# An MYB transcription factor regulating specialized metabolisms in *Ophiorrhiza pumila*

Emelda Rosseleena Rohani<sup>1</sup>, Motoaki Chiba<sup>1</sup>, Miki Kawaharada<sup>1</sup>, Takashi Asano<sup>1,a</sup>, Yoshimi Oshima<sup>3</sup>, Nobutaka Mitsuda<sup>3</sup>, Masaru Ohme-Takagi<sup>3,4</sup>, Atsushi Fukushima<sup>2</sup>, Amit Rai<sup>1</sup>, Kazuki Saito<sup>1,2</sup>, Mami Yamazaki<sup>1,\*</sup>

<sup>1</sup>Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; <sup>2</sup>RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; <sup>3</sup>Bioproduction Research Institute, AIST, Tsukuba, Ibaraki 305-8566, Japan; <sup>4</sup>Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan

Received October 5, 2015; accepted November 17, 2015 (Edited by T. Aoki)

**Abstract** Camptothecin is a plant-derived alkaloid and important precursor of clinically used anti-tumor drugs, but little is known about regulatory mechanism of camptothecin production in plants. We show here that a MYB transcription factor, *Op*MYB1, isolated from *Ophiorrhiza pumila* is a regulator of camptothecin biosynthesis. *Op*MYB1 has an EAR-like motif and exhibits a transcriptional repression activity in an in vivo assay using *Arabidopsis thaliana* leaves. Overexpression of *OpMYB1* in hairy roots of *O. pumila* resulted in reduced production of camptothecin and reduced expression of *OpTDC* encoding triptophane decarboxylase catalyzing the earliest step in camptothecin biosynthesis. From the deep transcriptome analysis, GO enrichment in secondary (specialized) metabolisms, especially in phenylpropanoid pathway was observed in the hairy roots over-expressing *OpMYB1*. Furthuremore, gene suppression by OpMYB1 was revealed in biosynthetic pathways of seco-iridoids, monoterpene indole alkaloids, anthraquinone and chlorogenic acid. These results suggested that *OpMYB1* is a negative regulator to fine-tune the general specialized metabolisms in *O. pumila*.

Key words: Camptothecin, EAR-like motif, Ophiorrhiza pumila, repressor, R2R3-MYB.

Camptothecin, a plant derived monoterpene indole alkaloid (MIA), has been received attention for its antitumor activity due to strong inhibitory action upon DNA topoisomerase I (Hsiang et al. 1985; Redinbo et al. 1998). Camptothecin was firstly isolated from Camptotheca acuminata by Wall et al. (1966). The therapeutic values of camptothecin has been reported against colon cancer (Giovanella et al. 1989), lung cancer (Beretta et al. 2006), falciparum malaria (Bodley et al. 1998), and protozoan Leishmania donovani (Werbovetz et al. 2000). Nowadays, water-soluble semi-synthetic derivatives of camptothecin, e.g. irinotecan (Wiseman and Markham 1996) and topotecan (Ahmad and Gore 2004), are used clinically to treat colorectal and ovarian cancer respectively. On the contrary to the huge demand of camptothecin in pharmaceutical market, the supply is depend on plant resources, such as cultivated trees of Camptotheca acuminate (Vincent et al. 1997) and Nothapodytes foetida (Govindachari and Viswanathan 1972). Searching the

alternative stable sources, various trials have been made on in vitro production of camptothecin in cell culture. However, the productivity of camptothecin by cell culture have been quite low (less than 0.005% dry weight) even with various improvements, for example, illumination with modified wave length on callus culture of C. acuminata (Park et al. 2003) or modification of nitrogen source on Nothapodytes nimmoniana (Karwasara and Dixit 2012). Hairy root culture of Ophiorrhiza pumila gave feasibility on camptothecin production in vitro at the level of ca. 0.1% dry weight (Saito et al. 2001) and it was applied to a bioreactor system (Sudo et al. 2002). Furthermore, ectopic expression of ORCA3, a regulatory gene of MIA biosynthesis from Catharunthus roseus (Van der Fits and Memelink 2001) enhanced camptothecin production in hairy roots of C. acuminata (Ni et al. 2011).

Camptothecin biosynthesis pathway is derived from strictosidine, a common intermediate of MIA

Abbreviations: CSC, cell suspension culture; HR, hairy root; MYBox, *OpMYB1* overexpressing hairy roots; MIA, monoterpene indole alkaloid; TDC, tryptophan decarboxylase; SLS, secologanin synthase; G10H, geraniol-10-hydroxylase; STR, strictosidine synthase; EAR, ERF-associated amphiphilic repression.

<sup>\*</sup>E-mail: mamiy@faculty.chiba-u.jp Tel & Fax: +81-43-226-2932

<sup>&</sup>lt;sup>a</sup> Present address: School of Pharmacy, Iwate Medical University, Iwate 028-3694, Japan This article can be found at http://www.jspcmb.jp/ Published online February 13, 2016

Table 1. EAR motif containing R2R3-MYB repressors in plants.

| Protein Name | AGI Code/Accession No | Plant Species        | Core EAR motif | Target Phenotype                                           | References              |
|--------------|-----------------------|----------------------|----------------|------------------------------------------------------------|-------------------------|
| ОрМҮВ1       | LC076107              | Ophiorrhiza pumila   | VNLEL          |                                                            | This study              |
| AtMYB3       | AT1G22640             | Arabidopsis thaliana | LNLEL          |                                                            | Kagale et al. (2010)    |
| AtMYB7       | AT2G16720             |                      | LNLEL          | phenyl propanoid and flavonoid pathway <sup>a</sup>        | Wang and Dixon (2012)   |
| AS1          | AT2G37630             |                      | LELQL          | leaf morphology <sup>b</sup>                               | Machida et al. (2015)   |
| AtMYB32      | AT4G34990             |                      | LDLNLEL        | phenylpropanoid biosynthesis <sup>a,b</sup>                | Preston et al. (2004)   |
| AtMYB4       | AT4G38620             |                      | LNLEL          | phenylpropanoid biosynthesis a,b                           | Jin et al. (2000)       |
| FaMYB1       | AAK84064              | Fragaria×ananassa    | LNLDL          | anthocyanin and flavonol b                                 | Aharoni et al. (2001)   |
| AmMYB330     | P81395                | Antirrhinum majus    | VDLEL          | phenylpropanoid and lignin<br>biosynthesis <sup>b</sup>    | Tamagnone et al. (1998) |
| MtMYB2       | ABR28329.1            | Medicago truncatula  | LNLDL          | proanthocyanidin and anthocyanin biosynthesis <sup>b</sup> | Jun et al. (2015)       |

<sup>&</sup>lt;sup>a</sup> validated as transcriptional repressors; <sup>b</sup> supported by molecular genetic evidence as negative regulators.

biosynthesis. Strictosidine is produced by condensation of tryptamine and secologanin catalyzed by strictosidine synthase (STR) (Kutchan 1995). Strictosidine is then converted to strictosamide by intramolecular cyclization (Hutchinson et al. 1979). However, the steps following strictosamide to camptothecin biosynthesis have not been clearly defined. The plausible intermediates, pumiloside, 3(S)- and 3(R)-deoxypumiloside, were reported in Ophiorrhiza pumila (Aimi et al. 1989; Kitajima et al. 1997). However, the regulatory mechanism in camptothecin producing species is still unclear. So far, our research group has investigated on the detail of camptothecin production in hairy roots of O. pumila (Rubiaceae). Gene suppression of two catalytic enzymes in the early steps of MIA biosynthesis, tryptophan decarboxylase (TDC) and secologanin synthase (SLS), resulted in reduced accumulation of camptothecin and related alkaloids. From the non-targeted metabolite profiling of these suppressed hairy roots, candidates for biosynthetic intermediates were predicted (Asano et al. 2013). While the hairy roots of O. pumila are rich in specialized metabolites not only camptothecin-related alkaloids but also anthraquinones, de-differentiated cell suspension culture derived from hairy roots accumulated no alkaloids and faint amount of anthraquinones (Asano et al. 2013). The deep transcriptome analysis coupled with untargeted metabolic profiling between hairy roots and cell suspension culture showed differential expression of genes involved in the biosynthetic pathways of camptothecin, anthraquinones and chlorogenic acid (Yamazaki et al. 2013).

In this study, a gene encoding R2R3-myb transcription factor, *OpMYB1*, was isolated as one of hairy root specific genes which is not expressed in cell suspension culture. *OpMYB1* contains an EAR-like motif known to be repression domain (Table 1). For the functional characterization, *OpMYB1* was overexpressed in hairy roots and alkaloid production and transcriptome change in them were analyzed. This is the first report of a regulator concerning on the camptothecin biosynthesis

in O. pumila.

### Materials and methods

### Plant materials and tissue cultures

Hairy roots were induced from stem segments of in vitro plant culture of *O. pumila* as described by (Saito et al. 2001). Cell suspension culture was induced from the hairy roots as reported (Asano et al. 2013).

#### Isolation and sequence analysis of OpMYB1

Differentially expressed genes between hairy roots and cell suspension culture were profiled by PCR-select cDNA subtraction and fragmental sequences were obtained (Clontech, Japan) as described by Bunsupa et al. (2011). Based on the sequence information of the fragment showing homology with myb transcription factors, a full-length cDNA was cloned by performing 5'- and 3'-RACE.

Homologous genes were searched using the BLASTx program against Non-redundant (nr) protein sequence and UniProtKB/SwissProt (swissprot).

A phylogenetic tree was constructed using the neighborjoining method of MEGA6 (Tamura et al. 2013). Bootstrap values were statistically calculated with the default setting of the MEGA6 program. Amino acid sequence alignment was performed between *OpMYB1* with five-selected MYB from the same clade from the phylogenetic analysis, and *Arabidopsis thaliana* MYB using CLC Main Workbench 7 software (CLC Bio, Qiagen).

#### Transient effector-reporter assay

An open reading frame of *OpMYB1* was amplified by PCR and subcloned into 35S:GAL4DB vector pDEST430T1.2 (Ohta et al. 2000) using Gateway technology (Invitrogen). The reporter construct, Pro35S-GAL4-TATA-LUC-HSP (Tanaka et al. 2012), contains the five repeats of GAL4 binding site fused CaMV35S minimal promoter, a luciferase gene and transcriptional terminator of a heat shock protein 18.2 gene. The primers used were OpMYB1-ORF-attB1-F and OpMYB1-ORF-attB2-R (Supplementary Table S1). The empty vector pDEST430T1.2

without insertion (35S:GAL4DB) was used as negative control. Effector and reporter plasmids were co-bombarded into the leaves of *Arabidopsis thaliana* grown in long-day condition (16-h-light/8-h-dark cycle).

# Construction of binary vectors and plant transformation

Stable transformed hairy roots over-expressing OpMYB1 (MYBox) were obtained as follows. The open reading frame of OpMYB1 was subcloned into the binary expression vector pH7WG2D (Nakagawa et al. 2007) through Gateway technology (Invitrogen, USA) and pH7WG2D-OpMYB1 ( $35S_{pro}$ :OpMYB1) was obtained. For negative control, GUS ( $\beta$ -glucuronidase) gene was used instead of OpMYB1. The binary vector pH7WG2D-OpMYB1 or pH7WG2D-GUS was introduced into  $Agrobacterium\ rhizogenes\ (pRi15834)$  by electroporation. The stem sections of  $O.\ pumila\ were\ co-cultured\ with\ A.\ rhizogenes\ harboring\ the\ binary\ vector\ and\ transgenic\ hairy\ roots\ transformed\ with\ T-DNA\ from\ binary\ vectors\ were\ obtained\ as\ described\ previously\ by\ Asano\ et\ al.\ (2009).$ 

# Gene expression analysis of MYB-overexpressing lines by RT-PCR

Total RNA was extracted from MYBox and GUS lines using RNeasy plant mini kit (Qiagen) and treated with DNase. Subsequently, each sample of total RNA ( $1\mu g$ ) was subjected to reverse transcription using SuperScript II Reverse Transcriptase kit (Invitrogen) using Oligo dT-3 sites Adaptor Primer (TaKaRa).

