrestrial biomass, which greatly 
impacts the carbon, water, and oxygen cycles in the 
atmosphere (Houghton et al. 2009). In addition, forest 
trees accumulate huge amounts of wood in their 
trunks. Human beings utilize wood as lumber, fuel, 
and feedstock for pulp and paper. Recently wood has 
also attracted attention as feedstock for biorefinary as a 
carbon-neutral renewable resource (Sannigrahi et al. 
2010).

Because forest trees produce important feedstock, 
wood, forest tree breeding programs have been 
traditionally carried out by selecting elite trees. However, 
due to the long life cycles, long generation times, and 
the late sexual maturity of forest trees, traditional tree 
breeding programs require very long time intervals. 
Furthermore, genes responsible for versatile demands 
in terms of commercially important traits are often not 
available within the gene populations of the target tree 
species. Thus, these necessitate better tree improvement 
programs in which modern biotechnology plays an 
important role (Umezawa et al. 2008).

Thus far, many reports of functional genomics and 
metabolic engineering have been published about the 
poplar species (Ye et al. 2011). Recent advances in the 
massive parallel sequencing of the genome and the 
transcriptome have been boosting such research in 
various forest tree species (Neale and Kremer 2011). 
In this review, we focus on the most recent advances of 
forest tree biotechnology including genomic sequencing, 
transgenic technology, and the metabolic engineering 
of wood components in forest trees as a way to benefit 
researchers in future biotechnological research for tree 
improvement.

Genomic sequencing

The genome sequencing of a tree species was reported 
in 2006 for the first time (Tuskan et al. 2006). They 
sequenced the genome of a female strain of Populus 
trichocarpa “Nisqually-1”. The total number of coding 
genes is 41,335, and the genome size is approximately 
423 Mb according to the P. trichocarpa genome assembly 
ver. 3.

A decade ago, genome sequencing of a plant 
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species was performed through a large-scaled project 
(International Rice Genome Sequencing Project 
2005; Tuskan et al. 2006). Because the next-generation 
sequencer enabled cost-effective massive parallel 
sequencing, many genomic sequencing projects 
have been completed or are currently underway. For 
example, two genomes of the Eucalyptus species have 
been sequenced in Japan and the US: E. camaldulensis 
(Hirakawa et al. 2011) and E. grandis (Myburg et al. 
2011). More recently, a draft assembly of the 20-Gb 
Norway spruce (Picea abies) genome sequence has been 
reported. The genome size of the Norway spruce is more 
than 100 times bigger than that of Arabidopsis thaliana, 
but the number of well-supported genes (28,354) is 
similar to that of A. thaliana (Nystedt et al. 2013). In 
addition, whole genomic sequences from the dwarf birch 
(Betula nana) (Wang et al. 2013) and fruit trees such as 
the grapevine (Vitis vinifera) (The French-Italian Public 
Consortium for Grapevine Genome Characterization 
2007), Japanese apricot (Prunus mume) (Zhang et al. 
2012), peach (Prunus persica) (The International Peach 
Genome Initiative 2013), pear (Pyrus bretschneideri) (Wu 
et al. 2013), apple (Marus×domestica) (Velasco et al. 

2010), papaya (Carica papaya) (Ming et al. 2008), cocoa 
tree (Theobroma cacao) (Argout et al. 2011), and Jatropha 
curcas (Sato et al. 2011) were decoded. These genomic 
resources will help open new genomic avenues for forest 
tree biotechnology.

Transgenic technology

Agrobacterium-mediated genetic transformation and 
regeneration systems are now available in a number 
of forest tree species (Table 1). Because of the ease of 
transformation and regeneration, aspen and its hybrids 
(e.g. Populus tremula×tremuloides) have been widely 
used for research purposes. On the other hand, an 
efficient transformation and regeneration system for 
P. trichocarpa “Nisqually-1” has been desired for the 
functional genomics of Populus species because the 
genomic sequence has already been decoded (Tuskan et 
al. 2006). However, genotype Nisqually-1 was known to 
be recalcitrant for transformation and regeneration. Song 
et al. (2006) reported a highly efficient transformation 
and regeneration system for this genotype, which can be 
used for functional genomics in the poplar.

