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Abstract Plant specialized metabolites play important roles in human life. These metabolites, however, are often produced 
in small amounts in particular plant species. Moreover, some of these species are endangered in their natural habitats, 
thus further limiting the availability of some plant specialized metabolites. Microbial production of these compounds may 
circumvent this problem. Considerable progress has been made in the microbial production of various plant specialized 
metabolites over the past decade. Now, the microbial production of these compounds is becoming robust, fine-tuned, and 
commercially relevant systems using the methods of synthetic biology. This review describes the progress of microbial 
production of plant specialized metabolites, including phenylpropanoids, flavonoids, stilbenoids, diarylheptanoids, 
phenylbutanoids, terpenoids, and alkaloids, and discusses future challenges in this field.
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Introduction

Plants produce various low-molecular-weight organic 
compounds that can be utilized as medicines, cosmetics, 
flavors, dyes, seasonings, functional ingredients, and 
industrial chemicals, all of which play important roles in 
human life (Facchini et al. 2012). These compounds have 
long been referred to as plant secondary metabolites. 
Recently, a new term “plant specialized metabolites” 
has been proposed to define these compounds, with 
emphasizing their function in plants’ adaptations for 
specific ecological situations and their plant lineage-
specific distribution (Pichersky and Lewinsohn 2011), 
although many of these compounds also occur in 
organisms other than plants. In this review, the term 
“plant specialized metabolites” will be adopted.

Despite the importance to human life, plant 
specialized metabolites are often produced in small 
amounts by particular plant species. Some of these 
species are endangered in their natural habitats, further 
limiting the availability of plant specialized metabolites. 
Although this problem may be overcome by the total 
organic synthesis of these compounds, organic synthesis 
often uses heavy metals, toxic organic solvents, and 
strong acids, many of which have high environmental 
burdens (Du et al. 2011). Furthermore, it is still 
difficult to synthesize plant specialized metabolites with 

complex structures on a large-scale and at a low cost 
(Misawa 2011). By contrast, metabolic engineering in 
microorganisms does not require dangerous chemicals 
and enables the production of very complex metabolites 
with the aid of enzymes having high substrate 
specificities from simple carbon sources such as sugars 
synthesized during plant photosynthesis (Keasling 2008).

Over the past decade, there has been considerable 
progress in the metabolic engineering of microorganisms 
and in identifying genes involved in plant specialized 
metabolism. This has enabled the construction of 
sophisticated and fine-tuned metabolic pathways 
in microorganisms to produce plant specialized 
metabolites (Chemler and Koffas 2008; Du et al. 2011; 
Keasling 2008, 2012; Lee et al. 2009; Marienhagen and 
Bott 2013; Siddiqui et al. 2012). Microbial platforms for 
the production of plant specialized metabolites can be 
beneficial to plant scientists because these systems can 
be used to identify novel enzymes by incorporating the 
coding genes into microbes (Cyr et al. 2007). Moreover, 
the reconstitution and investigation of metabolism 
in a simple system like microbial cells facilitate the 
quantitation of pathway flux without interference from 
other related pathways and the characterization of 
enzyme-enzyme interactions between pathway enzymes 
(Ralston et al. 2005; Ro and Douglas 2004).

In this context, this review focuses on the progress 
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of microbial production of major plant specialized 
metabolites, including phenylpropanoids, flavonoids, 
stilbenoids, diarylheptanoids, phenylbutanoids, 
terpenoids, and alkaloids (Limem et al. 2008; Matsumura 
et al. 2013; Putignani et al. 2013; Sato and Kumagai 2013; 
Wang et al. 2011). Additionally, future challenges in this 
field are discussed.

Phenylpropanoids

Phenylpropanoids are composed of C6–C3 units. This 
group includes a variety of low-molecular-weight 

metabolites, including phenylpropenes, lignans, 
neolignans, and norlignans. Polymer lignins are 
also classified phenylpropanoids (Umezawa 2010). 
Monolignols (4-hydroxycinnamyl alcohols) are shared 
as representative monomer precursors by these 
phenylpropanoids. Monolignols are biosynthesized 
via the cinnamate/monolignol pathway, and major 
pathways are proposed in angiosperms, with some 
variation among plant species (Suzuki and Suzuki 
2014; Umezawa 2010; Vanholme et al. 2010; Vanholme 
et al. 2012) (Figure 1). In a major pathway towards 
coniferyl alcohol biosynthesis recently proposed in 

Figure 1. Biosynthetic pathways for phenylpropanoids. The bold arrows represent a major pathway towards coniferyl and sinapyl alcohols 
formation in P. trichocarpa (Wang et al. 2014). 4CL, 4-coumarate:CoA ligase; C3H, coumarate 3-hydroxylase; C4H, cinnamic acid 4-hydroxylase; 
C4H–C3H, the enzyme complex of C4H and C3H; CAD, cinnamyl alcohol dehydrogenase; CAld5H, coniferaldehyde 5-hydroxylase; CAldOMT, 
5-hydroxyconiferaldehyde O-methyltransferase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; CSE, caffeoyl 
shikimate esterase; HCT, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase; PAL, phenylalanine ammonia lyase. * PAL 
showing strong deaminase activity toward L-tyrosine is often called tyrosine ammonia lyase (TAL). **Note that only chemical structures of the 
shikimate esters are shown.
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Populus trichocarpa based on proteomic-based enzyme 
reaction and inhibition kinetics (Wang et al. 2014), L-
phenylalanine is deaminated by phenyalanine ammonia 
lyase (PAL) to produce cinnamic acid, which is converted 
to 4-coumaric acid by a cytochrome P450 (CYP) enzyme, 
cinnamic acid 4-hydroxylase (C4H). 4-Coumaric acid 
is then activated by 4-coumarate:CoA ligase (4CL) to 
yield 4-coumaroyl-CoA, which is coupled to shikimic 
acid or quinic acid to yield 4-coumaroyl shikimate or 
4-coumaroyl quinate by a hydroxycinnamoyltransferase 
(HCT). The resulting 4-coumaroyl shikimate or 
quinate is converted to caffeoyl shikimate or quinate by 
coumarate 3-hydroxylase (C3H). These caffeoyl esters 
are further hydrolyzed by HCT, producing caffeoyl-CoA. 
The resulting caffeoyl-CoA is sequentially O-methylated 
and reduced by caffeoyl-CoA O-methyltransferase 
(CCoAOMT), cinnamoyl-CoA reductase (CCR), and 
cinnamyl alcohol dehydrogenase (CAD), respectively. 
On the other hand, it was proposed that another major 
monolignol, sinapyl alcohol, is mainly synthesized by the 
hydroxylation of coniferyl alcohol and the O-methylation 
of 5-hydroxyconiferyl alcohol in P. trichocarpa (Wang 
et al. 2014). However, several by-path pathways were 
also described regarding coniferyl and sinapyl alcohols 
biosynthesis in both P. trichocarpa and other plant 
species: 1) the conversion of cinnamic acid to caffeic 
acid by a C4H–C3H complex and subsequent caffeoyl-
CoA formation (Chen et al. 2011), 2) the transformation 
of caffeoyl shikimate to caffeate by caffeoyl shikimate 
esterase (CSE) and subsequent caffeoyl-CoA formation 
(Vanholme et al. 2013), 3) coniferaldehyde formation 
from caffeoyl-CoA via caffealdehyde (Zhou et al. 2010), 
and 4) sinapyl alcohol formation from coniferaldehyde 
via 5-hydroxyconiferaldehyde and sinapaldehyde 
(Humphreys et al. 1999; Osakabe et al. 1999).