The semi-quantitative RT-PCR analysis was performed on OpMYB1 using primer set of OpMYB1-F and OpMYB1-R (Supplementary Table S2). The expression of housekeeping  $\beta$ -tubulin gene was analyzed as a control with primer set of OpTub-F and OpTub-R. PCR amplification was performed with denaturation step at 94°C for 1 min 30 s, followed by 26 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C for 2 min 30 s. The PCR products were separated by electrophoresis using 1.5% agarose gel. The gel was then stained with SYBR Green I nucleic acid gel stain (Invitrogen) and afterwards scanned with Storm 860 image analyzer (GE Healthcare). The produced image scan were visualized and analyzed using Image Quant (GE Healthcare). The expression level of OpMYB1 was calculated by normalization with  $\beta$ -tubulin band and later compared to the average value of GUS-expression level.

RT-PCR based quantification of key enzyme coding genes in MIA biosynthesis pathway was performed using primersets, OpTDC-F and OpTDR-R, OpG10H-F and OpG10H-R, OpSLS-F and OpSLS-R, and OpSTR-F and OpSTR-R (Supplementary Table S2) with the same PCR condition as described above.

### Analysis of camptothecin

Camptothecin contents in the MYBox samples from 3-weeks culture were extracted and quantified by HPLC equipped with

fluorescent detector as described previously by Asano et al. (2013).

# Deep transcriptome sequencing, de novo assembly and annotation

Deep transcriptome analysis was performed as described previously (Yamazaki et al. 2013). Poly(A)+ RNA was isolated from 3-week-old MYBox. A cDNA library was constructed and sequenced using pair-end method with an Illumina platform (Riken Genesis). The Illumina reads were deposited in the DNA Data Bank of Japan (DDBJ) under Sequence Read Archive (DRA) with accession No. DRA000931, with experiment No. DRX003679 for HR and DRX003680 for MYBox. Previously, reads with accession No. DRA000930, with experiment No. DRX003677 for CSC and DRX003678 for HR were deposited by Yamazaki et al. (2013).

The generated raw reads were cleaned based on quality score and adaptors were removed, and assembled using Trinity program (Grabherr et al. 2011). The assembly procedure (including cleaning, alignment and abundance estimation) and annotation (including BLAST alignment, assigning EC number and functional classification) were done following Fukushima et al. (2015).

#### Results and discussion

#### Structure of OpMYB1

A differential PCR-select subtraction was performed using cDNAs from hairy roots and cell suspension culture. The 353 gene fragments that differentially expressed in hairy roots were sequenced. Nearly 40% of these fragments were annotated as metabolic enzymes and the rest were transporters, transcription factors and stress-related proteins (data not shown). Among hairy-root specific fragments, 15 fragments were annotated as transcription factors including a MYB transcription factor (Supplementary Table S3). Considering the general role of MYB transcription factors in the regulation of specialized metabolisms, we selected this fragment for further investigation. Based on the nucleotide sequence of the MYB fragment, a full-length cDNA was cloned by 5'- and 3'-RACE and designated as *OpMYB1*.

OpMYB1 encodes 304 amino acids the deduced from nucleotide sequence (registered as LC076107 in DDBJ/GenBank). OpMYB1 is classified into R2R3 type MYB, and has following conserved motifs; bHLH-interaction domain, GIDP motif, ERF-associated amphiphilic repression (EAR) -like motif (VNLDL) and zinc finger motif (Figure 1). The EAR motif (LxLxL or DLNxxP) was widely conserved in diverse transcriptional repressors (Kagale et al. 2010, 2011). R2R3-MYB containing EARmotif containing are distributed across different plant species and some of them were identified as negative regulator of transcription (Table 1).

Phylogenetic tree was constructed using amino acid

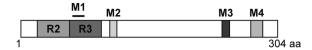



Figure 1. Schematic representation of protein domains in *OpMYB1*. R2 and R3, Repeat sequences conserved in R2R3 MYB transcription factors; M1, bHLH-interaction domain; M2, GIDP motif; M3, EAR-like motif; M4: Zinc finger motif.

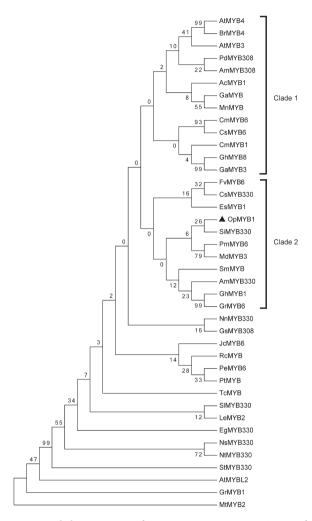



Figure 2. Phylogenetic tree of R2R3-MYBs containing EAR motif, based on predicted amino acid sequences. The number on the branches indicates the bootstrap support values (500 replicates). Accession numbers of the MYB sequences are listed in Supplementary Table S4.

sequences of *OpMYB1* and R2R3-MYBs containing EAR-motif (Figure 2, Supplementary Table S4). *AmMYB330* in the same Clade 2 as *OpMYB1* has been identified as a negative regulator in phenylpropanoid and lignin biosynthesis in *Antirrhinum majus* (Tamagnone et al. 1998). *AtMYB4* belongs to Clade 1, which was next to *OpMYB1*'s Clade 2, also being reported as a repressor of phenylpropanoid and lignin biosynthesis (Kranz et al. 1998). This suggests that *OpMYB1* is a potential negative regulator of specialized metabolism in *O. pumila*.

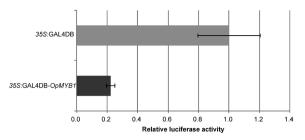



Figure 3. Transcriptional repressor activity of *OpMYB1*. Transient effector-reporter analysis was performed. The effector and the reporter constructs were co-transformed into the leaves of *Arabidopsis thaliana*. The reporter construct (35S-5xGAL4:LUC) contains the five repeats of GAL4 binding site fused CaMV35S minimal promoter and a luciferase gene. 35S:GAL4DB-OpMYB1, OpMYB1 fused to GAL4-binding domain was expressed under control of CaMV35S promoter. 35S:GAL4DB, only GAL4-binding domain was expressed (negative control). LUC activity with negative control was set to 1. Each bar represents the mean±SE of six biological replicates. Statistical significance was observed by the Student's *t*-test, *p*-value <0.05.

### Transcriptional repressor activity of OpMYB1

To examine the transcriptional activation/repression activity of OpMYB1, transient effector-reporter analysis was performed. The reporter construct (35S:5xGAL4BS-LUC) and the effecter construct (35S:GAL4BD-OpMYB1) were co-transformed by particle bombardment into leaves of  $Arabidopsis\ thaliana$ . The luciferase activity was reduced one fifth comparing with the negative control (35S:GAL4BD) with a significant difference (p<0.05) (Figure 3). This result supported the idea that OpMYB1 acts as a negative transcriptional regulator in  $O.\ pumila$ .

#### OpMYB1 overexpression in transgenic hairy roots

In order to clarify the function of OpMYB1, the OpMYB1 was overexpressed in hairy roots. The 17 lines of hairy roots were successfully obtained. The expression of OpMYB1 in transformed hairy roots was determined by semi-quantitative PCR (Supplementary Figure S1). The expression levels of OpMYB1 in OpMYB1-overexpressing hairy roots (MYBox) were compared with those in the control hairy roots transformed with  $\beta$ -glucuronadase gene (GUS). The five lines had increased OpMYB1 expression level more than 4 fold and the highest expression was 5.2-fold compared to the average value of control lines. The well growing ten MYBox lines were selected for further investigation and numbered (1–10) according to their expression level of OpMYB1.

Subsequently, camptothecin accumulation in MYBox was compared with control hairy roots (Figure 4). The methanol extract of individual hairy root lines were subjected to HPLC analysis monitored fluorescent detector. A negative correlation was observed between the content of camptothecin and the expression level of *OpMYB1*. This result suggests that OpMYB1 has a role of negative regulator in camptothecin biosynthesis. Then,

the expression levels of several genes encoding catalytic enzymes in early steps in MIA biosynthesis (Yamazaki et al. 2003) were determined. The expression levels of *OpTDC*, *OpG10H*, *OpSLS* and *OpSTR*, that encoding tryptophane decarboxylase, geraniol 10-hydroxylase,

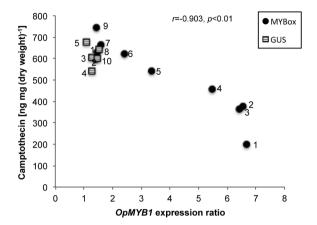



Figure 4. Relative expression levels of OpMYB1 and camptothecin contents in MYBox and GUS lines. The expression of OpMYB1 was measured by semi-quantitative RT-PCR normalized by the expression level of  $\beta$ -tubulin gene. The expression ratio was calculated to the average of in GUS control lines as 1. The numbers on each point means line number of biological replicate (n=3). Statistical significance was observed by Pearson correlation coefficient and Student's t-test, at t=0.903 and t=0.01, respectively.

secologanin synthase and strictosidine synthase respectively, were determined by semi-quantitive RT-PCR (Figure 5). The expression level of OpTDC showed a significant negative correlation (r=-0.701, p<0.01) with that of OpMYB1. This result showed that OpMYB1 inhibits the expression of OpTDC at least. However, the effects on other enzyme genes were not clear. The knockdown of OpMYB1 by RNAi showed no significant change both in camptothecin production and gene expression of catalytic enzymes (data not shown).

# De novo transcriptome assembly and functional annotation

Total RNA prepared from MYBox was subjected to deep transcriptome analysis. The 2 Gb of paired-end reads were generated and analyzed together with those previously obtained by Yamazaki et al. (2013) from cell suspension culture (CSC) and hairy roots (HR) (Table 2). Finally, the total contigs of 59,855 were retrieved from de novo assembly with an average length of 989 bp (Table 3).

The Blast2GO program v 2.7.1 (Conesa et al. 2005) was used to identify differentially enriched Gene Ontologies by Fisher's exact test with threshold set at 0.05. Differentially expressed unigenes in MYBox compared to HR were used as test set against annotated transcriptome of *O. pumila*, resulting in 57 GO categories enriched due

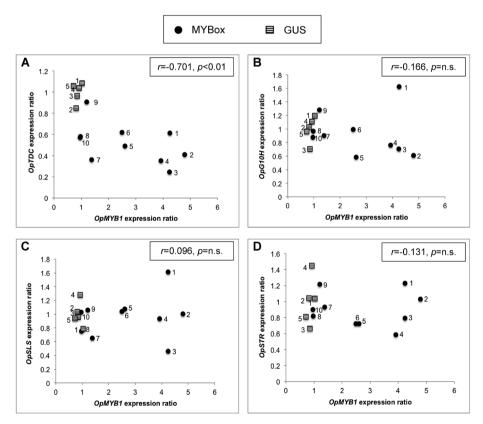



Figure 5. Relative expression level of OpMYB1 and transcript levels of enzyme genes in camptothecin biosynthetic pathway in MYBox and GUS lines. (A) OpTDC (B) OpG10H, (C) OpSLS (D) OpSTR In each graph, The numbers on each point means line number with biological replicate (n=3). The r and p values were obtained by Pearson correlation coefficient and Student's t-test, respectively.

to OpMYB1 overexpression. Among these, GO terms corresponding to secondary (specialized) metabolite biosynthesis process, including phenylpropanoids were among top ten enriched GO terms in our test set (Figure 6, Supplementary Table S5). This result consistent with the fact that AtMYB4, AtMYB7, AtMYB32 and AmMYB330 play roles as negative regulators in phenylpropanoid biosynthesis in Arabidopsis thaliana and Antirrhinum majus respectively (Nakano et al. 2015; Tamagnone et al. 1998). Moreover, GO term corresponding to oxidation-reduction process was also enriched in MYBox. Many oxidation-reduction processes might be involved in specialized metabolisms. Our results show that *OpMYB1* overexpression affected on general specialized metabolisms including camptothecin biosynthesis in *O. pumila*.