Table 1. Agrobacterium-mediated transgenic system for forest trees.

Family Scientific name Explant Agrobacterium 
tumefaciens strain Binary vector Selective reagent* Reference**

Hardwood species
Betulaceae Betula pendula Stem LBA4404 pRT210 Km 1
Fabaceae Acacia crassicarpa Phyllode LBA4404 pBI101 Km 2

Acacia mangium Stem LBA4404 pBI121 G418 3
Fagaceae Castanea sativa Embryogenic callus EHA105 pUbiGUSINT Km 4

Quercus robur Somatic embryo EHA105 p35SGUSINT Km 5
Quercus suber Somatic embryo AGL1 pUbiGUSINT Km 6

Juglandaceae Juglans nigra×regia Somatic embryo C58/pMP90 pKYLX71-35S Km 7
Myrtaceae Eucalyptus 

camaldulensis
Hypocotyl LBA4404 pBI121 Km 8

Eucalyptus 
camaldulensis

Leaf EHA105 pBinPlus Km 9

Eucalyptus globulus Hypocotyl EHA105 pBI121 Km 10
Eucalyptus 

grandis×urophylla
Leaf AGL1/pTiBo542 pBin19 Km 11

Salicaceae Populus tremula× 
tremuloides “T89”

Stem GV3101/pMP90RK pPCV702 Hyg or Km 12

Populus tremuloides Leaf C58 pBinSynGus Km 13
Populus trichocarpa 

“Nisqually-1”
Stem C58 pBI121 Km 14

Softwood species
Pinaceae Picea abies Embryogenic callus EHA105/pToK47 pBISN1 Km 15

Picea glauca Embryogenic callus EHA105/pToK47 pBI121 Km 16
Pinus radiata Cotyledon AGL1 pGA643 G418 or Km 17
Pinus taeda Embryogenic callus EHA105/pToK47 pBISN1 Km 15
Pinus taeda Mature zygotic 

embryo
GV3101 pPCV6NFHygGUSINT Hyg 18

Cupressaceae Chamaecyparis obtusa Embryogenic callus GV3101/pMP90 pBin19-sgfp Km 19

Cryptomeria japonica Embryogenic callus GV3101/pMP90 pUbiP-GFP Hyg or Km 20

* Hyg, hygromycin; Km, kanamycin ** 1, Keinonen-Mettälä et al. 1998; 2, Yang et al. 2008; 3, Xie and Hong 2002; 4, Corredoira et al. 2004; 5, Vidal et al. 2010; 6, Álvarez 
et al. 2004; 7, El Euch et al. 1998; 8, Kawaoka et al. 2006; 9, Valério et al. 2003; 10, Matsunaga et al. 2012; 11, Tournier et al. 2003; 12, Nilsson et al. 1992; 13, Tsai et al. 1994; 
14, Song et al. 2006; 15, Wenck et al. 1999; 16, Le et al. 2001; 17, Grant et al. 2004; 18, Tang et al. 2001; 19, Taniguchi et al. 2005; 20, Taniguchi et al. 2008.
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Metabolic engineering of wood 
components

Currently, wood produced by industrial forest trees has 
been utilized mainly as feedstock for pulp and timber 
industries. In these industries, the chemical and physical 
properties of wood are of course important factors 
to be considered. Wood properties are significantly 
affected by the properties of the thick cell walls. The cell 
walls are mainly composed of cellulose, hemicelluloses 
(glucuronoxylan and glucomannan), and lignin. 
Therefore, the quantity, structure, and distribution of 
these components influence properties such as strength, 
fiber quality, and pulp yield. Furthermore, fast-growing 
trees such as the poplar and eucalypt have become 
attractive recently as feedstock for cellulosic biorefinery 
(Sannigrahi et al. 2010). Also, increasing the yield of 
fermentable sugar from the feedstock would benefit the 
growing biorefinery industries. The improvement of 
saccharification could be achieved by the alteration of the 
wood components. Thus, the metabolic engineering of 
the lignin, cellulose, and hemicelluloses in forest trees is 
one of the hottest topics in forest tree biotechnology.