Phenylpropanoids include important phytochemicals 
with various biological activities, such as antioxidant, 
antitumor, and antibacterial activities (Marienhagen 
and Bott 2013). Therefore, the production of these 
compounds by microbes has attracted much attention. 
A phenylpropanoid intermediate on the cinnamate/
monolignol pathway, p-coumaric acid, was first 
produced in Saccharomyces cerevisiae by Ro and Douglas 
(2004). Later, a PAL showing strong deaminase activity 
towards L-tyrosine (a tyrosine ammonia lyase, TAL) 
from the yeast Rhodotorula glutinis was expressed 
in S. cerevisiae and Escherichia coli, resulting in the 
production of p-coumaric acid. Furthermore, synthetic 
microbes were constructed to produce 4-coumaric 
acid and 4-coumaroyl-CoA, which act as intermediates 
in alkaloid, flavonoid, and stilbenoid production 
(Nakagawa et al. 2011; Santos et al. 2011; Trantas et 
al. 2009; Watts et al. 2004). Caffeic and ferulic acids 
were also reported to be produced by microbes. For 
example, Choi et al. (2011) reported the conversion 

of L-tyrosine to caffeic and ferulic acids in E. coli 
by the coexpression of actinomycete Saccharothrix 
espanaensis TAL (sam8), S. espanaensis 4-coumaric 
acid 3-hydroxylase (sam5), and Arabidopsis thaliana 
5-hydroxyconiferaldehyde O-methyltransferase 
(CAldOMT). Subsequently, caffeic and ferulic acids 
were produced by a tyrosine-overproducing strain 
of E. coli in the absence of L-tyrosine supplementation 
(Kang et al. 2012). Lin and Yan (2012) reported that a 
bacterial PAL from Rhodobacter capsulatus and an E. coli 
hydroxylase (4-hydroxyphenylacetate 3-hydroxylase) 
were expressed in E. coli JW1316, a strain in which a 
chromosomal regulatory gene for tyrosine biosynthesis, 
tyrR, was deleted to enhance tyrosine biosynthesis. 
Additionally, they overexpressed tyrA (encoding 
chorismate mutase and prephenate dehydrogenase), 
modified aroG (encoding 3-deoxy-D-arabino-
heptulosonate-7-phosphate synthase), ppsA (encoding 
phosphoenolpyruvate synthase), and tktA (encoding 
transketolase). As a result, caffeic acid was produced, up 
to 50.2 mg L−1 after fermentation for 48 h. Later, Zhang 
and Stephanopoulos (2013) optimized the similar system, 
which resulted in higher titer (108 mg L−1) of caffeic acid 
production.

Very recently, 4-coumaryl alcohol production was 
reported in E. coli (Jansen et al. 2014). They incorporated 
Rhodobacter sphaeroides TAL, Pteroselinum crispum 
4CL, Zea mays CCR and CAD into E. coli cells. The final 
yields of 4-coumaryl alcohol after 30 h fermentation 
were 20 mg L−1 without feeding and 105 mg L−1 with 
4-coumaric acid supplementation. However, the 
supplementation of L-tyrosine only slightly increased the 
yield, suggesting that the deamination by TAL was a rate-
limiting step.

Hydroxycinnamoyl anthranilates were produced by 
feeding 4-coumaric acid to S. cerevisiae coexpressing 4CLs 
and acyltransferases. For example, Moglia et al. (2010) 
reported that coexpression of 4CL and Cynara scolymus 
HCT resulted in N-(4′-coumaroyl)-3-hydroxyanthranilic 
acid production. Similarly, coexpression of 4CL5 from 
A. thaliana and hydroxycinnamoyl/benzoyltransferase 
from Dianthus caryophyllus led to the production of 
hydroxycinnamoyl anthranilates including antiallergic 
tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic 
acid] after the addition of hydroxycinnamic acids (Eudes 
et al. 2011).

Flavonoids, stilbenoids, diarylheptanoids, 
and phenylbutanoids

Flavonoids have a C6–C3–C6 structural skeleton. To 
date, more than 7,000 flavonoids have been described 
(Arita and Suwa 2008). Flavonoids originate from 
one molecule of 4-coumaroyl-CoA in the cinnamate/
monolignol pathway and three molecules of 
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Figure 2. Biosynthetic pathways for flavonoids, stilbenoids, diarylheptanoids, and phenylbutanoids. Only major pathways are shown. 4CL, 
4-coumarate:CoA ligase; ANS, anthocyanidin synthase; BAS, benzalacetone synthase; C4H, cinnamic acid 4-hydroxylase; CHI, chalcone isomerase; 
CHS, chalcone synthase; CURS, curcumin synthase; CUS, curcuminoid synthase; DCS, diketide-CoA synthase; DFR, dihydroflavonol 4-reductase; 
F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, flavonoid 3′,5′-hydroxylase; FLS, flavonol synthase; FS, flavone synthase; 
IFS, isoflavone synthase; OMT, O-methyltransferase; PAL, phenylalanine ammonia lyase; RZS, raspberry ketone/zingerone synthase; STS, stilbene 
synthase; UFGT, UDP-glucose:flavonoid 3-O-glucosyltransferase.



  S. Suzuki et al. 469

malonyl-CoA. The basic pathway that generates core 
flavonoid skeletons is illustrated in Figure 2. First, 
2-phenylchroman skeleton formation is mediated by 
chalcone synthase (CHS) and chalcone isomerase (CHI). 
Subsequently, the resulting flavanones are converted 
to flavones and dihydroflavonols by flavone synthase 
(FS) and flavanone 3-hydroxylase (F3H), respectively. 
Dihydroflavonols are then transformed to flavonols 
and leucoanthocyanidins by flavonol synthase (FLS) 
and dihydroflavonol 4-reductase (DFR), respectively. 
Anthocyanins are formed from leucoanthocyanidins 
by the catalysis of anthocyanidin synthase (ANS) and 
UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) 
(Dixon and Pasinetti 2010; Saito et al. 2013). On the 
other hand, isoflavones, which share a 3-phenylchroman 
structure, are formed from flavanones by the action 
of a CYP enzyme, isoflavone synthase (IFS) (Akashi 
et al. 1999). These flavonoids are further modified 
by hydroxylation, glycosylation, methylation, and 
prenylation to yield structurally diverse flavonoids.

The biosynthesis of stilbenoids (C6–C2–C6), 
diarylheptanoids (C6–C7–C6), and phenylbutanoids (C6–
C4) are closely related to flavonoid biosynthesis (Figure 
2). These core carbon skeletons are synthesized from 
cinnamoyl-CoAs and malonyl-CoA by stilbene synthase 
(STS), a combination of diketide-CoA synthase (DCS) 
and curcumin synthase (CURS) or curcuminoid synthase 
(CUS) alone, and benzalacetone synthase (BAS), 
respectively, all of which are members of the type III 
polyketide synthase (PKS) superfamily, similar to CHS 
(Abe and Morita 2010; Yu et al. 2012).

A lot of flavonoids, stilbenoids, and diarylheptanoids 
function as antioxidants in foods, with some of these 
compounds showing antibacterial and antitumor 
activities (Cushnie and Lamb 2011; Kanadaswami et al. 
2005; Lin et al. 2014). Some isoflavones are investigated 
as estrogen receptor agonists and antagonists to modulate 
estrogen metabolism (Cress et al. 2013). In addition, 
anthocyanins are potential replacements for artificial 
dyes that have adverse health effects (Cress et al. 2013). 
The microbial system enables the readily scalable, cost-
effective, and environmental-conscious production of 
these compounds (Putignani et al. 2013).