# OpMYB1 involvement in specialized metabolisms including camptothecin biosynthesis

The expressions of genes encoding catalytic enzymes involved in early steps of camptothecin biosynthesis, *OpTDC*, *OpG10H*, *OpSLS* and *OpSTR*, (Yamazaki et al. 2003) were investigated with the transcriptome data assembly in this study. Contigs corresponding *OpTDC*, *OpG10H*, *OpSLS* and *OpSTR* were expressed at lower level in MYBox comparing to hairy roots (HR) although at still higher level than cell suspension culture (CSC) (Figure 7; Supplementary Figure S2). These results

Table 2. Summary of RNA-seq analysis.

| Items                        | Numbers    |
|------------------------------|------------|
| Total number of reads        | 80,065,066 |
| Total reads of CSC           | 24,617,708 |
| Total reads of HR            | 29,682,050 |
| Total reads of MYBox         | 25,765,308 |
| Average length of reads (bp) | 90         |

CSC, cell suspension culture; HR, hairy roots; MYBox, *OpMYB1* overexpressing hairy roots.

suggest that *Op*MYB1 transcription factor plays a role as negative regulator in early steps of MIA biosynthesis. As described above, the repression effect of *Op*MYB1 on *OpG10H*, *OpSLS* and *OpSTR* was not clear when the gene expression was quantified by semi-quantitive RT-PCR. Deep transcriptome analysis gave rather definite results than RT-PCR.

Seco-iridoid pathway reaches to secologanin production is the upstream process of MIA biosynthesis. Based on the information about *sec*-iridoid pathway genes in *Catharanthus roseus* producing vinca alkaloids (Miettinen et al. (2014), total of 81 contigs presumably involved in seco-iridoid pathway were predicted and their expression levels in MYBox were compared with those of in HR and CSC (Figure 7, Supplementary Figure S3). There is a general trend that the expression of genes in this pathway of MYBox was also reduced compared with that in HR.

Previously, the accumulation of anthraquinones has been reported in hairy roots and callus culture of *O. pumila* (Kitajima et al. 1998). They are a major group of specialized metabolites in Rubiaceae family. Anthraquinones in Rubiaceae have been reported to be synthesized by a formation of 1,4-dihydroxy-2-naphthoyl-CoA from chorismate pathway, with dimethylallyl diphosphate from MEP pathway (Han et al. 2001). For both chorismate and MEP pathways, contigs presumed to encode catalytic enzymes in anthraquinone pathway were extracted and their expression level

Table 3. Summary of Trinity assembly.

| Items                      | Numbers           |
|----------------------------|-------------------|
| Total assembled contigs    | 59,855            |
| Maximum contig length (bp) | 15,617            |
| Minimum contig length (bp) | 201               |
| Average contig length (bp) | 989               |
| N75; N50; N25 (bp)         | 790; 1,722; 2,862 |

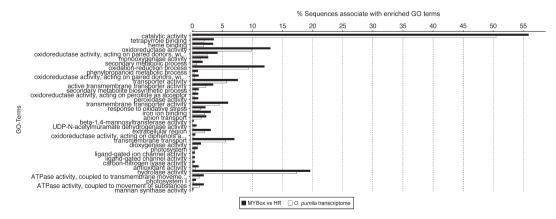



Figure 6. Differential GO enrichment for MYBox in *O. pumila*. Differentially expressed unigenes for MYBox with respect to hairy roots (MYBox vs HR) compared to *O. pumila* transcriptome dataset. Annotation from top to bottom is in the order of ascending *p*-value. Differential enrichment of GO terms were performed using Fisher's exact test with a *p*-value cutoff <0.05 applied.

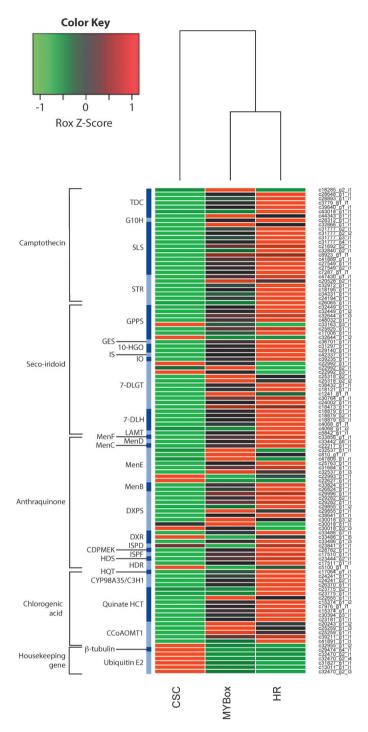



Figure 7. Heatmap diagram of expression level of genes involved in specialized metabolisms. Heat map was constructed according to FPKM value of genes involved in biosynthetic pathway of strictosidine, seco-iridoid, anthraquinone and chlorogenic acid, and housekeeping genes. The numbers on the right hand side are the contig ID. The expression levels are showed in red-green color scale. CSC, cell suspension culture; HR, hairy roots; MYBox, *OpMYB1*-overexpression in hairy roots; TDC, tryptophan decarboxylase; G10H, geraniol 10-hydroxylase; SLS, secologanin synthase; STR, strictosidine synthase; GPPS, geranyl diphosphate synthase; GES, geraniol synthase; 10-HGO, 10-hydroxygeraniol dehydrogenase; IS, iridoid synthase; IO, iridoid oxidase; 7-DLGT, 7-deoxyloganetic acid glucosyl transferase; 7-DLH, 7-deoxyloganic acid hydroxylase; LAMT, loganic acid *O*-methyltransferase; MenF; menaquinone-specific isochorismate synthase; MenD, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase; MenC, *o*-succinyl benzoate synthase; MenE, *o*-succinyl benzoic acid-CoA ligase; MenB, naphthoate synthase; DXPS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-rylulose-5-phosphate synthase; DXR, 1-deoxy-D-rylulose-5-phosphate synthase; MenD, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS, (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-3-enyl diphosphate synthase; HDR, 4-hydroxy-3

was displayed (Figure 7; Supplementary Figure S4) as reported by (Yamazaki et al. 2013). Again a general trend of reduced gene expression for this pathway in MYBox when compared with the expression in HR. Another specialized metabolism predicted in *O. pumila* is chlorogenic acid biosynthesis. The same trend of gene expression pattern, repressed in MYBox was observed on CYP98A35, C3H and quinate HCT (Figure 7; Supplementary Figure S5) as seen in other biosynthetic pathways.

On the other hand, no change was observed in the expression levels of housekeeping genes encoding  $\beta$ -tubulin and ubiquitin between MYBox and HR, while high expression in CSC with totally different expression pattern with those of genes involved in specialized metabolisms.

Taken together, this paper presented *Op*MYB1 as a key transcription factor that negatively regulates general specialized metabolisms in *O. pumila*, biosynthesis of seco-iridoid, MIA, anthraquinone and chlorogenic. So far, several studies have reported on repressor functions of R2R3-MYB containing EAR-motif on phenylpropanoid, lignin and flavonoid. Addition to zinc finger proteins with EAR-motif acting as transcriptional repressors of MIA biosynthesis genes in *Catharanthus roseus* (Pauw et al. 2004), it is the first report on R2R3-MYB suppresses alkaloid production. Using these information, candidate genes involved in camptothecin biosynthesis will be screened.

### Acknowledgements

This research is funded by Grants-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and The Japan Society for the Promotion of Science (JSPS) and CREST from Japan Science and Technology Agency (JST). We thank Prof. Tsuyosi Nakagawa for providing binary vector.

#### References

- Ahmad T, Gore M (2004) Review of the use of topotecan in ovarian carcinoma. *Expert Opin Pharmacother* 5: 2333–2340
- Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa J (1989) Pumiloside and deoxypumiloside; plausible intermediates of camptothecin biosynthesis. *Tetrahedron Lett* 30: 4991–4994
- Asano T, Kobayashi K, Kashihara E, Sudo H, Sasaki R, Iijima Y, Aoki K, Shibata D, Saito K, Yamazaki M (2013) Suppression of camptothecin biosynthetic genes results in metabolic modification of secondary products in hairy roots of *Ophiorrhiza pumila*. *Phytochemistry* 91: 128–139
- Asano T, Sudo H, Yamazaki M, Saito K (2009) Camptothecin production by in vitro cultures and plant regeneration in *Ophiorrhiza* species. In: Jain SM, Saxena PK (eds) *Methods in Molecular Biology, Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants.* Humana Press, pp 337–345
- Beretta GL, Petrangolini G, De Cesare M, Pratesi G, Perego P,

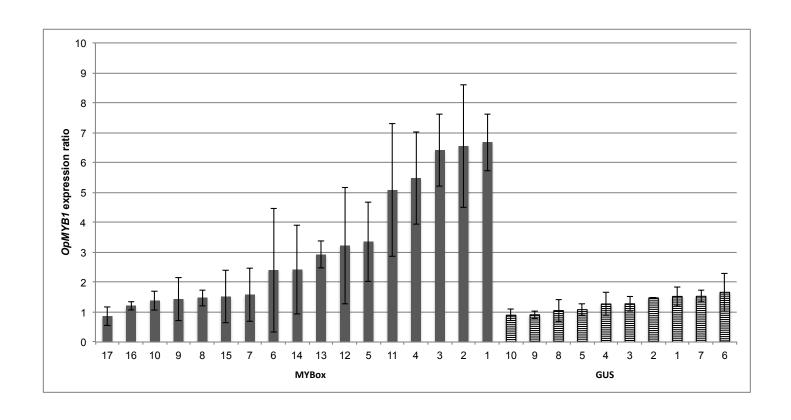
- Tinelli S, Tortoreto M, Zucchetti M, Frapolli R, Bello E, et al. (2006) Biological properties of IDN5174, a new synthetic camptothecin with the open lactone ring. *Cancer Res* 66: 10976–10982
- Bodley AL, Cumming JN, Shapiro TA (1998) Effects of camptothecin, a topoisomerase I inhibitor, on *Plasmodium falciparum*. *Biochem Pharmacol* 55: 709–711
- Bunsupa S, Okada T, Saito K, Yamazaki M (2011) An acyltransferase-like gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and nonproducing cultivars of *Lupinus angustifolius*. *Plant Biotechnol* 28: 89–94
- Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* 21: 3674–3676
- Fukushima A, Nakamura M, Suzuki H, Saito K, Yamazaki M (2015) High-throughput sequencing and *de novo* assembly of red and green forms of the *Perilla frutescens* var. *crispa* transcriptome. *PLoS ONE* 10: e0129154
- Giovanella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, Silber R, Potmesil M (1989) DNA topoisomerase I--targeted chemotherapy of human colon cancer in xenografts. Science 246: 1046–1048
- Govindachari TR, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11: 3529–3531
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol* 29: 644–652
- Han Y-S, Van der Heijden R, Verpoorte R (2001) Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. *Plant Cell Tiss* Org 67: 201–220
- Hsiang Y-H, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induced protein-linked DNA breaks via mammalian DNA topoisomerase I. *J Biol Chem* 260: 14873–14878
- Hutchinson CR, Heckendorf AH, Straughn JL, Daddona PE, Cane DE (1979) Biosynthesis of camptothecin. 3. Definition of strictosamide as the penultimate biosynthetic precursor assisted by carbon-13 and deuterium NMR spectroscopy. *J Am Chem Soc* 101: 3358–3369
- Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. *Plant Physiol* 152: 1109–1134
- Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants. An underlying mechanism for epigenetic regulation of gene expression. *Epigenetics* 6: 141–146
- Karwasara VS, Dixit VK (2012) Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep 7: 357–369
- Kitajima M, Fiscer U, Nakamura M, Ohsawa M, Ueno M, Takayama H, Unger M, Stockigt J, Aimi N (1998) Anthraquinones from Ophiorrhiza pumila tissue and cell cultures. Phytochemistry 48: 107–111
- Kitajima M, Masumoto S, Takayama H, Aimi N (1997) Isolation and partial synthesis of 3(*R*)- and 3(*S*)-deoxypumiloside; structural revision of the key metabolite from the camptothecin producing plant, *Ophiorrhiza pumila*. *Tetrahedron Lett* 38: 4255–4258
- Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC,