Metabolic engineering of lignin
Lignin is a natural aromatic polymer generated by the 
radical coupling of monolignols (4-hydroxycinnamyl 
alcohols) (Umezawa 2010; Vanholme et al. 2012). To 
date, a principal biosynthetic pathway towards lignin has 
been proposed (Figure 1). In this pathway, phenylalanine 
is deaminated by phenyalanine ammonia-lyase (PAL) to 
produce cinnamic acid. Cinnamic acid is converted to 
p-coumaric acid by cinnamic acid 4-hydroxylase (C4H). 
p-Coumaric acid is then converted by 4-coumarate:CoA 
ligase (4CL) to p-coumaroyl-CoA. p-Coumaroyl-CoA 
couples with shikimic acid to produce p-coumaroyl 
shikimate by a hydroxycinnamoyltransferase (HCT). 
p-Coumaroyl shikimate is next converted to caffeoyl 
shikimate by p-coumarate 3-hydroxylase (C3H). 
Caffeoyl shikimate is further hydrolyzed by HCT or 
recently identified caffeoyl shikimate esterase (CSE) 
(Vanholme et al. 2013), and then caffeoyl-CoA or caffeic 
acid is produced. Recently, an alternative pathway 
via a direct conversion from cinnamic acid to caffeic 
acid via p-coumaric acid by a C4H–C3H complex 
has been reported (Chen et al. 2011). In this shunt, 
the resulting caffeic acid is activated by 4CL to yield 
caffeoyl-CoA. In the biosynthetic pathway towards a 
major monolignol coniferyl alcohol, caffeoyl-CoA is 

Figure 1. The proposed principal biosynthetic pathway towards lignin. 4CL, 4-coumarate:CoA ligase; C3H, 4-coumarate 3-hydroxylase; 
C4H, cinnamate 4-hydroxylase; C4H–C3H, an enzyme complex composed of C4H and C3H; CAD, cinnamyl alcohol dehydrogenase; 
CAld5H, coniferaldehyde 5-hydroxylase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; COMT, caffeic 
acid/5-hydroxyconiferaldehyde O-methyltransferase; CSE, caffeoyl shikimate esterase; HCT, hydroxycinnamoyl-CoA:quinate/shikimate 
hydroxycinnamoyltransferase; PAL, phenylalanine ammonia-lyase; SAD, sinapyl alcohol dehydrogenase.



4 Recent advances in forest tree biotechnology

Copyright © 2014 The Japanese Society for Plant Cell and Molecular Biology

sequentially O-methylated and reduced by caffeoyl-CoA 
O-methyltransferase (CCoAOMT), cinnamoyl-CoA 
reductase (CCR), and cinnamyl alcohol dehydrogenase 
(CAD). Another major monolignol, sinapyl alcohol, 
is produced as follows. First, coniferaldehyde is 
hydroxylated by coniferaldehyde 5-hydroxylase 
(CAld5H) to yield 5-hydroxyconiferaldehyde. Then, 
5-hydroxyconiferaldehyde is methylated by caffeic 
acid/5-hydroxyconiferaldehyde O-methyltransferase 
(COMT). The resulting sinapaldehyde is then reduced by 
CAD or sinapyl alcohol dehydrogenase (SAD).