Flavonoids
Flavonoid production by bacteria was first described by 
Hwang et al. (2003). An artificial pathway for chalcone 
production was constructed in E. coli by introducing 
PAL from the yeast Rhodotorula rubra, 4CL from the 
actinomycete Streptomyces coelicolor, and CHS from 
licorice Glycyrrhiza echinata. Because R. rubra PAL 
can deaminate both L-phenylalanine and L-tyrosine, 
and because S. coelicolor 4CL shows activity towards 
both cinnamic and 4-coumaric acids, the coexpression 
of these enzymes with CHS yielded two flavanones, 

pinocembrin and naringenin, after non-enzymatic 
cyclization from the corresponding chalcones. Later, 
Watts et al. (2004) also reported the production of a 
flavanone, naringenin, with a yield of 20.8 mg L−1, by 
the coexpression of R. sphaeroides TAL, A. thaliana 
4CL, and A. thaliana CHS in E. coli. An artificial 
pathway generating anthocyanins from flavanones 
was constructed in E. coli by the coexpression of 
Malus domestica F3H, Anthurium andraeanum DFR, 
M. domestica ANS, and Petunia hybrida UFGT (Yan 
et al. 2005a). The E. coli cells converted naringenin 
and eriodictyol to the corresponding anthocyanins, 
pelargonidin 3-O-glucoside and cyanidin 3-O-glucoside, 
respectively.

Although several core flavonoids could be synthesized 
in E. coli, the yield was too low for industrial applications. 
Therefore, the artificial flavonoid pathway and/or the 
supply of precursor (e.g., L-tyrosine, L-phenylalanine, 
or malonyl-CoA) were optimized. Miyahisa et al. 
(2005) showed that the coexpression of five enzymes, 
R. rubra PAL, S. coelicolor 4CL, G. echinata CHS, 
Pueraria lobata CHI, and heterodimeric acetyl-CoA 
carboxylase (ACC) from Corynebacterium glutamicum, 
an enzyme involved in malonyl-CoA synthesis, resulted 
in the efficient generation of naringenin from L-tyrosine 
and pinocembrin from L-phenylalanine. Further 
introduction of P. crispum FS enabled the E. coli cells to 
produce flavones, including apigenin (13 mg L−1) from L-
tyrosine and chrysin (9.4 mg L−1) from L-phenylalanine. 
Introduction into the E. coli cells of F3H from Citrus 
sinensis and FLS from C. unshiu led to the production 
of flavonols, including kaempferol (15.1 mg L−1) from L-
tyrosine and galangin (1.1 mg L−1) from L-phenylalanine 
(Miyahisa et al. 2006).

High-yield production of anthocyanins was 
optimized by various factors, including coexpressed 
genes, supplementation of the medium, and the pH 
of the medium (Yan et al. 2008). This resulted in the 
production of 78.9 mg L−1 pelargonidin 3-O-glucoside 
and 70.7 mg L−1 cyanidin 3-O-glucoside from flavan-3-
ols. To efficiently supply malonyl-CoA to the artificial 
flavonoid pathway, Leonard et al. (2007) overexpressed 
four ACC subunits from Photorhabdus luminescens 
under a constitutive promoter. In addition, the levels 
of expression of P. lobata ACC-biotin ligase (BirA) and 
the chimeric protein of P. lobata ACC were increased 
to enhance acetate assimilation. These modifications 
resulted in the production of 429 mg L−1 pinocembrin, 
119 mg L−1 naringenin, and 52 mg L−1 eriodictyol from 
the corresponding phenylpropanoic acids. Later, genes 
(matB and matC) involved in malonate assimilation in 
Rhizobium trifolii were introduced to utilize exogenous 
malonate, and a competitive pathway, fatty acid synthesis, 
was inhibited by the addition of cerulenin. This strategy 
resulted in the production of 700 mg L−1 flavanones and 
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113 mg L−1 anthocyanins from phenylpropanoic acids 
and flavan-3-ol precursors (Leonard et al. 2008). Using 
evolutionary computation coupled with constraint-based 
modeling to investigate the impact of multiple gene 
deletions, a process termed the cipher of evolutionary 
design (CiED), Fowler et al. (2009) modeled the genes 
that should be deleted to improve the productivity of 
flavonoids in E. coli. Targeted deletion of the genes 
predicted by CiED and overexpression of the genes 
involved in flavanone biosynthesis, acetate assimilation, 
malonyl-CoA biosynthesis, and CoA biosynthesis, 
yielded 15 to 100 mg L−1 OD−1 naringenin and 13 to 
55 mg L−1 OD−1 eriodictyol.

Although microbial flavonoid production systems have 
been much improved, two limitations were prohibitive 
during process scale up. First, the fermentation protocols 
often required two separate cultivation steps to achieve 
high flavonoid titers. Second, the system heavily relied 
on precursor feeding to achieve high levels of flavonoid 
production. To circumvent these problems, Santos et 
al. (2011) constructed an artificial flavanone synthetic 
pathway composed of yeast R. sphaeroides TAL, S. 
coelicolor 4CL, A. thaliana CHS, and P. lobata CHI in E. 
coli strains (P2 and rpoA14R) that produce large amounts 
of L-tyrosine. The constructed strains were found to be 
capable of producing 29 mg L−1 naringenin from glucose 
and up to 84 mg L−1 by the addition of the fatty acid 
enzyme inhibitor, cerulenin.

Flavanones have also been produced in S. 
cerevisiae. For example, Jiang et al. (2005) expressed 
Rhodosporidium toriloides PAL, A. thaliana 4CL, and 
Hypericum androsaemum CHS, while Yan et al. (2005b) 
expressed P. crispum 4CL, P. hybrida CHS and CHI, and 
A. thaliana C4H. Later, Trantas et al. (2009) reported 
that the enzymes involved in the entire flavonoid 
synthetic pathway (PAL, C4H, 4CL, CHS, CHI, F3H, 
FLS, and F3′H) were expressed in S. cerevisiae to produce 
flavonols, kaempferol and quercetin, from supplied L-
phenylalanine. Koopman et al. (2012) recently achieved 
naringenin production from glucose by deregulation 
of aromatic amino acid biosynthesis and reduction of 
byproduct (phenylethanol) formation in S. cerevisiae as 
well as by introduction of the naringenin biosynthetic 
pathway from L-phenylalanine.

Various flavonoids, not limited to basic compounds, 
have also been produced in microbial systems. 
For example, Yan et al. (2007) showed that a 
5-deoxyflavanone liquiritigenin, commonly found in 
leguminous plants, could be produced from 4-coumaric 
acid in E. coli by coexpression of P. crispum 4CL, P. 
hybrida CHS, Medicago sativa chalcone reductase and 
CHI. Construction of the same artificial pathway in S. 
cerevisiae resulted in a lower yield than in E. coli. On the 
other hand, Malla et al. (2012) reported that a methylated 
dihydroflavonol, 7-O-methylaromadendrin, was 

produced in E. coli by expressing Streptomyces avermitilis 
7-O-methyltransferase and A. thaliana F3H, as well as 
the other enzymes involved in flavanone biosynthesis 
(4CL, CHS, and CHI) and in malonyl-CoA biosynthesis 
(ACC and acetyl-CoA synthase). Naringenin feeding of a 
recombinant yeast expressing a prenyltransferase isolated 
from Sophora flavescens resulted in the synthesis of a 
prenylated flavonoid 8-dimethylallylnaringenin (Sasaki 
et al. 2009).