- Petroni K, Urzainqui A, Beva M, Martin C, et al. (1998) Towards functional characterisation of the members of the *R2R3-MYB* gene family from *Arabidopsis thaliana*. *Plant J* 16: 263–276
- Kutchan TM (1995) Alkaloid biosynthesis The basis for metabolic engineering of medicinal plants. *Plant Cell* 7: 1059–1070
- Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, et al. (2014) The secoiridoid pathway from Catharanthus roseus. Nat Commun 5: 3606
- Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. *J Biosci Bioeng* 104: 34–41
- Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M (2015) NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. *Front Plant Sci* 6: 288–306
- Ni X, Wen S, Wang W, Wang X, Xu H, Kai G (2011) Enhancement of camptothecin production in *Camptotheca acuminata* hairy roots by overexpressing *ORCA3* gene. *J App Pharm Sci* 1: 85–88
- Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethyleneresponsive transcription factors in tobacco with distinct transactivation functions. *Plant J* 22: 29–38
- Park YG, Kim MH, Yang JK, Chung YG, Choi MS (2003) Lightsusceptibility of camptothecin production from *in vitro* cultures of *Camptotheca acuminata* Decne. *Biotechnol Bioproc E* 8: 32–36
- Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A, Pré M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in *Catharanthus roseus*. J Biol Chem 279: 52940–52948
- Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WGJ (1998) Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. *Science* 279: 1504–1513
- Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of *Ophiorrhiza pumila*. *Plant Cell Rep* 20: 267–271
- Sudo H, Yamakawa T, Yamazaki M, Aimi N, Saito K (2002) Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnol Lett 24: 359–363
- Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia

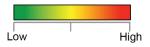
- F, Roberts K, Martin C (1998) The AmMYB308 and AmMYB300 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. *Plant Cell* 10: 135–154
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729
- Tanaka W, Toriba T, Ohmori Y, Yoshida A, Kawai A, Mayama-Tsuchida T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Hirano HY (2012) The *YABBY* gene *TONGARI-BOUSHI1* is involved in lateral organ development and maintenance of meristem organization in the rice spikelet. *Plant Cell* 24: 80–95
- Van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. *Plant J* 25: 43–53
- Vincent RM, Lopez-Meyer M, McKnight TD, Nessler CL (1997) Sustained harvest of camptothecin from the leaves of Camptotheca acuminata. J Nat Prod 60: 618–619
- Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant anitumor agents I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from *Camptotheca acuminata*. *J Am Chem Soc* 88: 3888–3890
- Werbovetz KA, Bhattacharjee AK, Brendle JJ, Scovill JP (2000) Analysis of stereoelectronic properties of camptothecin analogues in relation to biological activity. *Bioorg Med Chem* 8: 1741–1747
- Wiseman LR, Markham A (1996) Irinoteca. A review of its pharmacological properties and clinical efficacy in the management of advanced colorectal cancer. *Drugs* 52: 606–623
- Yamazaki M, Mochida K, Asano T, Nakabayashi R, Chiba M, Udomson N, Yamazaki Y, Goodenowe DB, Sankawa U, Yoshida T, et al. (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in *Ophiorrhiza pumila* to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. *Plant Cell Physiol* 54: 686–696
- Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of *Ophiorrhiza* pumila cloning, characterization and differential expression in tissues and by stress compounds. *Plant Cell Physiol* 44: 395–403

### Legends to supplementary figures

Supplementary Figure S1. OpMYB1 expression in OpMYB1-overexpression in hairy roots (MYBox), compared to GUS lines. Each bar represents the mean  $\pm$  SE of three biological replicates for each independent line.


Supplementary Figure S2. The camptothecin biosynthesis pathway and expression of contigs in *O. pumila*. The expression of contigs showed in red-yellow-green color scale and FPKM values. CSC, cell suspension culture; HR, hairy roots; MYBox, *OpMYB1*-overexpression in hairy roots; TDC, tryptophan decarboxylase; G10H, geraniol 10-hydroxylase; SLS, secologanin synthase; STR, strictosidine synthase. Dashed lines indicate unresolved reactions.

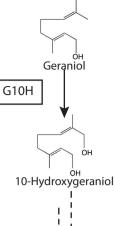
Supplementary Figure S3. The seco-iridoid biosynthesis pathway and expression of contigs in *O. pumila*. The expression levels of contigs showed in red-yellow-green color scale and FPKM values. CSC, cell suspension culture; HR, hairy roots; MYBox; *OpMYB1*-overexpression in hairy roots; IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; Glc, glucose; GPPS, geranyl diphosphate synthase; GES, geraniol synthase; G10H, geraniol 10-hydroxylase; 10-HGO, 10-hydroxygeraniol dehydrogenase; IS, iridoid synthase; IO, iridoid oxidase; 7-DLGT, 7-deoxyloganetic acid glucosyl transferase; 7-DLH, 7-deoxyloganic acid hydroxylase; LAMT, loganic acid *O*-methyltransferase; SLS, secologanin synthase; STR, strictosidine synthase; TDC, tryptophan decarboxylase.


Supplementary Figure S4. The anthraquinone biosynthesis pathway and expression of contigs in *O. pumila*. The expression levels of contigs showed in red-yellow-green color scale and FPKM values. CSC, cell suspension culture; HR, hairy roots; MYBox; *OpMYB1*-overexpression in hairy roots; MenF; menaquinone-specific isochorismate synthase; MenD, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase; MenH, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase; MenC, *o*-succinyl benzoate synthase; MenE, *o*-succinyl benzoic acid-CoA ligase; MenB, naphthoate synthase; DXPS, 1-deoxy-D-xylulose-5-phosphate synthase; CLA, cloroplastos alterados; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; ISPD, 2-*C*-methyl-D-erythritol 4-phosphate cytidylyltransferase; CDPMEK, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol kinase; ISPF, 2-*C*-methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS, (*E*)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase.

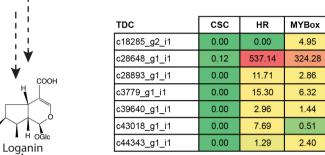
Supplementary Figure S5. The chlorogenic acid biosynthesis pathway and expression of contigs in *O. pumila*. The expression levels of contigs showed in red-yellow-green color scale and FPKM values. CSC, cell suspension culture; HR, hairy roots; MYBox, *OpMYB1*-overexpression in hairy roots; HQT, hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase; CYP98A35 or C3H1, *p*-coumaroyl quinate/shikimate 3'-hydroxylase; Quinate HCT, caffeoyl-CoA:quinate *O*-(hydroxycinnamoyl) transferase; CCoAOMT1, caffeoyl-CoA 3-*O*-methyl transferase.

# **Supplementary Figure S1**

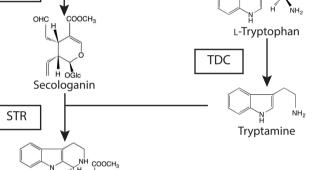


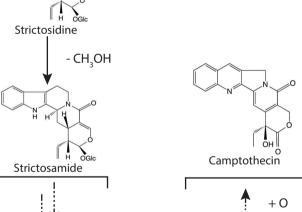

### **Supplementary Figure S2**

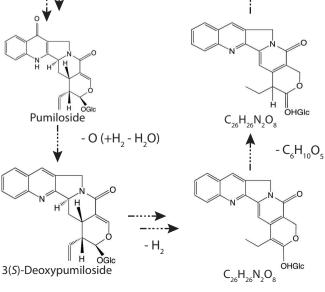



| G10H         | csc  | HR     | MYBox  |
|--------------|------|--------|--------|
| c28312_g1_i1 | 7.78 | 303.73 | 176.74 |

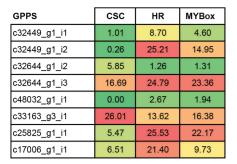
| SLS          | csc    | HR     | MYBox  |
|--------------|--------|--------|--------|
| c20052_g2_i1 | 0.00   | 4.40   | 1.04   |
| c32866_g1_i1 | 19.93  | 38.82  | 53.31  |
| c19494_g1_i1 | 0.00   | 3.55   | 2.47   |
| c31777_g2_i1 | 14.35  | 50.05  | 24.64  |
| c31777_g2_i2 | 0.00   | 20.71  | 10.68  |
| c31777_g2_i3 | 5.92   | 2.53   | 15.27  |
| c31777_g3_i1 | 9.00   | 45.30  | 19.49  |
| c31777_g4_i1 | 17.84  | 68.66  | 39.97  |
| c21692_g2_i1 | 0.32   | 61.88  | 53.40  |
| c32840_g2_i1 | 104.28 | 155.81 | 111.61 |
| c8923_g1_i1  | 0.00   | 60.25  | 58.97  |
| c32845_g1_i1 | 5.93   | 10.14  | 14.52  |
| c32845_g2_i2 | 0.00   | 3.48   | 3.05   |
| c30629_g2_i4 | 3.70   | 3.39   | 4.76   |
| c41889_g1_i1 | 0.34   | 633.51 | 467.91 |
| c27549_g1_i1 | 0.00   | 59.07  | 39.00  |
| c27549_g2_i1 | 0.00   | 39.61  | 23.33  |
| c46469_g1_i1 | 0.00   | 0.74   | 7.03   |
| c4041_g1_i1  | 0.00   | 1.22   | 3.77   |
| c7287_g1_i1  | 1.34   | 81.21  | 47.53  |

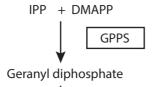

| STR          | csc   | HR     | MYBox  |
|--------------|-------|--------|--------|
| c47430_g1_i1 | 0.12  | 962.27 | 707.96 |
| c20528_g2_i1 | 0.00  | 13.25  | 18.06  |
| c11848_g1_i1 | 0.00  | 0.00   | 12.48  |
| c980_g1_i1   | 2.68  | 0.88   | 4.61   |
| c32972_g2_i1 | 0.81  | 1.87   | 4.43   |
| c32972_g1_i1 | 0.00  | 39.29  | 11.14  |
| c20528_g1_i1 | 0.00  | 2.54   | 0.00   |
| c20528_g3_i1 | 0.00  | 5.62   | 5.12   |
| c18195_g1_i1 | 0.00  | 19.87  | 9.31   |
| c18195_g1_i2 | 0.00  | 3.62   | 3.61   |
| c34331_g1_i1 | 0.00  | 144.43 | 31.38  |
| c32972_g3_i1 | 0.00  | 0.69   | 9.25   |
| c34166_g1_i1 | 0.00  | 11.07  | 4.98   |
| c8855_g1_i1  | 0.00  | 2.15   | 4.05   |
| c22607_g1_i1 | 11.22 | 3.42   | 4.00   |
| c45990_g1_i1 | 0.00  | 3.29   | 1.51   |
| c24194_g1_i1 | 0.00  | 196.23 | 68.72  |
| c10375_g1_i1 | 0.00  | 0.24   | 14.63  |
| c37461_g1_i1 | 0.00  | 1.31   | 6.06   |
| c32972_g4_i1 | 0.00  | 1.76   | 5.44   |
| c25181_g1_i1 | 0.00  | 12.04  | 13.26  |
| c44002_g1_i1 | 0.00  | 3.03   | 0.96   |
| c26065_g1_i1 | 0.00  | 10.03  | 0.85   |