Because lignin constitutes an obstacle for fiber 
liberation (Koshiba et al. 2013a; Koshiba et al. 2013b; 
Yamamura et al. 2013), lignin reduction and/or 
modification of lignin have been extensively studied by 
downregulation and/or upregulation of the cinnamate/
monolignol pathway genes in forest tree species. 
Lignin reduction by 4CL suppression previously 
demonstrated that cellulose content increased in the 
transgenic aspen (Hu et al. 1999). Recently, Voelker et 
al. (2010) investigated the alteration of lignification, 
tree growth, and the saccharification potential of the 
transgenic hybrid white poplar transformed with a 
P. tremuloides 4CL1 (Pt4CL1) antisense construct. 
The hybrid white poplar has two distinct 4CL (4CL1-
1 and 4CL1-2) sharing high homology with Pt4CL1. 
Several 4CL1-1-downregulated lines showed increasing 
aboveground biomass, but lines whose 4CL1-1 and 
4CL1-2 were simultaneously downregulated showed 
severe reduction in aboveground biomass. The stem 
wood of transgenics showing stunted growth colored in 
brown, contained much phenolic extractives, and was 
deformed. However, acetyl bromide lignin and molecular 
beam mass spectroscopy-based lignin contents in the 
brown wood were similar to those of the control, and 
the saccharification efficiencies were not associated 
with the lignin reduction. By contrast, Min et al. (2012) 
reported that 4CL-downregulated low-lignin lines of 
black cottonwood (Populus trichocarpa) showed more 
amenable to enzymatic hydrolysis with or without 
pretreatment.

Some of antisense 4CL-downregulated poplar grown 
in the field showing substantial lignin reductions 
significantly decreased the xylem-specific water 
conductivity compared with that of the control (Voelker 
et al. 2011). Using microscopic analysis, Kitin et al. 
(2010) revealed that 4CL-downregulated low-lignin 
hybrid white poplar contained areas of nonconductive, 
brown xylem with patches of collapsed cells and patches 
of noncollapsed cells filled with phenolics. In contrast, 
phenolics and nonconductive vessels were rarely 
observed in normal colored wood of the low-lignin trees. 
Moreover, many of the vessels in the nonconductive 
xylem were blocked with tyloses. The authors concluded 
that the reduced transport efficiency of the transgenic 

low-lignin xylem was largely caused by blockages from 
tyloses and phenolic deposits within vessels rather than 
by xylem collapse. On the other hand, RNA interference 
(RNAi) suppression of 4CL driven by a Pinus radiata 
CAD promoter resulted in dwarfed plants with a 
“bonsai tree-like” appearance in P. radiata (Wagner et 
al. 2009). The tracheids were occasionally deformed and 
ununiformly lignified, and circumferential bands of axial 
parenchyma were developed. In the most suppressed 
lines, 36 to 50% of lignin was reduced based on acetyl 
bromide-soluble lignin assay and nuclear magnetic 
resonance (NMR) analysis.

Coleman et al. (2008) reported the downregulation of 
C3H in the hybrid poplar by RNAi. The acid insoluble 
lignin content of the most strongly repressed line was 
almost reduced by half, and the significant shift in lignin 
monomer composition was observed, favoring the 
generation of p-hydroxyphenyl units at the expense of 
guaiacyl units while the proportion of syringyl moieties 
remained constant. Furthermore, suppression of C3H 
resulted in the accumulation of substantial pools of 1-O-
p-coumaroyl-β-d-glucoside and other phenylpropanoid 
glucosides. Later, Ralph et al. (2012) confirmed the 
alteration of lignin monomer composition in the C3H-
downregualted poplar using two-dimensional (2D) NMR 
methods.

In CCoAOMT-downregulated poplar lines, an 
approximately 40% reduction in Klason lignin content 
in the most repressed line has been reported, but no 
significant effect on plant growth and morphology by 
CCoAOMT-downregulation (Zhong et al. 2000). On the 
other hand, suppressed lines showed a 12% reduction in 
Klason lignin content and an 11% increased syringyl/
guaiacyl (S/G) ratio in the noncondensed lignin fraction 
(Meyermans et al. 2000).