Isoflavones including genistein and daidzein have been 
produced from L-tyrosine using E. coli and S. cerevisiae 
co-culture (Katsuyama et al. 2007c), from flavanones 
using E. coli alone (Leonard and Koffas 2007), or from 
flavanones, 4-coumaric acid, and L-phenylalanine using 
S. cerevisiae alone (Trantas et al. 2009). Among them, 
the isoflavone production from flavanones by expressing 
IFS (Leonard and Koffas 2007) is noticeable. Although 
functional eukaryotic CYP expression in prokaryotic E. 
coli system is generally unsuitable (Paddon and Keasling 
2014), Leonard and Koffas expressed G. max IFS having 
a modified membrane recognition signal and fusing to 
Catharanthus roseus CYP reductase (CPR).

Stilbenoids
Beekwilder et al. (2006) introduced Nicotiana tabacum 
cv. Samsun 4CL2 and Vitis vinifera STS into E. coli and 
obtained resveratrol (16 mg L−1) from 4-coumaric acid. 
Watts et al. (2006) reported that the coexpression of 
peanut (Arachis hypogaea) STS and A. thaliana 4CL1 
in E. coli and the addition of 1 mM 4-coumaric acid to 
the medium yielded over 100 mg L−1 resveratrol. Feeding 
of these cells with 1 mM caffeic acid resulted in over 
10 mg L−1 piceatannol. However, feeding of ferulic acid 
did not result in a cyclized stilbenoid. Rather, triketide 
and tetrakedide lactone intermediates were identified, 
indicating that substrate utilization by A. thaliana 4CL1 
was limited. Substitution of A. thaliana 4CL1 with 
A. thaliana 4CL4 resulted in a substrate preference for 
ferulic acid, but no detectable isorhapontigenin. Thus, 
feruloyl-CoA utilization by STS is the limiting step in 
the pathway. A study assessing the production of various 
stilbenoids from their corresponding phenylpropanoic 
acids in E. coli resulted in 155 mg L−1 pinosylvin and 
171 mg L−1 resveratrol (Katsuyama et al. 2007b). 
Incorporating a rice O-methyltransferase (OMT) 
gene (Os08g06100) into stilbenoid-producing E. coli 
cells yielded mono- and di-O-methylated resveratrols 
(pinostilbene and pterostilbene) and pinosylvins 
(pinosylvin monomethyl ether and pinosylvin dimethyl 
ether) (Katsuyama et al. 2007a). This OMT gene actually 
encodes CAldOMT (Figure 1), an OMT involved in 
syringyl lignin biosynthesis (Koshiba et al. 2013). In 
E. coli cells, however, the OMT methylated phenolic 
hydroxyl groups in stilbenoids. This activity may be due 
to its broad substrate specificity, inasmuch as the rice 
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OMT could O-methylate flavonoids (Lin et al. 2006). 
Instead of expensive 4-hydroxycinnamic acids, Wu et 
al. (2013) used L-tyrosine as a supplemental precursor 
to produce resveratrol. They incorporated R. glutinis 
TAL, P. crispum 4CL, V. vinifera STS, and R. trifolii matB 
and matC into E. coli. The optimum strain was capable 
of producing 35 mg L−1 resveratrol from L-tyrosine in a 
single medium.

There are several examples of stilbenoid production 
in yeasts. However, the level of production of resveratrol 
is usually lower in yeast than in E. coli (Jeandet et al. 
2012). For example, Beekwilder et al. (2006) integrated 
N. tabacum 4CL and V. vinifera STS into LEU2 locus 
of S. cerevisiae and obtained resveratrol (6 mg L−1) 
from 4-coumaric acid. Later, the complete pathway 
for resveratrol production from L-phenylalanine was 
constructed in S. cerevisiae by incorporating PAL and 
CPR from Populus trichocharpa×deltoids, C4H and 4CL 
from Glycine max, and STS from V. vinifera ‘Soultanina’ 
(Trantas et al. 2009). They fed 10 mM L-phenylalanine to 
the engineered yeast and obtained 0.29 mg L−1 resveratrol. 
Wang et al. (2011b) optimized TAL codons for yeast 
and introduced low-affinity and high-capacity E. coli 
araE transporter to enhance resveratrol production 
up to 2.3 mg L−1. More recently, Wang and Yu (2012) 
constructed synthetic scaffolds to recruit 4CL and STS 
and improved resveratrol production in yeast cells.

Diarylheptanoids
Among diarylheptanoids, curcumin and its congeners 
are called curcuminoids. Because curcumin possesses 
various pharmacological effects, including anti-
inflammatory, antioxidant, anticarcinogenic, and 
antitumor activities (Esatbeyoglu et al. 2012), and 
because curcumin has been extracted only from 
the rhizomes of Curcuma longa (turmeric), the 
biotechnological production of this compound has 
attracted much attention.

Curcumin is biosynthesized from two molecules 
of feruloyl-CoA and a molecule of malonyl-CoA 
in C. longa. First, DCS catalyzes the formation of 
feruloyldiketide-CoA from feruloyl-CoA and malonyl-
CoA. Next, the resulting feruloyldiketide-CoA reacts 
with another feruloyl-CoA by the catalysis of CURS to 
produce curcumin. By contrast, CUS, a type III PKS 
identified in O. sativa, catalyzes both cinnamoyldiketide-
CoA (e.g. 4-coumaroyldiketide-CoA) formation and 
subsequent curcuminoid formation (Yu et al. 2012) 
(Figure 2).

An artificial curcuminoid biosynthetic pathway was 
constructed in E. coli by introducing R. rubra PAL, 
Lithospermum erythrorhizon 4CL, and rice CUS into 
these cells. Cultivation of these recombinant E. coli cells 
in the presence of L-tyrosine and/or L-phenylalanine 
led to the production of bisdemethoxycurcumin, 

dicinnamoylmethane, and cinnamoyl 4-coumaroylmethane. 
Another E. coli system carrying 4CL and CUS was also 
used for high-yield production of curcuminoids from 
the exogenously supplemented phenylpropanoid acids, 
4-coumaric, cinnamic, and ferulic acids, with a yield of 
curcuminoids as high as 100 mg L−1 (Katsuyama et al. 
2008).

Phenylbutanoids
Phenylbutanoids include several important plant flavor 
compounds such as raspberry ketone for raspberry 
flavor and zingerone for ginger flavor (Koeduka et 
al. 2011). Raspberry ketone extracted from natural 
sources is one of the most expensive flavor components 
used in the food industry. Raspberry ketone can be 
chemically synthesized by the condensation of p-
hydroxybenzaldehyde with acetone; however, this 
chemically-synthesized compound cannot be regarded 
as a “natural flavor” according to food laws in the US 
and Europe. In contrast, raspberry ketone produced 
by microbes is regarded as a “natural flavor”. Because 
consumers prefer “natural flavors”, the microbial 
production of raspberry ketone has attracted much 
attention (Vandamme and Soetaert 2002).

Raspberry ketone was produced in E. coli and S. 
cerevisiae cells, in the former by introducing tobacco 4CL 
and raspberry CHS and incubating the cells with 3 mM 
4-coumaric acid (Beekwilder et al. 2007). Because of 
the endogenous reductase activity of E. coli, these cells 
produced naringenin as well as 4-hydroxybenzalacetone 
and raspberry ketone, suggesting that raspberry CHS has 
both CHS and BAS activity.