SLS





соон









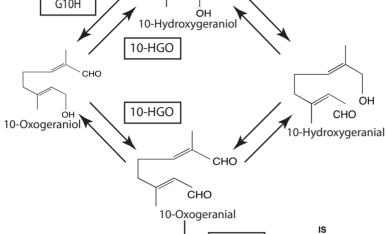






**GES** 

| GES          | csc  | HR    | MYBox |
|--------------|------|-------|-------|
| c36701_g1_i1 | 6.64 | 39.68 | 29.39 |
|              |      |       |       |


| 10-HGO       | csc   | HR     | MYBox  |
|--------------|-------|--------|--------|
| c31297_g1_i1 | 0.00  | 125.77 | 73.57  |
| c29140_g1_i1 | 32.83 | 223.05 | 139.37 |

|        |        | G10H               |
|--------|--------|--------------------|
| HR     | MYBox  | <b>↓</b>           |
| 125.77 | 73.57  |                    |
| 223.05 | 139.37 |                    |
| [      | G10H   | OH OH              |
|        | ×      | 10-Hydroxygeraniol |

Geraniol



c42337\_g1\_i1




IS

Ю

7-DLGT

COOH

CHO



| Ю            | csc    | HR     | MYBox  |
|--------------|--------|--------|--------|
| c39235_g1_i1 | 108.79 | 372.33 | 284.42 |

csc

18.78

HR

281.15

MYBox

147.10

| H OH Iridotrial       |   |
|-----------------------|---|
| J IO                  |   |
| Соон                  |   |
|                       |   |
|                       |   |
| H OH                  |   |
| 7-Deoxyloganetic acid | I |
|                       |   |

| 7-DLGT       | csc   | HR    | MYBox |  |
|--------------|-------|-------|-------|--|
| c22992_g1_i1 | 8.73  | 3.97  | 5.82  |  |
| c22992_g2_i1 | 18.72 | 18.54 | 19.54 |  |
| c22992_g3_i1 | 37.37 | 27.39 | 33.17 |  |
| c25318_g2_i1 | 0.00  | 1.78  | 3.65  |  |
| c25318_g2_i2 | 0.26  | 0.74  | 1.58  |  |
| c38432_g1_i1 | 15.63 | 58.95 | 42.22 |  |
| c18121_g1_i1 | 7.19  | 41.38 | 20.48 |  |
| c1241_g1_i1  | 0.00  | 0.70  | 3.73  |  |
| c30764_g1_i1 | 7.54  | 13.29 | 12.55 |  |
| c24002_g1_i1 | 6.38  | 70.43 | 36.57 |  |
| c18473 a1 i1 | 3.59  | 50.77 | 52.84 |  |

| 7-DLH        | csc   | HR     | MYBox  |
|--------------|-------|--------|--------|
| c18879_g1_i1 | 11.86 | 176.98 | 113.63 |
| c18879_g2_i1 | 8.90  | 85.91  | 42.65  |
| c18879_g3_i1 | 8.66  | 110.45 | 57.57  |
| c4068_g1_i1  | 0.00  | 25.89  | 9.31   |
| c4068_g1_i2  | 0.00  | 139.31 | 1.78   |

| LAMT        | csc  | HR     | MYBox  |
|-------------|------|--------|--------|
| c5842_g1_i1 | 0.00 | 175.82 | 104.10 |
|             |      |        |        |
| SIS         | CSC  | HR     | MYRox  |

| csc    | HR                                                                                             | MYBox  |
|--------|------------------------------------------------------------------------------------------------|--------|
| 0.00   | 4.40                                                                                           | 1.04   |
| 19.93  | 38.82                                                                                          | 53.31  |
| 0.00   | 3.55                                                                                           | 2.47   |
| 14.35  | 50.05                                                                                          | 24.64  |
| 0.00   | 20.71                                                                                          | 10.68  |
| 5.92   | 2.53                                                                                           | 15.27  |
| 9.00   | 45.30                                                                                          | 19.49  |
| 17.84  | 68.66                                                                                          | 39.97  |
| 0.32   | 61.88                                                                                          | 53.40  |
| 104.28 | 155.81                                                                                         | 111.61 |
| 0.00   | 60.25                                                                                          | 58.97  |
| 5.93   | 10.14                                                                                          | 14.52  |
| 0.00   | 3.48                                                                                           | 3.05   |
| 3.70   | 3.39                                                                                           | 4.76   |
| 0.34   | 633.51                                                                                         | 467.91 |
| 0.00   | 59.07                                                                                          | 39.00  |
| 0.00   | 39.61                                                                                          | 23.33  |
| 0.00   | 0.74                                                                                           | 7.03   |
| 0.00   | 1.22                                                                                           | 3.77   |
| 1.34   | 81.21                                                                                          | 47.53  |
|        | 0.00 19.93 0.00 14.35 0.00 5.92 9.00 17.84 0.32 104.28 0.00 5.93 0.00 3.70 0.34 0.00 0.00 0.00 | 0.00   |

| 7-Deoxyloganic acid       |                             |
|---------------------------|-----------------------------|
| 7-DLH                     |                             |
| H COOH                    | L-tryptophan                |
|                           | TDC                         |
| OH H OGIc<br>Loganic acid | NH <sub>2</sub>             |
| LAMT COOCH₃               | NH                          |
| H                         | Tryptamine                  |
| OH H OGIc<br>Loganin      |                             |
| SLS                       | NH cooch₃                   |
| OHC COOCH <sub>3</sub>    | H H COOCH <sub>3</sub>      |
|                           | STR H OGIc<br>Strictosidine |
| H OGIc<br>Secologanin     | Stretosiume                 |

| TDC          | csc  | HR     | MYBox  |
|--------------|------|--------|--------|
| c18285_g2_i1 | 0.00 | 0.00   | 4.95   |
| c28648_g1_i1 | 0.12 | 537.14 | 324.28 |
| c28893_g1_i1 | 0.00 | 11.71  | 2.86   |
| c3779_g1_i1  | 0.00 | 15.30  | 6.32   |
| c39640_g1_i1 | 0.00 | 2.96   | 1.44   |
| c43018_g1_i1 | 0.00 | 7.69   | 0.51   |
| c44343_g1_i1 | 0.00 | 1.29   | 2.40   |

| c44343_g1_i1 | 0.00  | 1.29   | 2.40   |
|--------------|-------|--------|--------|
| STR          | csc   | HR     | MYBox  |
| c47430_g1_i1 | 0.12  | 962.27 | 707.96 |
| c20528_g2_i1 | 0.00  | 13.25  | 18.06  |
| c11848_g1_i1 | 0.00  | 0.00   | 12.48  |
| c980_g1_i1   | 2.68  | 0.88   | 4.61   |
| c32972_g2_i1 | 0.81  | 1.87   | 4.43   |
| c32972_g1_i1 | 0.00  | 39.29  | 11.14  |
| c20528_g1_i1 | 0.00  | 2.54   | 0.00   |
| c20528_g3_i1 | 0.00  | 5.62   | 5.12   |
| c18195_g1_i1 | 0.00  | 19.87  | 9.31   |
| c18195_g1_i2 | 0.00  | 3.62   | 3.61   |
| c34331_g1_i1 | 0.00  | 144.43 | 31.38  |
| c32972_g3_i1 | 0.00  | 0.69   | 9.25   |
| c34166_g1_i1 | 0.00  | 11.07  | 4.98   |
| c8855_g1_i1  | 0.00  | 2.15   | 4.05   |
| c22607_g1_i1 | 11.22 | 3.42   | 4.00   |
| c45990_g1_i1 | 0.00  | 3.29   | 1.51   |
| c24194_g1_i1 | 0.00  | 196.23 | 68.72  |
| c10375_g1_i1 | 0.00  | 0.24   | 14.63  |
| c37461_g1_i1 | 0.00  | 1.31   | 6.06   |
| c32972_g4_i1 | 0.00  | 1.76   | 5.44   |
| c25181_g1_i1 | 0.00  | 12.04  | 13.26  |
| c44002_g1_i1 | 0.00  | 3.03   | 0.96   |
| c26065_g1_i1 | 0.00  | 10.03  | 0.85   |

164.02

53.36

10.17

1.80

1.76

1.29

HR

179.17

HR

HR

HR

csc

82.98

HR

278.72

MYBox

185.97

MYBox

148.77

36.04

8.88

3.72

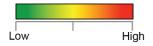
1.59

1.89

11.04

MYBox

144.07


9.57

MYBox

MYBox

33.87

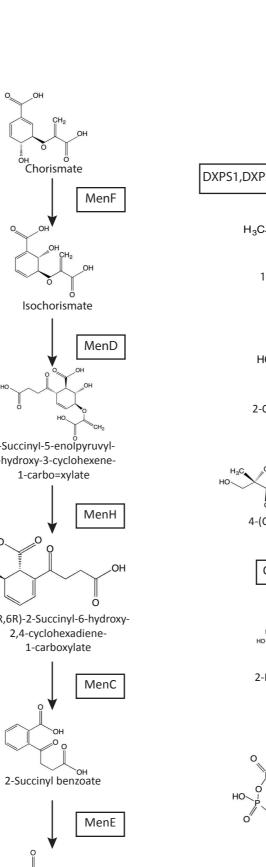
MYBox

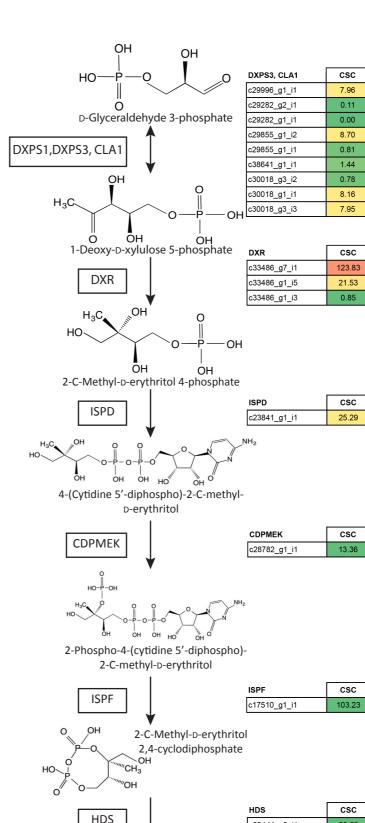


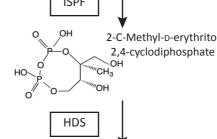
| MenF         | csc  | HR     | MYBox  |
|--------------|------|--------|--------|
| c33856_g1_i1 | 1.47 | 161.95 | 124.39 |

| MenD         | csc  | HR    | MYBox |
|--------------|------|-------|-------|
| c33442_g6_i1 | 1.99 | 79.32 | 46.73 |

| Ö          |                    |
|------------|--------------------|
|            | HO CH <sub>2</sub> |
| 2-Succinyl | l-5-enol̈pyruvyl-  |
| 6-hydroxy- | -3-cyclohexene-    |
| 1-car      | rbo=xylate         |
|            | 1                  |
|            | MenH               |
| но. ДО     | , •                |


(1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-


2-Succinyl benzoyl-CoA


| MenC         | csc  | HR     | MYBox  |
|--------------|------|--------|--------|
| c22217_g1_i1 | 1.75 | 398.92 | 291.76 |
|              |      |        |        |
|              |      |        |        |
|              |      |        |        |
| MenE         | csc  | HR     | MYBox  |

| MenE         | csc     | HR     | MYBox  |
|--------------|---------|--------|--------|
| c32537_g1_i1 | 0.00    | 0.00   | 1.75   |
| c810_g1_i1   | 0.00    | 2.55   | 4.56   |
| c47809_g1_i1 | 0.34    | 0.37   | 5.47   |
| c25763_g1_i1 | 8.18    | 17.03  | 12.38  |
| c31684_g1_i1 | 4.97    | 22.63  | 19.87  |
| c32537_g1_i3 | 9.57    | 17.97  | 21.08  |
| c22993_g1_i1 | 88.78   | 76.76  | 72.00  |
| c22627_g1_i1 | 1028.13 | 182.70 | 156.65 |

| MenB         | csc  | HR     | MYBox  |
|--------------|------|--------|--------|
| c33824_g1_i1 | 5.17 | 596.95 | 420.25 |