The significant incorporation of an unusual lignin 
monomer, ferulic acid, into lignin was found in CCR-
downregulated poplars (Leplé et al. 2007). The CCR-
downregulation was associated with up to 50% reduced 
lignin content and an orange-brown, often patchy, 
coloration of the outer xylem. Lignin was relatively more 
reduced in syringyl than in guaiacyl units. Ferulic acid 
was incorporated into the lignin via ether bonds, which 
was independently evidenced by thioacidolysis and 
NMR. Chemical pulping of wood derived from 5-year-
old, field-grown transgenic lines revealed improved 
pulping characteristics, but growth was affected in all 
transgenic lines tested. CCR was also downregulated 
in the Norway spruce (Wadenbäck et al. 2008). The 
lignin reduction was up to 8%, and the content of p-
hydroxyphenyl lignin was reduced compared to the 
control. Similarly to the CCR-downregulation in poplar 
(Leplé et al. 2007), chemical pulping characteristics were 
improved.

It is well known that CAD-downregulation results in 
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the increase of hydroxycinnamaldehyde units in lignin 
(Koshiba et al. 2013b). The red purple coloration in the 
CAD-downregulated tobacco xylem has been attributed 
to the incorporation of hydroxycinnamaldehydes into 
lignin (Hibino et al. 1995). Baucher et al. (1996) reported 
downregulation of CAD in hybrid poplar by antisense 
and cosuppression strategies. No significant change in 
lignin content and composition (S/G ratio) was observed 
in the downregulated CAD poplar. Later, Lapierre et al. 
(1999) tested the growth and reactivity to Kraft pulping 
using 2-year-old CAD-downregulated hybrid poplars. 
The transgenic poplar showed growth similar to the 
control trees. The Klason lignin was slightly reduced, but 
the increased proportion of free phenolic groups in the 
lignin facilitated lignin solubilization and fragmentation 
during Kraft pulping.

CAld5H-upregulation driven by an Arabidopsis C4H 
(AtC4H) promoter in poplar displayed an enhanced S/G 
ratio up to about 5.7 (Franke et al. 2000). Using the P. 
tremula 4CL1 promoter, CAld5H was overexpressed in P. 
tremula, which resulted in the S/G ratio up to 5.5 (Li et 
al. 2003). The AtC4H::F5H transgenic poplar wood was 
later subjected to pulping (Huntley et al. 2003) and 2D 
NMR (Stewart et al. 2009) analyses. The lignin structure 
of transgenics was linear and occupied by almost syringyl 
units (up to 97.5%). The lignin displayed a lower degree 
of polymerization than that of the control (Stewart et al. 
2009).

COMT (or CAOMT) is first named as caffeic acid 
O-methyltransferase, but it has also been named 
5-hydroxyconiferaldehyde O-methyltransferase 
(CAldOMT) (Koshiba et al. 2013a) because it 
was found that 5-O-methylation activity towards 
5-hydroxyconiferaldehyde was competitively prominent 
(Osakabe et al. 1999). Here we use COMT as an 
abbreviation of caffeic acid/5-hydroxyconiferaldehyde 
O-methyltransferase (Shi et al. 2010). Sense and 
antisense COMT from P. trichocarpa×P. deltoides were 
individually overexpressed under the control of the 
cauliflower mosaic virus 35S (CaMV35S) promoter. In 
severely repressed transgenic lines with an antisense 
construct, the S/G ratio was reduced by sixfold, and 
5-hydroxyguaiacyl residue was detected among the 
thioacidolysis products. Furthermore, the wood of 
transgenic poplar colored in pale rose. However, lignin 
content of the transgenic poplars was similar to that of 
the controls (van Doorsselaere et al. 1995). On the other 
hand, by using COMT from P. tremuloides, COMT-
cosuppressed lines were produced in P. tremuloides under 
the control of a double CaMV35S promoter. In some 
transgenic lines, the enzymatic activity was significantly 
suppressed in xylem, but significantly increased in leaf 
and sclerenchyma tissues compared to the control, 
indicating that the occurrence of sense cosuppression 
depends on the degree of sequence homology and 