Terpenoids

Terpenoids are a class of isoprenoids composed of 
five-carbon isoprene units, the largest class of plant 
specialized metabolites. Although their chemical 
structures are very diverse, with >40,000 known to 
date (Bohlmann and Keeling 2008), the early steps of 
terpenoid biosynthesis are very simple (Chang and 
Keasling 2006). Regardless of species, terpenoids are 
biosynthesized from only two common precursors, 
isopentenyl diphosphate (IPP) and its isomer, 
dimethylallyl diphosphate (DMAPP). In plants, IPP and 
DMAPP (IPP/DMAPP) are biosynthesized through 
two different pathways, the mevalonate (MVA) and 
non-mevalonate [2-C-methyl-D-erithritol 4-phosphate 
(MEP)] pathways. IPP/DMAPP for the biosynthesis of 
monoterpenes (C10), diterpenes (C20), and carotenoids 
(C40) are derived from the MEP pathway in plastids. 
In contrast, IPP/DMAPP for the biosynthesis of 
sesquiterpenes (C15) and triterpenes (C30) are produced 
via the MVA pathway localized to the cytosol. IPP 
and DMAPP couple to yield geranyl diphosphate 
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Figure 3. Biosynthetic pathways for terpenoids and other isoprenoids. The chemical structures of tepenoids targeted for microbial production are 
shown. AACT, acetyl-CoA acetyltransferase; CMK, 4-diphosphocytidyl-methylerythritol kinase; CMS, 4-diphosphocytidyl-methylerythritol synthase; 
DMAPP, dimethylallyl diphosphate; DXR, 1-deoxyxylulose 5-phosphate reductoisomerase; DXS, 1-deoxyxylulose 5-phosphate synthase; FPP, farnesyl 
diphosphate; FPPS, farnesyl diphosphate synthase; GGPP, geranylgeranyl diphosphate; GGPPS, geranylgeranyl diphosphate synthase; GPP, geranyl 
diphosphate; GPPS, geranyl diphosphate synthase; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; HMGS, 3-hydroxy-3-methylglutaryl-CoA 
synthase; HDS, hydroxymethylbutenyl 4-diphosphate synthase; IDI, isopentenyl diphosphate isomerase; IDS, isopentenyl diphosphate synthase; 
IPP, isopentenyl diphosphate; MCS, methylerythritol 2,4-cyclodiphosphate synthase; MVK, mevalonate kinase; PMD, mevalonate diphosphate 
decarboxylase.
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(GPP), farnesyl diphosphate (FPP), and geranylgeranyl 
diphosphate (GGPP), and these precursors are cyclized 
by various terpene cyclases to yield various types of 
terpenoid carbon skeletons (Misawa 2011). Many of 
the resulting terpenoids are further modified by other 
enzymes such as CYPs and glycosyltransferases (Misawa 
2011) (Figure 3).

In E. coli, as in other bacteria, IPP and DMAPP are 
synthesized via the MEP pathway, and are coupled to 
yield GPP (C10), a reaction catalyzed by GPP synthase 
(GPPS). Non-engineered E. coli cells can synthesize 
a small amount of FPP (C15) from the coupling of IPP 
and GPP, or the coupling of two molecules of IPP and 
DMAPP, but cannot synthesize GGPP (C20) and other 
higher-carbon isoprenoid precursors. Therefore, it is 
necessary to introduce a GGPP synthase gene (GGPPS) 
into E. coli to produce diterpenes. In contrast, IPP 
and DMAPP are synthesized via the MVA pathway 
in S. cerevisiae. Because ergosterol (C30) is an essential 
sterol component of cell membranes, and because 
protein prenylation including farnesylation and 
geranylgeranylation have been reported, S. cerevisiae can 
produce isoprenoid precursors including GPP (C10), FPP 
(C15), GGPP (C20), and squalene (C30). This characteristic 
is beneficial for producing various terpenoids in yeasts 
including S. cerevisiae.

Monoterpenes
Because monoterpenes have rather simple structures 
among the terpenoids, the chemical synthesis of 
monoterpenes has often been successful. Therefore, few 
plant monoterpenes have been synthesized by microbes 
(Misawa 2011). However, microbial production of 
plant-specific monoterpenes may be important because 
it could enrich wine aroma in brewery (Herrero et al. 
2008), supply abundant “green solvents”—solvents with 
low environmental burdens (Gu and Jérôme 2013), and 
contribute to the substitution of high energy liquid fuel 
such as JP-10 for monoterpene dimers (Meylemans et al. 
2012).

In the earlier report on the construction of mono-
terpene biosynthetic pathway in microorganisms, 
four genes required for (−)-carvone synthesis were 
introduced into E. coli: a GPP synthase gene (GPPS) 
from grand fir (Abies grandis); and (−)-limonene 
synthase, (−)-limonene-6-hydroxylase, and (−)-carveol 
dehydrogenase genes from spearmint (Mentha 
spicata) (Carter et al. 2003). Only (−)-limonene, an 
intermediate in (−)-carvone biosynthesis, was detected, 
although (−)-limonene-6-hydroxylase and (−)-carveol 
dehydrogenase were functional. Using a wine yeast strain 
of S. cerevisiae as a host, Herrero et al. (2008) expressed 
Clarkia breweri (+)-linalool synthase. The production 
of linalool was increased by overexpressing 3-hydroxy-
3-methylglutalyl-CoA (HMG-CoA) reductase, a rate-

limiting enzyme in the MVA pathway. More recently, 
Alonso-Gutierrez et al. (2013) reported the production 
of (+)-limonene and its hydroxylated product, 
(+)-perillyl alcohol in E. coli. A strain containing all 
the MVA pathway genes (AACT, HMGS, HMGR, MVK, 
PMK, PMD, and IDI; Figure 3), GPPS, and limonene 
synthase gene in a single plasmid was found to produce 
(+)-limonene (over 400 mg L−1) from glucose. Further 
introduction of a CYP from Mycobacterium sp. HXN-
1500 and two genes encoding electron transfer proteins 
(ferredoxin and ferredoxin reductase) into the strain 
resulted in the production of (+)-perillyl alcohol at the 
titer of 100 mg L−1. Similarly, Sarria et al. (2014) expressed 
the entire MVA pathway enzymes and further introduced 
three GPPSs and three pinene synthase genes (PSs) from 
Abies grandis, Picea abies, or Pinus taeda combinatorially. 
As a result, the pair of A. grandis GPPS and PS was found 
to be the best one for pinene production (ca. 28 mg L−1). 
Moreover, to increase the yield, they engineered GPPS/
PS fusion proteins to channel GPP at the GPPS active site 
directly into the PS active site. Among the clones they 
tested, the clone harboring A. grandis GPPS-PS fusion 
produced pinene at the titer of 32 mg L−1.

Sesquiterpenes
Sesquiterpenes also show various biological activities, 
with one, the sesquiterpene lactone artemisinin from 
Artemisia annua being of great importance because 
artemisinin is used as an anti-malarial medicine effective 
in patients with multidrug-resistant malaria (Paddon and 
Keasling 2014; Ro et al. 2008).