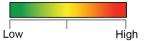


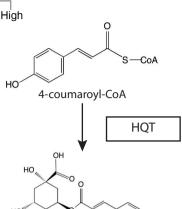




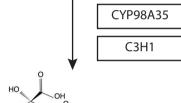
| Lung     |                              | HDS          | csc   | HR     | MYBox  |
|----------|------------------------------|--------------|-------|--------|--------|
| HDS      |                              | c23444_g2_i1 | 80.68 | 255.50 | 217.53 |
|          |                              |              |       |        |        |
| CH₃<br>I | 0 0                          |              |       |        |        |
| но       | ĬĬ                           |              |       |        |        |
| ~~~~     | ) — Ё — О — Ё — ОН           |              |       |        |        |
|          |                              |              |       |        |        |
|          | он он                        |              |       |        |        |
| I al . a | ا مرم ما مرا امال الريم ميال |              |       |        |        |

c17511\_g1\_i1

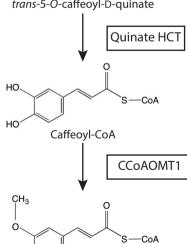

c5100\_g1\_i1


1-Hydroxy-2-methyl-2-butenyl 4-diphosphate

| он о<br>                                |                  | HDR                       |
|-----------------------------------------|------------------|---------------------------|
| S—CoA                                   |                  | CH <sub>3</sub> OH OH     |
| он<br>1,4-Dihydroxy-2-<br>naphthoyl-CoA | O R <sup>1</sup> | H <sub>3</sub> C          |
|                                         |                  | Dimethylallyl diphosphate |


Anthraquinone

## **Supplementary Figure S5**






| HQT          | csc   | HR    | MYBox |
|--------------|-------|-------|-------|
| c17064_g1_i1 | 12.03 | 93.74 | 33.36 |



таns-5-O-(4-coumaroyl)-D-quinate



Feruloyl-CoA

HO'

| CYP98A35 / C3H1 | CSC   | HR     | MYBox  |
|-----------------|-------|--------|--------|
| c24241_g1_i1    | 2.74  | 83.93  | 29.39  |
| c24241_g2_i1    | 4.95  | 116.26 | 53.83  |
| c26370_g1_i1    | 36.70 | 235.14 | 117.51 |
|                 |       |        |        |

| Quinate HCT  | csc  | HR     | MYBox  |
|--------------|------|--------|--------|
| c23775_g2_i1 | 0.00 | 7.49   | 0.16   |
| c23775_g1_i1 | 0.00 | 10.28  | 0.72   |
| c22655_g1_i1 | 0.00 | 0.81   | 1.55   |
| c15374_g1_i2 | 0.21 | 8.30   | 5.36   |
| c7976_g1_i1  | 1.25 | 12.99  | 8.00   |
| c15374_g1_i1 | 0.00 | 28.00  | 19.80  |
| c30394_g3_i1 | 0.00 | 56.42  | 21.27  |
| c23181_g1_i1 | 0.00 | 259.05 | 110.00 |

| CCoAOMT1     | csc    | HR     | MYBox  |
|--------------|--------|--------|--------|
| c20243_g1_i2 | 0.21   | 0.91   | 2.27   |
| c25259_g1_i3 | 0.78   | 2.83   | 5.42   |
| c25259_g1_i1 | 1.26   | 5.27   | 6.79   |
| c39211_g1_i1 | 6.55   | 209.71 | 175.68 |
| c41891_g1_i1 | 100.27 | 516.95 | 156.67 |
| c32955_g1_i2 | 2.86   | 1.26   | 1.38   |

# **Supplementary Tables**

Supplementary Table S1. List of primers used for vector construction in this study.

| Primer Name        | Sequence                            |
|--------------------|-------------------------------------|
| OpMYB1-ORF-attB1-F | AAA AAG CAG GCT CTA TGG GAC GTT CAC |
|                    | CTT GCT GTG                         |
| OpMYB1-ORF-attB2-R | AGA AAG CTG GGT TGT ATC TGT ATA CAC |
| _                  | CAT TTG CCA TTT C                   |

# Supplementary Table S2. List of primers used for semi-quantitative RT-PCR

| Target       | Primer Name | Sequence                        |
|--------------|-------------|---------------------------------|
| Gene         |             |                                 |
| ОрМҮВ1       | OpMYB1-F    | CAA CAA CGA TCA AAA CAG CA      |
|              | OpMYB1-R    | GGA TTC AGC TGA AGT AGT AGT     |
| OpTDC        | OpTDC-F     | ATG GGC AGC ATT AGT GAA AA      |
|              | OpTDC-R     | TTA CTC AAT GAT ATT GGT TTT CGT |
| OpG10H       | OpG10H-F    | AGA TTT AGC TTT CTC CAG CCG     |
|              | OpG10H-R    | TAT CAA TAA GGG GCC AAC CA      |
| <i>OpSTR</i> | OpSTR-F     | ATG CAT AGT TCA GAA GCC AT      |
|              | OpSTR-R     | TCA GAA AGA AGA AAA TTC CTT G   |
| <i>OpSLS</i> | OpSLS-F     | TCA TGC CTC ATA TTG ACC ACA     |
|              | OpSLS-R     | GGA TGG TGA AAC ATC AAA GGT     |
| OpTub        | OpTub-F     | CCA GAT AAC TTT GTT TTC GG      |
|              | OpTub-R     | GTG AAC TCC ATT TCA TCC AT      |

# Supplementary Table S3. Gene fragments of transcription factor isolated from *O. pumila* hairy root.

| Annotation (BLASTx analysis)            | No. of gene fragments |
|-----------------------------------------|-----------------------|
| MYB                                     | 1                     |
| Putative bHLH transcription factor      | 1                     |
| Root-specific gene regulator            | 2                     |
| Putative BURP domain containing protein | 2                     |
| Putative zinc finger protein            | 3                     |
| ERF-like protein                        | 6                     |

Supplementary Table S4. Accession numbers of genes used for phylogenetic tree analysis

| Protein Name | Plant Species              | Accession number |
|--------------|----------------------------|------------------|
|              | •                          |                  |
| AtMYB4       | Arabidopsis thaliana       | NP_195574.1      |
| BrMYB4       | Brassica rapa              | XP_009101934.1   |
| AtMYB3       | Arabidopsis thaliana       | NP_564176        |
| PdMYB308     | Phoenix dactylifera        | XP_008783376.1   |
| AmMYB308     | Antirrhinum majus          | P81393           |
| AcMYB1       | Actinidia chinensis        | AHB17741.1       |
| GaMYB        | Gossypium arboretum        | KHG25834.1       |
| MnMYB        | Morus notabilis            | XP_010104477.1   |
| CmMYB6       | Cucumis melo               | XP_008459665.1   |
| CsMYB6       | Cucumis sativus            | XP_004141649.1   |
| CmMYB1       | Cucumis melo               | XP_008459665.1   |
| GhMYB8       | Gossypium hirsutum         | ABR01221.1       |
| GaMYB3       | Gossypium arboretum        | KHG11058.1       |
| FvMYB6       | Fragaria vesca             | XP_004299892.1   |
| CsMYB330     | Citrus sinensis            | XP_006473170.1   |
| EsMYB1       | Epimedium sagittatum       | AFH03053.1       |
| OpMYB1       | Ophiorrhiza pumila         | LC076107         |
| SiMYB330     | Sesamum indicum            | XP_011096483.1   |
| PmMYB6       | Prunus mume                | XP_008219033.1   |
| MdMYB3       | Malus domestica            | AEX08668.1       |
| SmMYB        | Salvia miltiorrhiza        | AGN52078.1       |
| AmMYB330     | Antirrhinum majus          | P81395.1         |
| GhMYB1       | Gossypium hirsutum         | AAA33067.1       |
| GrMYB6       | Gossypium raimondii        | XP_012462415.1   |
| NnMYB330     | Nelumbo nucifera           | XP_010246045.1   |
| GsMYB308     | Glycine soja               | KHN09677.1       |
| JcMYB6       | Jatropha curcas            | XP_012075785.1   |
| RcMYB        | Riccinus communis          | XP_002534486.1   |
| PeMYB6       | Populus euphratica         | XP_011001099.1   |
| PtMYB        | Populus trichocarpa        | XP_002325546.1   |
| TcMYB        | Theobroma cacao            | XP_007020033.1   |
| SIMYB330     | Solanum lycopersicum       | XP_004241841.1   |
| LeMYB2       | Lithospermum erythrorhizon | AIS39993.1       |
| EgMYB330     | Erythranthe guttatus       | XP_012854909.1   |
| NsMYB330     | Nicotiana sylvestris       | XP_009767902.1   |
| NtMYB330     | Nicotiana tomentosiformis  | XP_009600359.1   |
| StMYB330     | Solanum tuberosum          | XP_006356500.1   |
| AtMYBL2      | Arabidopsis thaliana       | NP_177259        |
| GrMYB1       | Gossypium raimondii        | AAN28271.1       |
| MtMYB2       | Medicago truncatula        | ABR28329         |