endogene expression. Characterization of the lignins 
isolated from the cosuppressed lines revealed that a high 
amount of coniferaldehyde is the origin of the red-brown 
coloration (Tsai et al. 1998). Later, Jouanin et al. (2000) 
produced COMT-cosuppressed lines driven by double 
CaMV35S promoter. In the severely cosuppressed lines, 
COMT activity was almost zero, and 17% of lignin was 
decreased. Lignin structure was found to be strongly 
altered, with a two times higher content in condensed 
bonds, an almost complete lack of syringyl units, and the 
incorporation of 5-hydroxyguaiacyl units. Kraft-pulping 
assays revealed that pulp yield from the cosuppressed 
lines was 10% improved compared to the control, but 
this positive effect was severely counterbalanced by a 
detrimentally high kappa number diagnostic for a higher 
residual lignin content in the pulp.

Metabolic engineering of cellulose and hemi- 
celluloses
In contrast to the metabolic engineering of lignin, the 
examples for cellulose and hemicelluloses are not many 
in forest trees.

Cellulose is synthesized from uridinediphosphate 
(UDP)-glucose by the cellulose synthase complex on the 
plasma membrane. The catalytic subunits are believed to 
be encoded by cellulose synthase (CesA) genes. Previous 
study revealed that at least three types of CesAs are 
required for normal cellulose biosynthesis during either 
primary or secondary wall formation. Mutations in any 
one of CesAs disrupt cellulose synthesis, indicating the 
non-redundant function of members of the different 
subclass members in Arabidopsis (Joshi et al. 2011; 
Somerville 2006). In secondary wall formation, three 
distinct CesAs (AtCesA4, AtCesA7, and AtCesA8) are 
required in Arabidopsis. To date, three distinct CesAs 
orthologous to secondary wall-related AtCesAs were 
cloned from aspen and characterized (Wu et al. 2000). 
In sense cosuppression of a poplar CesA (PtdCesA8) 
orthologous to AtCesA8, secondary xylem of transgenic 
aspen contained as little as 10% cellulose normalized to 
dry weight compared to 41% cellulose typically found 
in normal aspen wood. This massive reduction in 
cellulose was accompanied by proportional increases in 
lignin (35%) and non-cellulosic polysaccharides (55%) 
compared to the 22% lignin and 36% non-cellulosic 
polysaccharides in control plants. The transgenic stems 
produced deformed vessels and contained greatly 
reduced amounts of crystalline cellulose (Joshi et al. 
2011).

Glucuronoxylan is a major hemicellulose of 
angiosperm wood. The linear polysaccharide is 
composed entirely of 1,4-linked β-d-xylose and is 
partially substituted by 4-O-methyl-α-d-glucuronic 
acid through α-1,2-glycosidic linkages. A portion 
of the backbone is acetylated at either C-2 or C-3 of 
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the xylose residues (Suzuki et al. 2006). A number of 
putative glycosyltransferase genes involved in xylan 
biosynthesis have been recently identified using a reverse 
genetic approach. In Arabidopsis, it has been suggested 
that IRREGULAR XYLEM9 (IRX9) and IRX14, and 
the corresponding homologs IRX9-L and IRX14-L 
are responsible for elongation of xylan backbone as 
well as for IRX10 and IRX10-L. Additionally, it has 
been suggested that FRAGILE FIBER8 (FRA8)/IRX7, 
IRX8, and PARVUS are involved in the synthesis of 
an oligomer composed of -4-β-d-Xylp-1,3-α-l-Rhap-
1,2-α-d-GalpA-1,4-β-d-Xylp at the reducing end 
(Doering et al. 2012). Lee et al. (2009) reported that 
downregulation of PoGT47C, a poplar ortholog of 
FRA8/IRX7, showed a significant reduction of xylose 
content in 1 M KOH extract but no change in other cell 
wall sugars including mannose, galactose, arabinose, 
and rhamnose. Immunodetection revealed that 
glucuronoxylan in the wood of PoGT47C-downregulated 
lines was reduced. Reduction in glucuronoxylan in the 
PoGT47C-downregulated lines leads to an increased 
digestibility of wood by cellulase. Li et al. (2011) 
reported the simultaneous downregulation of PtrGT8D1 
and PtrGT8D2 orthologous to Arabidopsis IRX8 in P. 
trichocarpa. The transgenic lines exhibited 29–36% 
reduction in stem wood xylan content. Xylan reduction 
had essentially no effect on cellulose quantity but caused 
an 11–25% increase in lignin. Stem modulus of elasticity 
and modulus of rupture were reduced by 17–29% and 
16–23% respectively, and were positively correlated 
with xylan content but negatively correlated with lignin 
quantity, suggesting that xylan may be a more important 
factor than lignin in affecting the stiffness and fracture 
strength of wood.