Using an E. coli system, plant sesquiterpenes were 
synthesized in vivo by expressing (+)-cadinene cyclase 
from Gossipium arboreum, 5-epi-aristlochene cyclase 
from N. tabacum, and vetispiradiene cyclase from 
Hyoscyamus muticus (Martin et al. 2001). However, the 
yields were very low: 10.3 µg for (+)-cadinene, 0.24 µg 
for 5-epi-aristlochene, and 6.4 µg for vetispiradiene per 
liter of culture. These sesquiterpene production levels 
were much lower than carotenoid production, suggesting 
that the limiting factor for sesquiterpene synthesis in 
E. coli was not the supply of the FPP precursor but the 
poor expression of the cyclase enzymes. Therefore, a 
codon-optimized amorpha-4,11-diene (amorphadiene) 
synthase gene, which encodes a sesquiterpene cyclase 
involved in artemisinin biosynthesis, was introduced into 
E. coli to enhance protein expression. Additionally the 
MVA pathway genes from S. cerevisiae were introduced  
to bypass the endogenous E. coli MEP pathway 
(Martin et al. 2003). This resulted in concentrations of 
amorphadiene, the precursor of artemisinin, as high 
as 24 mg caryophyllene equivalent L−1 culture medium 
(Martin et al. 2003). The yield of amorphadiene was 
subsequently increased by using a two-phase partitioning 
bioreactor (Newman et al. 2006).
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The availability of MVA was regarded as a limiting step 
in amorphadiene production through the artificial MVA 
pathway in E. coli. However, enhancing the conversion 
of acetyl-CoA to MVA resulted in the accumulation of 
HMG-CoA, which is toxic to E. coli cells (Pitera et al. 
2007). This toxicity was mitigated by introducing an 
additional copy of the HMG-CoA reductase (HMGR) 
gene (Pitera et al. 2007), step by step optimization of the 
expression of each gene involved in MVA production 
(Pfleger et al. 2006), and high-level chromosomal 
expression of the artificial MVA pathway (Yuan et 
al. 2006). Amorphadiene production in E. coli was 
further modified by strain engineering and optimizing 
fermentation, resulting in commercially relevant titers 
(>25 g L−1) of amorphadiene (Tsuruta et al. 2009).

In addition to amorphadiene, several hydroxylated 
sesquiterpenes were produced in E. coli. These 
included artemisinic acid, an immediate downstream 
metabolite of amorphadiene towards artemisinin, and 
8-hydroxycadinene. The production of these metabolites 
was achieved by coexpression of engineered CYPs, 
CPR, and terpene synthases as well as exogenous 
MVA pathway genes from yeast (Chang et al. 2007). 
β-Eudesmol and α-humulene were produced by 
expressing the β-eudesmol synthase and α-humulene 
synthase genes respectively from shampoo ginger 
(Zingiber zerumbet), and an MVA pathway gene cluster 
from Streptomyces sp. (Yu et al. 2008a; 2008b). Use of 
this E. coli system resulted in the identification of a new 
terpene cyclase (S)-β-bisabolene synthase from ginger 
(Z. officinale) (Fujisawa et al. 2010) and the identification 
of a CYP, α-humulene-8-hydroxyase (CYP71BA1) from 
shampoo zinger (Yu et al. 2011).

In yeast S. cerevisiae, Jackson et al. (2003) showed 
slight (370 µg L−1) production of epi-cedrol by expressing 
epi-cedrol synthase from A. annua, and Asadollahi et 
al. (2009) showed cubenol production by expressing 
cubenol synthase from Citrus paradisi. S. cerevisiae has 
been often used for the coexpression of terpene synthases 
and CYPs, resulting in the construction of terpene 
carbon skeletons and subsequent modification. For 
example, Ro et al. (2006) engineered the MVA pathway of 
S. cerevisiae and heterologously expressed amorphadiene 
synthase, amorphadiene oxidase (CYP71AV1), and CPR 
from A. annua, resulting in artemisinic acid production 
(ca. 100 mg L−1). On the other hand, Takahashi et al. 
(2007) individually expressed three terpene cyclases (epi-
aristlochene synthase from tobacco, premnaspirodiene 
synthase from H. muticus, and valencene synthase 
from Citrus) in three yeast strains engineered for sterol 
biosynthesis. Further introduction of a CYP, 5-epi-
aristlochene dihydroxylase gene and CPR into the 
epi-aristlochene synthase-expressing yeast led to the 
production of a dihydroxylated 5-epi-aristlochene, 
capsidiol.

Although the artemisinic acid production from 
glucose was achieved in S. cerevisiae (Ro et al. 2006), 
the titers (ca. 100 mg L−1) were much lower than those 
of amorphadiene produced in E. coli (>25 g L−1) 
(Tsuruta et al. 2009). However, E. coli system is typically 
unsuitable for the functional expression of eukaryotic 
CYPs. Therefore, they compared the E. coli and S. 
cerevisiae systems and found that S. cerevisiae was the 
superior (Paddon and Keasling 2014). By optimizing 
the production pathway in yeast (Lenihan et al. 2008), 
they produced 2.5 g L−1 artemisinic acid. In addition, 
they fermented glucose instead of expensive galactose 
into artemisinic acid (1.6 g L−1) and amorphadiene 
(>40 g L−1) using a yeast strain, CEN.PK2 (Westfall et al. 
2012). To produce artemisinic acid at the commercially 
relevant titers, Paddon et al. (2013) engineered the 
complete biosynthetic pathway for artemisinic acid 
from acetyl-CoA in the yeast strain. The most noticeable 
modification is that they newly introduced following 
genes: 1) ADH1, the gene encoding an NAD-dependent 
alcohol dehydrogenase responsible for the conversion 
of artemisinic alcohol to artemisinic aldehyde, 2) 
ALDH1, the gene encoding an NAD-dependent 
aldehyde dehydrogenase that catalyzes the formation 
of artemisinic acid from artemisinic aldehyde, and 3) 
CYB5, the gene encoding a cytochrome b5 that enhances 
the reaction rate of some CYPs. Eventually, they 
demonstrated artemisinic acid production (25 g L−1) in 
glucose and ethanol-containing medium. The resulting 
artemisinic acid was further chemically converted to 
artemisinin by the method modified for scalable and 
practical production.

The S. cerevisiae system was also useful for the 
functional identification of new sesquiterpene synthases 
and CYPs involved in sesquiterpene biosynthesis. 
Göpfert et al. (2009) identified sesquiterpene synthases, 
including germacrene A synthases and a multiproduct 
synthase generating δ-cadinene as a major product 
in sunflower (Helianthus annus). Use of the yeast 
germacrene A production system also identified a new 
CYP, germacrene A oxidase from lettuce (Lactuca sativa) 
(Nguyen et al. 2010) .

Diterpenes
Diterpenes also include various clinically and 
commercially important metabolites, such as Taxol® 
(paclitaxel), tanshinones, and diterpene resin acids. 
Paclitaxel and its structural analogs are among the most 
potent and commercially successful anticancer drugs 
(Ajikumar et al. 2010). Tanshinones have a variety of 
pharmaceutical activities, including antibacterial, anti-
inflammatory, and antitumor properties. They are found 
in the Chinese medicinal plant Salvia miltiorrhiza (Gao 
et al. 2009). Diterpene resin acids are major components 
of the oleoresins produced by conifers (Hamberger et al. 
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2011).
The first example of diterpene production in E. 

coli was reported by Huang et al. (2001). Because E. 
coli does not typically produce GGPP, GGPPS from a 
bacterium, Erwinia herbicola, was introduced into E. coli 
cells after removal of the N-terminal plastid targeting 
peptide sequence to generate a pseudomature form. 
Overexpression of 1-deoxyxylulose 5-phosphate synthase 
(DXS) in the MEP pathway, isopentenyldiphosphate 
isomerase (IDI), and taxadiene synthase, yielded 
1.3 mg L−1 of the paclitaxel intermediate taxa-4(5),11(12)-
diene (taxadiene). Efficient production of taxadiene 
(1 g L−1) was also achieved by engineering the upstream 
MEP pathway native to E. coli and the downstream 
diterpene-forming pathway (Ajikumar et al. 2010). In 
addition, a CYP, taxadiene 5α-hydroxylase gene, was 
introduced into the system to produce taxadiene 5α-ol, a 
precursor of paclitaxel immediately following taxadiene.