| GO-ID                     | Term                                                                                                  | FDR                  | P-Value              | No. of differentially expressed genes |
|---------------------------|-------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------------------------|
| GO:0003824                | catalytic activity                                                                                    | 3.86E-09             | 1.22E-11             | 2762                                  |
|                           | tetrapyrrole binding                                                                                  |                      | 2.01E-10             |                                       |
| GO:0020037                | heme binding                                                                                          |                      | 4.21E-10             |                                       |
| GO:0016491                | oxidoreductase activity                                                                               |                      | 5.25E-10             | 641                                   |
| GO:0016705                | oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen |                      | 8.19E-10             | 207                                   |
| GO:0004497                | monooxygenase activity                                                                                | 5.88E-07             |                      | 130                                   |
| GO:0019748                | secondary metabolic process                                                                           |                      | 1.05E-08             | 84                                    |
| GO:0055114                | oxidation-reduction process                                                                           |                      | 5.27E-08             | 592                                   |
| GO:0009698                | phenylpropanoid metabolic process                                                                     |                      | 1.11E-06             | 45                                    |
| GO:0016709                |                                                                                                       | 2.07E-04             |                      | 51                                    |
| GO:0005215                | transporter activity                                                                                  |                      | 2.90E-06             | 373                                   |
| GO:0022804                | active transmembrane transporter activity                                                             |                      | 4.02E-06             | 171                                   |
| GO:0044550                | secondary metabolite biosynthetic process                                                             |                      | 7.78E-06             | 52                                    |
| GO:0004601                | peroxidase activity                                                                                   | 1.18E-03             |                      | 48                                    |
| GO:0016684                | oxidoreductase activity, acting on peroxide as acceptor                                               |                      | 1.39E-05             | 48                                    |
| GO:0022857                | transmembrane transporter activity                                                                    |                      | 2.20E-05             | 293                                   |
| GO:0006979                | response to oxidative stress                                                                          |                      | 3.05E-05             | 107                                   |
|                           | beta-1,4-mannosyltransferase activity                                                                 | 3.19E-03             |                      | 11                                    |
| GO:0005506                | iron ion binding                                                                                      |                      | 6.92E-05             | 151                                   |
| GO:0006820                | anion transport                                                                                       |                      | 6.98E-05             | 114                                   |
| GO:0016682                | oxidoreductase activity, acting on diphenols and related substances as donors, oxygen as acceptor     |                      | 7.46E-05             | 24                                    |
| GO:0010002<br>GO:0008762  | UDP-N-acetylmuramate dehydrogenase activity                                                           | 4.87E-03             |                      | 34                                    |
| GO:0005762<br>GO:0005576  | extracellular region                                                                                  |                      | 9.07E-05             | 151                                   |
| GO:0005576                | transmembrane transport                                                                               |                      | 1.53E-04             | 345                                   |
| GO:0053003<br>GO:0051213  | dioxygenase activity                                                                                  |                      | 1.60E-04             | 70                                    |
| GO:0009521                | photosystem                                                                                           | 9.68E-03             |                      | 43                                    |
| GO:0005321<br>GO:0015276  | ligand-gated ion channel activity                                                                     |                      | 1.77E-04             | 20                                    |
| GO:0013270<br>GO:0022834  | ligand-gated channel activity                                                                         |                      | 1.77E-04<br>1.77E-04 | 20                                    |
| GO:0022854<br>GO:0051753  | mannan synthase activity                                                                              |                      | 2.17E-04             | 20<br>20<br>9<br>19                   |
| GO:0031733<br>GO:0016840  | carbon-nitrogen lyase activity                                                                        | 1.29E-02             |                      | 10                                    |
| GO:0016340<br>GO:0016209  | antioxidant activity                                                                                  |                      | 2.57E-04             | 51                                    |
| GO:0010209<br>GO:0042626  | ATPase activity, coupled to transmembrane movement of substances                                      |                      | 2.73E-04<br>2.73E-04 | 93                                    |
| GO:00042020<br>GO:0009522 | photosystem I                                                                                         |                      | 3.20E-04             | 93<br>30                              |
| GO:0009322<br>GO:0043492  | ATPase activity, coupled to movement of substances                                                    |                      | 3.18E-04             | 94                                    |
|                           | hydrolase activity                                                                                    |                      | 3.31E-04             | 968                                   |
| GO:0016787<br>GO:0046271  | phenylpropanoid catabolic process                                                                     |                      | 3.37E-04             | 15                                    |
| GO:0046271<br>GO:0046274  | lignin catabolic process                                                                              |                      | 3.37E-04             | 15                                    |
| GO:0040274<br>GO:0052716  | hydroquinone:oxygen oxidoreductase activity                                                           | 1.72E-02<br>1.72E-02 |                      | 15                                    |
| GO:0032710<br>GO:0010295  | (+)-abscisic acid 8'-hydroxylase activity                                                             |                      | 3.78E-04             | 5                                     |
| GO:0010293<br>GO:0050660  | flavin adenine dinucleotide binding                                                                   |                      | 4.37E-04             | 5<br>71                               |
| GO:0030000<br>GO:0048767  | root hair elongation                                                                                  |                      | 4.67E-04             | 20                                    |
|                           | hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances        |                      | 5.34E-04             | 29<br>93<br>54<br>26<br>26            |
|                           | antiporter activity                                                                                   |                      | 5.53E-04             | 53<br>54                              |
| GO:0015297<br>GO:0016144  | S-glycoside biosynthetic process                                                                      |                      | 6.12E-04             | 26                                    |
|                           | glycosinolate biosynthetic process                                                                    |                      | 6.12E-04             | 26                                    |
| GO:0019758<br>GO:0019761  | glucosinolate biosynthetic process                                                                    |                      | 6.12E-04<br>6.12E-04 | 26                                    |
| GO:0019701<br>GO:0016843  | amine-lyase activity                                                                                  |                      | 8.17E-04             | 12                                    |
| GO:0016844                | strictosidine synthase activity                                                                       |                      | 8.17E-04<br>8.17E-04 | 12                                    |
| GO:0016844<br>GO:0016887  | ATPase activity                                                                                       |                      |                      | 198                                   |
| GO:0016887<br>GO:0006857  |                                                                                                       |                      | 8.21E-04             | 28                                    |
|                           | oligopeptide transport                                                                                | 3.75E-02             | 9.56E-04             | 28<br>251                             |
| GO:0006811<br>GO:0009808  | ion transport                                                                                         |                      | 1.03E-03             |                                       |
|                           | lignin metabolic process                                                                              |                      |                      | 25<br>78                              |
| GO:0015291                | secondary active transmembrane transporter activity                                                   |                      | 1.03E-03             | 78<br>25                              |
| GO:0016679                | oxidoreductase activity, acting on diphenols and related substances as donors                         |                      | 1.03E-03             | 25<br>489                             |
|                           | single-organism transport                                                                             |                      | 1.12E-03             |                                       |
| GO:0004499                | N,N-dimethylaniline monooxygenase activity                                                            |                      | 1.15E-03             | 17                                    |
| GO:1902578                | single-organism localization                                                                          | 4.92E-02             | 1.24E-03             | 497                                   |

Supplementary Table S6. Supporting information from BLAST search of contigs in Figure 7.

| Biosynthesis | Enzyme | Contig ID                    | FPKM    |         | Contig Length | #Hits | E-Value | Mean Similarity (%)   | #GOs     | GOs GOs Enzyme Code |                    |                       |                           |
|--------------|--------|------------------------------|---------|---------|---------------|-------|---------|-----------------------|----------|---------------------|--------------------|-----------------------|---------------------------|
|              |        |                              | CSC H   | R M     | IYBox         |       |         |                       |          |                     |                    |                       |                           |
| Camptothecin | TDC    | c18285 g2 i1                 | 0       | 0       | 4.95          | 217   | 10      | 1.98E-39              | 93.40%   |                     | 3 E-pyridoval r    | phEC:4.1.1.28         |                           |
| campionicem  | IDC    | c28648 g1 i1                 | 0.116   | 537.142 | 324.278       | 1933  | 10      | 1.76L-37              |          |                     |                    | phEC:4.1.1.28         |                           |
|              |        | c28893 g1 i1                 | 0.110   | 11.711  | 2.864         | 1409  | 10      | 0                     | 00.1070  |                     |                    | phEC:4.1.1.28         |                           |
|              |        | c3779 g1 i1                  | 0       | 15.303  | 6.317         | 443   | 10      | 4.65E-70              |          |                     |                    | phEC:4.1.1.28         |                           |
|              |        | c39640 gl i1                 | 0       | 2.959   | 1.437         | 429   | 10      | 2.32E-71              |          |                     |                    | phEC:4.1.1.28         |                           |
|              |        | c43018 g1 i1                 | 0       | 7.693   | 0.509         | 639   | 10      | 7.15E-54              |          |                     |                    | phEC:4.1.1.28         |                           |
|              |        | c44343 g1 i1                 | 0       | 1.287   | 2.395         | 288   | 10      | 3.25E-26              |          |                     | 3 F:pyridoxal p    |                       |                           |
|              | G10H   | c28312 g1 i1                 | 7.779   | 303.734 | 176.74        | 1770  | 10      | 0.232.20              |          |                     |                    | nicEC:1.14.14.1; E    | C·1 14 13                 |
|              | SLS    | c32866 gl i1                 | 19.93   | 38.818  | 53.314        | 1445  | 10      | 0                     |          |                     | 6 F:heme bindi     |                       | C.1.14.13                 |
|              | BES    | c31777 g2 i1                 | 14.351  | 50.051  | 24.641        | 331   | 10      | 5.66E-43              | 02.0070  |                     | 5 F:heme bindi     | •                     |                           |
|              |        | c31777 g2 i2                 | 0       | 20.712  | 10.679        | 331   | 10      | 1.99E-43              |          |                     | 5 F:heme bindi     | •                     |                           |
|              |        | c31777_g2_i2                 | 8.995   | 45.296  | 19.491        | 367   | 10      | 6.46E-63              |          |                     | 8 F:secologani     |                       |                           |
|              |        | c31777_g3_i1                 | 17.835  | 68.656  | 39.971        | 245   | 10      | 5.27E-38              |          |                     | 5 F:heme bindi     |                       |                           |
|              |        | c21692 g2 i1                 | 0.318   | 61.876  | 53.404        | 524   | 10      | 2.07E-85              |          |                     | 5 F:heme bind      | •                     |                           |
|              |        | c32840 g2 i1                 | 104.281 | 155.812 | 111.609       | 1838  | 10      | 2.07E-63              |          |                     | 5 F:heme bind      |                       |                           |
|              |        | c8923 g1 i1                  | 0       | 60.246  | 58.973        | 223   | 10      | 6.79E-28              |          |                     | 5 F:heme bind      | •                     |                           |
|              |        | c41889 g1 i1                 | 0.338   | 633.507 | 467.914       | 2061  | 10      | 0.79E-20              |          |                     | 9 F:secologani     |                       |                           |
|              |        | c27549 g1 i1                 | 0.338   | 59.073  | 39.003        | 275   | 10      | 1.16E-16              | , -100,0 |                     | 9 F:secologani     |                       |                           |
|              |        |                              | 0       | 39.607  | 23.334        | 1477  | 10      | 1.10E-10              |          |                     | 9 F:secologani     |                       |                           |
|              |        | c27549_g2_i1<br>c7287_g1_i1  | 1.342   | 81.208  | 47.526        |       | 10      | 7.17E-11              |          |                     | 5 F:heme bindi     |                       |                           |
|              | STR    | c47430 g1 i1                 | 0.116   | 962.272 | 707.959       | 1120  | 10      | 7.17E-11<br>0         |          |                     | 2 P:biosynthetic   |                       |                           |
|              | SIK    |                              | 0.116   | 13.247  | 18.064        | 362   | 10      | 4.55E-22              |          |                     |                    | process; F:strictosic | line armthese estimiter   |
|              |        | c20528_g2_i1<br>c32972_g1_i1 | 0       | 39.285  | 11.138        |       | 10      | 4.33E-22<br>4.27E-86  |          |                     | 1 C:cell part      | process, r.strictosic | ine synthase activity     |
|              |        | c18195 g1 i1                 | 0       | 19.871  | 9.312         |       | 10      | 8.64E-100             |          |                     | 4 C:cytoplasmic    | -                     |                           |
|              |        |                              | 0       | 144.434 | 31.378        |       | 10      | 4.47E-71              |          |                     | C:cell part        | : р -                 |                           |
|              |        | c34331_g1_i1                 | 0       | 196.229 | 68.724        | 1269  | 10      | 1.22E-107             |          |                     | 3 C:cell part; F:s | -                     |                           |
|              |        | c24194_g1_i1<br>c26065_g1_i1 | 0       | 196.229 | 0.848         |       | 10      | 1.22E-107<br>1.78E-50 |          |                     | 2 F:strictosidine  |                       |                           |
|              |        | 626063_g1_11                 | U       | 10.029  | 0.646         | 393   | 10      | 1./8E-30              | /0.80%   |                     | Z F.SHICIOSIGINE   | 8 SJEC.4.3.3.2        |                           |
| co-iridoid   | GPPS   | c32449 g1 i1                 | 1.013   | 8.7     | 4.601         | 1480  | 10      | 1.11E-179             | 75.30%   |                     | 9 F:metal ion b    | bir EC:2.5.1.1; EC:   | 2.5.1.29; EC:2.5.1.10     |
|              |        | c32449_g1_i2                 | 0.261   | 25.207  | 14.95         | 1658  | 10      | 0                     | 80.60%   |                     | 9 F:metal ion bit  | ind EC:2.5.1.1; EC:2  | 5.1.29; EC:2.5.1.10       |
|              |        | c32644 g1 i3                 | 16.687  | 24.792  | 23.364        | 1782  | 10      | 0                     | 84.50%   |                     | 5 P:embryo deve    | rek EC:2.5.1.1; EC:2  | 5.1.30                    |
|              |        | c48032_g1_i1                 | 0       | 2.668   | 1.936         | 1294  | 10      | 5.99E-152             | 82.50%   | 1                   | 0 F:metal ion bit  | ind EC:2.5.1.1; EC:2  | 5.1.29; EC:2.5.1.30; EC:2 |
|              |        | c33163 g3 i1                 | 26.01   | 13.621  | 16.378        | 1652  | 10      | 0                     | 76.50%   |                     | 6 P:response to    | o aEC:2.5.1.29        |                           |
|              |        | c25825 g1 i1                 | 5.472   | 25.529  | 22.166        |       | 10      | 0                     |          |                     |                    |                       | 2.5.1.29; EC:2.5.1.30; I  |
|              |        | c17006 g1 i1                 | 6.505   | 21.397  | 9.731         | 563   | 10      | 4.12E-51              | 67.60%   |                     | 4 P:terpenoid b    |                       |                           |
|              |        | c32644 g1 i2                 | 5.849   | 1.256   | 1.307         | 1850  | 10      | 1.67E-156             |          |                     | 2 P:isoprenoid     |                       |                           |
|              | GES    | c36701 g1 i1                 | 6.64    | 39.68   | 29.392        | 1868  | 10      | 0                     |          |                     | 7 F:terpene syr    |                       |                           |
|              | G8O    | c28312 g1 i1                 | 7.779   | 303.734 | 176.74        | 1770  | 10      | 0                     |          |                     |                    | nicEC:1.14.14.1; E    | C:1.14.13                 |
|              | 8-HGO  | c31297 g1 i1                 | 0       | 125.767 | 73.574        | 1687  | 10      | 1.26E-142             |          |                     | 4 F:oxidoreduc     |                       |                           |
|              |        | c29140 g1 i1                 | 32.833  | 223.046 | 139.374       | 1825  | 10      | 0                     |          |                     | 4 F:zinc ion bi    |                       |                           |
|              | IS     | c42337 g1 i1                 | 18.781  | 281.154 | 147.099       | 1600  | 10      | 0                     |          |                     | 4 P:monoterpe      |                       |                           |
|              | IO     | c39235 g1 i1                 | 108.788 | 372.328 | 284.417       | 1928  | 10      | 0                     | 00.5070  |                     | 5 F:oxidoreduc     |                       |                           |
|              | 7-DLGT | c22992 g1 i1                 | 8.725   | 3.966   | 5.818         | 541   | 10      | 5.08E-36              | 72.7070  |                     | 2 F:transferase    |                       |                           |
|              |        | c22992 g2 i1                 | 18.723  | 18.542  | 19.541        | 831   | 10      | 2.11E-113             |          |                     | 2 F:transferase    |                       |                           |
|              |        | c22992 g3 i1                 | 37.369  | 27.388  | 33.174        | 529   | 10      | 3.27E-101             |          |                     | 2 F:transferase    |                       |                           |
|              |        | c25318 g2 i1                 | 0       | 1.775   | 3.653         | 606   | 10      | 9.54E-57              |          |                     | 2 F:transferase    |                       |                           |