Xyloglucan is the most abundant hemicellulose in the 
primary walls of angiosperms (Pauly et al. 2013), tightly 
tethering cellulose microfiblils noncovalently (Hayashi, 
1989). This xyloglucan-cellulose framework is modified 
by xyloglucan endo-transglycosylases (XETs) (Nishikubo 
et al. 2011). Overexpressing xyloglucanase resulted in 
growth enhancement and cellulose accumulation (Park 
et al. 2004), and acceleration of enzymatic digestibility 
of wood cellulose in poplar (Kaida et al. 2009) and wood 
polysaccharide in Acacia mangium (Kaku et al. 2011). 
The amount of xyloglucan is little in wood, but XET is 
actively expressed in the wood forming tissues of aspen 
(Nishikubo et al. 2011). These results suggest that 
xyloglucan plays an important role in wood formation 
(Hayashi and Kaida 2011; Mellerowicz et al. 2008).

Conclusion and future prospectives

Recent advances of DNA sequencing using a next-
generation sequencer is accelerating the genome 
sequencing project of forest trees. In addition to 

fast-growing hardwood tree species such as Populus 
and Eucalyptus, softwoods such as pine and spruce, 
whose genome size is very large, have also become 
targets. Agrobacterium-mediated transformation and 
regeneration were achieved in a number of important 
hardwood and softwood species. By coupling 
genomic resources with transgenic technology, gene 
characterization and metabolic engineering will be 
accelerated in species other than poplar.

In the field of metabolic engineering of wood, lignin 
biosynthetic engineering has progressed considerably 
because the genes that encode enzymes involved in 
lignin biosynthesis have been almost identified in 
poplar. As a result, it is now technically possible to 
achieve more than a 50% reduction of lignin content in 
the xylem of poplar (Kitin et al. 2010). Simultaneously, 
however, such reduction in xylem occasionally causes 
detrimental effects on the growth of the transgenic trees. 
In the next stage, we hope to target the combinatorial 
modification of lignin using multiple upregulation 
and/or downregulation of the gene involved in lignin 
biosynthesis. Furthermore, to mitigate the detrimental 
effects caused by low-lignin in vessels, technology to 
maintain lignin in vessels and to reduce lignin in fibers 
in the stem xylem must be developed. As such, a recent 
report of fiber-specific reduction of lignin and increase 
of cellulose and xylan in Arabidopsis inflorescent stems is 
remarkable (Yang et al. 2013). The further introduction 
of a metabolic pathway to utilize the surplus phenolic 
metabolites produced by lignin reduction should be 
instrumental in efficiently utilizing such engineered 
wood.

In contrast to lignin biosynthetic research, much 
remains to be elucidated in the identification and 
characterization of the genes involved in cellulose and 
glucuronoxylan biosynthesis. As gene identification 
and characterization progress, the fine-tuned metabolic 
engineering of cellulose and glucuronoxylan biosynthesis 
will be realized.
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