Introduction of a GGPPS from fir (A. grandis) and 
various diterpene cyclase genes into E. coli produced a 
variety of diterpenes with abietane, cassane, kaurane, 
pimarane, stemarane, and stemodane-type skeletons 
(Cyr et al. 2007). Initially, abieta-7,13-diene (abietadiene) 
was synthesized by coexpressing GGPPS and a diterpene 
cyclase, abietadiene synthase, from fir (Peters et al. 
2000), as pseudomature forms lacking N-terminal 
transit peptides. Combinations of a class II diterpene 
cyclase [ent-copalyl diphosphate synthase (ent-CPS)] 
from A. thaliana, which is responsible for the cyclization 
of GGPP to ent-copalyl diphosphate, and each class 
I diterpene cyclase [A. thaliana kaurene synthase 
(AtKS), Oryza sativa kaurene synthase like-6 (OsKSL6), 
OsKSL7, OsKSL5j, or OsKSL10], which catalyzes 
dephosphorylation and further cyclization, were tested. 
Under optimized conditions, ent-kaur-16-ene was 
produced, at a yield of ca. 100 µg L−1, by expression of 
three enzymes, GGPPS, ent-CPS, and AtKS. A similar 
strategy was used to produce syn-type diterpenes. A 
rice syn-copalyldiphosphate synthase (OsCPS4) was 
expressed instead of ent-CPS, and each class I diterpene 
cyclase (OsKSL4, OsKSL8, or OsKSL11) was expressed, 
along with GGPPS, to generate syn-pimara-7,15-
diene, syn-stemar-13-ene, or syn-stemod-13(19)-ene, 
respectively (Cyr et al. 2007).

This modular metabolic engineering system in E. coli 
was later used to identify new diterpene cyclases and a 
CYP. For example, two diterpene cyclases, SmCPS and 
SmKSL, were identified in a Chinese medicinal plant S. 
miltiorrhiza (Gao et al. 2009). SmCPS, a class II diterpene 
cyclase, was found to catalyze the specific formation of 
normal copalyl diphosphate (neither ent- nor syn-copalyl 
diphosphate) from GGPP, whereas SmKSL, a class I 
diterpene cyclase, mediated the formation of miltiradiene 
from normal copalyl diphosphate. Miltiradiene was later 
shown to be an intermediate en route to tanshinones 

(Guo et al. 2013). On the other hand, a rice CYP, 
CYP701A8 was found to convert ent-kaurene to ent-
kauren-19-oic acid using the ent-kaurene production 
system in E. coli (Wang et al. 2012).

Using the S. cerevisiae system, GGPPS and five 
sequential enzymes in the paclitaxel biosynthetic 
pathway between taxadiene and taxadien-5α-acetoxy-
10β-ol were installed in a single yeast host. Although its 
yield was low (ca. 1 mg L−1), taxadiene was detected in 
the yeast; however, the downstream metabolites were 
hardly detected, probably because of limited expression 
of taxadiene 5α-hydroxylase (DeJong et al. 2006). 
Coexpression of codon-optimized taxadiene synthase 
and Sulfolobus acidocaldarius GGPPS, the latter of which 
does not show feedback inhibition, as well as a modified 
HMGR and a mutant of a regulatory protein involved 
in steroid uptake, UPC2-1, yielded about 8.7 mg L−1 
taxadiene (Engels et al. 2008).

In vivo formation of diterpene resin acids was 
observed following the introduction of CYP720B 
from Sitka spruce (Picea sitchensis) into engineered 
yeast expressing GGPPS, CPR, and diterpene cyclases 
(Hamberger et al. 2011). The coexpression in yeast of 
GGPPS and novel class I and II diterpene cyclases from 
Salvia sclarea produced sclareol, a diterpene alcohol 
valuable for the fragrance industry (Caniard et al. 2012). 
Regarding tanshinone production, the production 
of miltiradiene was achieved in the engineered yeast 
harboring the fusion of SmCPS and SmKSL as well as 
the fusion of BTS1 (GGPPS) and ERG20 (FPPS) at the 
titer of 365 mg L−1 (Zhou et al. 2012). Similar engineering 
but additional introduction of S. acidocaldarius GGPPS 
into the miltiradiene production system were performed 
(Dai et al. 2012). Guo et al. (2013) transformed a new 
CYP76AH1 from the S. miltiorrhiza into the miltiradine-
producing yeast and detected the formation of ferruginol, 
indicating that miltiradine is a precursor of ferruginol. 
They also showed the intermediacy of miltiradine in 
tanshinone biosynthesis by tracer experiment and 
suggested that ferruginol is also an intermediate of 
tanshinones.

Triterpenes
Triterpenes are aglycons of triterpenoid saponins with a 
wide range of pharmacological activities. Glycyrrhizin 
from licorice (Glycyrrhiza spp.) is industrially important, 
because it shows anti-inflammatory, antiulcer, and 
antiallergy activities. In addition, glycyrrhizin is 150 
times sweeter than sucrose. Many forms of licorice 
are commercially available worldwide as medicinal 
materials and sweetening agents (Seki et al. 2011). 
Triterpene biosynthesis is initiated by the formation of 
squalene from two FPP molecules by squalene synthase. 
Squalene is subsequently oxidized to 2,3-oxidosqualene 
by squalene epoxidase, and 2,3-oxidosqualene is cyclized 



476 Microbial production of plant specialized metabolites

Figure 4. Biosynthetic pathways for benzylisoquinoline alkaloids. Solid lines, pathways in plants; dotted lines, artificial pathways in 
microorganisms. 4′OMT, 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase; 6OMT, norcoclaurine 6-O-methyltransferase; BBE, berberine 
bridge-forming enzyme; CNMT, coclaurine N-methyltransferase; CODM, codeine O-demethylase; COR, codeinone reductase; DODC, DOPA 
decarboxylase; MAO, monoamine oxidase; morA, morphine dehydrogenase; morB, morphinone reductase; NCS, norcoclaurine synthase; NMCH, 
(S)-N-methylcoclaurine 3-hydroxylase; T6ODM, thebaine 6-O-demethylase; TYDC, tyrosine decarboxylase; TYR, tyrosinase; SMT, scoulerine 
O-methyltransferase.
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by oxidosqualene cyclases to build the basic carbon 
skeletons of triterpenes and sterols (Abe et al. 1993; 
Sawai and Saito 2011). Coexpression of genes encoding 
β-amyrin synthase (bAS) and CPR from Lotus japonicus 
and CYP88D6 from Glycyrrhiza uralensisis in S. 
cerevisiae resulted in the formation of 11-oxo-β-amyrin 
as the major product and 11α-hydroxy-β-amyrin as the 
minor product (Seki et al. 2008). Introduction of an 
additional CYP from G. uralensis, CYP72A154, into the 
triple transformant harboring bAS, CPR, and CYP88D6 
produced glycyrrhetinic acid, an aglycon of glycyrrhizin 
(Seki et al. 2011). Construction of an expression system 
of CPR, using each of three different oxidosqualene 
cyclases (bAS, α-amyrin synthase, and lupeol synthase), 
and a new CYP from Medicago truncatula, CYP716A12, 
enabled the production of oleanolic acid, ursolic acid, 
and betulinic acid, respectively (Fukushima et al. 2011).

Alkaloids

Alkaloids are a group of more than 12,000 nitrogen-
containing specialized metabolites found in 20% of plant 
species (Liscombe and Facchini 2008; Minami et al. 
2008). Many medicinal plants containing alkaloids were 
traditionally used as folk medicines, and some alkaloids 
are clinically used today. The benzylisoquinoline 
alkaloids are one of the largest groups, with 2,500 
different structures known to date (Sato and Kumagai 
2013). They include clinically important compounds, 
such as morphine, codeine, berberine, papaverine, and 
tubocurarine (Liscombe and Facchini 2008).

Benzylisoquinoline alkaloids are biosynthesized from 
L-tyrosine. The biosynthesis of all benzylisoquinoline 
alkaloids is initiated by the norcoclaurine synthase 
(NCS)-mediated condensation of dopamine and 
4-hydroxyphenylacetaldehyde, both of which are 
derived from L-tyrosine. The resulting (S)-norcoclaurine 
is then successively modified by norcoclaurine 
6-O-methyltransferase (6OMT), coclaurine N-
methyltransferase (CNMT), (S)-N-methylcoclaurine 
3-hydroxylase (NMCH; CYP80B1), and 3′-hydroxy-
N-methylcoclaurine 4′-O-methyltransferase (4′OMT) 
to yield the central intermediate (S)-reticuline. (S)-
Reticuline undergoes diverse intramolecular coupling 
reactions resulting in the formation of various backbone 
structures such as protoberberine, benzophenanthridine, 
morphinan, and aporphine alkaloids (Liscombe and 
Facchini 2008; Sato and Kumagai 2013) (Figure 4).

To date, various benzylisoquinoline alkaloids have 
been produced in E. coli and S. cerevisiae systems 
(Matsumura et al. 2013; Sato and Kumagai 2013). For 
example, five enzymes required for the conversion 
of dopamine to (S)-reticuline [i.e., monoamine 
oxidase (MAO), NCS, 6OMT, CNMT, and 4′OMT] 
were expressed in E. coli cells (Minami et al. 2008). 

These engineered E. coli cells produced racemic 
reticuline from supplemented dopamine, although the 
condensation enzyme NCS, which stereoselectively 
forms (S)-norlaudanosoline, was expressed, and crude 
enzymes from the E. coli cells catalyzed the specific 
formation of (S)-reticuline. Co-culture of S. cerevisiae 
expressing CYP80G2 and CNMT with the engineered 
E. coli resulted in the production of magnoflorine and 
corytuberine. In contrast, co-culture of S. cerevisiae 
expressing berberine bridge enzyme (BBE) and E. 
coli yielded scoulerine and N-methylscoulerine. The 
reticuline-producing system was further modified 
to utilize a simple carbon source without precursor 
supplementation using L-tyrosine-overproducing E. 
coli (Nakagawa et al. 2011). When glycerol was used as 
a carbon source, this E. coli produced ca. 4.37 g L−1 L-
tyrosine. Introduction into the L-tyrosine-overproducing 
E. coli of a tyrosinase gene (TYR) from Streptomyces 
castaneoglobisporus to convert L-tyrosine to L-DOPA, a 
DOPA decarboxylase gene (DODC) from Pseudomonas 
putida to convert L-DOPA to dopamine, and a series of 
genes responsible for the formation of reticuline from 
dopamine yielded 2.26 and 6.24 mg L−1 (S)-reticuline 
using glucose and glycerol, respectively, as carbon 
sources. Using Ralstonia solanacearum TYR instead of 
ScTYR increased the yield of (S)-reticuline to 46 mg L−1.

Using S. cerevisiae as a host, a pathway from 
norlaudanosoline to reticuline was constructed by 
introducing 6OMT, CNMT, and 4′OMT, followed 
by the introduction of four genes, BBE, a scoulerine 
methyltransferase gene (SMT), CYP719A, and CPR, 
resulting in the production of (S)-tetrahydroberberine 
(Hawkins and Smolke 2008). Expression of promiscuous 
human CYP2D6 by the reticuline-producing yeast 
resulted in the formation of salutaridine from (R)-
reticuline. More recently, Thodey et al. (2014) 
constructed artificial pathways to produce morphine 
and neomorphine from thebaine in S. cerevisiae by 
incorporating an episomal vector harboring thebaine 
6-O-demethylase (T6ODM), codeinone reductase (COR), 
and codeine O-demethylase (CODM) genes. Optimizing 
the gene copy numbers of T6ODM, COR, and CODM 
and expressing COR fused with an endoplasmic 
reticulum localization tag at C-terminus resulted in the 
production of 86% morphine and 14% neomorphine, 
the latter of which is an unwanted by-product. Moreover, 
they additionally introduced the genes (morA and morB) 
involved in transformation of opiates from P. putida 
M10, a bacterium strain identified in waste from an 
opium poppy processing factory. When they expressed 
T6ODM, COR, morA, and morB, the engineered yeast 
produced hydrocodone and hydromorphone in addition 
to morphine and neomorphine.
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Summary and future prospects

Plant specialized metabolites have proven beneficial 
for human life, and microbial production of these 
metabolites have been pursued over the decade. 
Among phenylpropanoids, 4-hydroxycinnamic acids 
such as 4-coumaric, caffeic, and ferulic acids can be 
produced in microorganisms. However, few reports on 
the construction of the metabolic pathways towards 
monolignols in microorganisms have been published. 
The biosynthetic pathways of flavonoids from L-tyrosine 
to final metabolites such as anthocyanins and flavones 
have been well established in microbes. Flavonoid-
modifying enzymes such as glycosyltransferases and 
methyltransferases have also been coexpressed with 
core flavonoid biosynthetic pathways. Regarding 
isopreonoids, the first committed step for monoterpene, 
sesquiterpene, diterpene, and triterpene biosynthesis 
and subsequent steps catalyzed by CYPs have been 
reconstituted in microorganisms. Future challenges 
would be the functional and multiple introduction of 
CYPs as modifying enzymes towards the production 
of final complex metabolites. Of the alkaloids, only 
benzylisoquinline alkaloids can be produced using 
microbial platforms. Because several other classes 
of alkaloids are as important as benzylisoquinoline 
alkaloids, such as indole and tropane alkaloids with high 
medicinal values, these alkaloids may be the next targets 
for microbial production.

Considering the high compatibility of eukaryotic 
membrane-bound CYP and glycosyltransferase 
expression with eukaryotic system and genetic 
amenability, S. cerevisiae is promising as a chassis 
organism for microbial production of plant specialized 
metabolites. In addition, various tools for synthetic 
biology in S. cerevisiae have recently been developed—
synthetic promoters (Curran et al. 2014), a terminator 
library (Yamanishi et al. 2013), strong terminators (Ito 
et al. 2013), multiple expression systems (Du et al. 2012; 
Ishii et al. 2014), synthetic metabolons (Chun and Zhang 
2013), an RNAi system (Crook et al. 2014), and a genome 
editing (DiCarlo et al. 2013). These new tools will also 
strongly assist the development in yeast. The structurally 
complex plant metabolites with high commercial 
values (e.g. camptothecin, glycyrrhizin, paclitaxel, and 
podophylotoxin) will be challenging targets for the 
production in S. cerevisiae.

It should be noted here that, in plants, specialized 
metabolites often accumulate at high concentrations 
in particular tissues or specific cell layers, due to 
the involvement of specific mechanisms for the 
accumulation of those metabolites. These mechanisms 
include membrane transport, vesicle transport, and 
the development of specialized tissues like glandular 
trichomes (Shitan and Yazaki 2013; Shitan et al. 2013; 

Yazaki 2006). Basic understanding of these mechanisms 
can enable the industrial production of these metabolites; 
however, little is known about improving the yield of 
plant specialized metabolites by installing molecular 
apparatus responsible for these functions in engineered 
microorganisms. Construction of sophisticated systems 
consisting of genes involved in both the biosynthesis 
and accumulation of specialized metabolites remains 
challenges for future research.
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