|                  |                    | c25318 g2 i2                 | 0.261    | 0.737   | 1.577   | 593  | 10 | 4.46E-97       | 84.50%  | 2 F:transferase a-                                      |
|------------------|--------------------|------------------------------|----------|---------|---------|------|----|----------------|---------|---------------------------------------------------------|
|                  |                    | c38432 g1 i1                 | 15.625   | 58.949  | 42.216  | 521  | 10 | 8.19E-90       | 84.10%  | 2 F:transferase a-                                      |
|                  |                    | c18121 g1 i1                 | 7.19     | 41.382  | 20.479  | 1360 | 10 | 0.152.50       | 92.00%  | 2 F:transferase a-                                      |
|                  |                    | c1241 g1 i1                  | 0        | 0.696   | 3.733   | 525  | 10 | 8.27E-25       | 69.50%  | 2 F:transferase a-                                      |
|                  |                    | c30764 g1 i1                 | 7.538    | 13.289  | 12.545  | 1891 | 10 | 0.272.20       | 77.50%  | 2 F:transferase a-                                      |
|                  |                    | c24002 g1 i1                 | 6.379    | 70.431  | 36.568  | 1212 | 10 | 5.70E-141      | 70.30%  | 2 P:metabolic pr -                                      |
|                  |                    | c18473 g1 i1                 | 3.59     | 50.768  | 52.835  | 1887 | 10 | 0.70E-141      | 76.30%  | 2 F:transferase a-                                      |
|                  | 7-DLH              | c18879 g1 i1                 | 11.861   | 176.981 | 113.625 | 661  | 10 | 1.91E-134      | 85.60%  | 4 F:heme bindin;-                                       |
|                  | /-DLII             |                              | 8.898    | 85.911  | 42.646  | 699  | 10 | 4.20E-61       | 92.20%  | 5 F:heme bindin;-                                       |
|                  |                    | c18879_g2_i1                 | 8.657    | 110.454 | 57.566  | 689  | 10 | 3.34E-120      | 83.10%  | 5 F:iron ion bind-                                      |
|                  |                    | c18879_g3_i1                 | 0.037    | 25.893  | 9.312   | 1953 | 10 | 3.54E-120<br>0 | 78.40%  | 4 F:heme bindin;-                                       |
|                  |                    | c4068_g1_i1<br>c4068_g1_i2   | 0        | 139.305 | 1.776   | 1953 | 10 | 0              | 78.40%  | 4 F:heme bindin;-                                       |
|                  | LAMT               |                              | 0        | 175.818 | 104.104 | 1469 | 10 | 0              | 68.40%  | 2 P:methylation; -                                      |
|                  | LAMI               | c5842_g1_i1                  | Ü        | 1/3.818 | 104.104 | 1409 | 10 | U              | 08.40%  | 2 P.methylation, -                                      |
| Anthraquinone    | MenF               | c33856 g1 i1                 | 1.467    | 161.948 | 124.394 | 2342 | 10 | 0              | 76.30%  | 3 F:isochorismat EC:5.4.4.2                             |
|                  |                    | c32294_g2_i1                 | 17.324   | 55.938  | 29.512  | 1868 | 10 | 0              | 81.30%  | 5 C:nucleolus; P EC:4.2.3.5                             |
|                  |                    | c32294 g2 i2                 | 53.911   | 44.892  | 48.714  | 2162 | 10 | 0              | 86.60%  | 5 C:nucleolus; P EC:4.2.3.5                             |
|                  | MenD               | c33442 g6 i1                 | 1.988    | 79.318  | 46.727  | 4360 | 10 | 0              | 72.80%  | 7 F:hydrolase ac-                                       |
|                  | MenC               | c22217 g1 i1                 | 1.747    | 398.916 | 291.762 | 2293 | 10 | 0              | 71.00%  | 1 P:metabolic pr -                                      |
|                  | MenE               | c32537 g1 i1                 | 0        | 0       | 1.747   | 2977 | 10 | 0              | 86.60%  | 2 P:metabolic procEC:6.2.1.26                           |
|                  |                    | c810_g1_i1                   | 0        | 2.554   | 4.561   | 465  | 10 | 1.10E-58       | 77.50%  | 2 P:metabolic pro EC:6.2.1.26                           |
|                  |                    | c47809 g1 i1                 | 0.338    | 0.374   | 5.469   | 502  | 10 | 5.47E-87       | 86.70%  | 2 P:metabolic procEC:6.2.1.26                           |
|                  |                    | c25763_g1_i1                 | 8.175    | 17.026  | 12.376  | 2041 | 10 | 0              | 86.70%  | 2 P:metabolic pro(EC:6.2.1.26                           |
|                  |                    | c31684_g1_i1                 | 4.97     | 22.633  | 19.871  | 4137 | 10 | 0              | 84.70%  | 2 P:metabolic pro(EC:6.2.1.26                           |
|                  |                    | c32537 g1 i3                 | 9.574    | 17.971  | 21.078  | 2885 | 10 | 0              | 86.60%  | 2 P:metabolic pro(EC:6.2.1.26                           |
|                  |                    | c22993 g1 i1                 | 88.781   | 76.764  | 71.997  | 2207 | 10 | 0              | 89.70%  | 4 P:butyrate metal EC:6.2.1.26                          |
|                  |                    | c22627_g1_i1                 | 1028.129 | 182.702 | 156.65  | 1990 | 10 | 0              | 87.20%  | 11 F:oxalate-CoA   EC:6.2.1.12; EC:6.2.1.26; EC:6.2.1.8 |
|                  | MenB               | c33824 g1 i1                 | 5.173    | 596.952 | 420.248 | 1388 | 10 | 2.05E-178      | 85.00%  | 2 F:1,4-dihydroxEC:4.1.3.36                             |
|                  | IVICIID            | c26824_g1_i1                 | 1.361    | 28.914  | 10.27   | 500  | 10 | 9.30E-42       | 87.70%  | 4 C:peroxisome; EC:3.1.2.20; EC:3.1.2                   |
|                  | DXPS1              | c29996 g1 i1                 | 7.962    | 164.024 | 148.766 | 2986 | 10 | 9.50E-42<br>0  | 89.70%  | 2 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  | DAPSI              |                              | 0.106    | 53.363  | 36.039  | 1205 | 10 | 0              | 85.30%  | 2                                                       |
|                  |                    | c29282_g2_i1                 | 0.100    |         |         |      |    | 0              |         | 2 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  |                    | c29282_g1_i1                 |          | 47.144  | 39.312  | 1235 | 10 | 0              | 86.70%  | 2 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  |                    | c29855_g1_i2                 | 8.696    | 10.174  | 8.882   | 2551 | 10 | 0              | 78.70%  | 2 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  |                    | c29855_g1_i1                 | 0.811    | 1.796   | 3.723   | 2334 | 10 | 0              | 82.50%  | 2 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  |                    | c38641_g1_i1                 | 1.438    | 1.755   | 1.587   | 265  | 10 | 3.41E-44       | 91.10%  | 4 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  |                    | c30018_g3_i2                 | 0.782    | 1.287   | 1.886   | 1723 | 10 | 1.07E-114      | 96.10%  | 4 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  |                    | c30018_g1_i1                 | 8.155    | 6.302   | 11.038  | 1788 | 10 | 0              | 93.20%  | 7 F:metal ion bir EC:2.2.1.7                            |
|                  | DATE               | c30018_g3_i3                 | 7.953    | 4.371   | 5.888   | 1411 | 10 | 4.93E-163      | 96.80%  | 4 F:1-deoxy-D-xEC:2.2.1.7                               |
|                  | DXR                | c33486_g7_i1                 | 123.834  | 179.172 | 144.065 | 1019 | 10 | 4.28E-139      | 86.40%  | 6 F:1-deoxy-D-xEC:1.1.1.267                             |
|                  |                    | c33486_g1_i5                 | 21.532   | 13.808  | 9.571   | 628  | 10 | 4.52E-17       | 94.00%  | 28 P:aromatic am EC:1.1.1.267                           |
|                  |                    | c33486_g1_i3                 | 0.849    | 2.741   | 2.056   | 753  | 10 | 6.93E-17       | 94.00%  | 28 P:aromatic am EC:1.1.1.267                           |
|                  | ISPD               | c23841_g1_i1                 | 25.286   | 26.297  | 17.545  | 1491 | 10 | 5.31E-154      | 88.60%  | 2 F:2-C-methyl-]EC:2.7.7.60                             |
|                  | CDPMEK             | c28782_g1_i1                 | 13.357   | 50.01   | 33.873  | 1928 | 10 | 0              | 78.20%  | 7 P:isopentenyl (EC:2.7.1.148                           |
|                  | ISPF               | c17510_g1_i1                 | 103.229  | 174.708 | 155.632 | 1119 | 10 | 7.35E-115      | 89.10%  | 3 F:2-C-methyl-IEC:4.6.1.12                             |
|                  | HDS                | c23444_g2_i1                 | 80.684   | 255.5   | 217.529 | 2902 | 10 | 0              | 93.30%  | 7 P:oxidation-re(EC:1.17.7.1                            |
|                  | HDR                | c17511_g1_i1                 | 82.981   | 278.724 | 185.972 | 2392 | 10 | 0              | 88.60%  | 5 F:4-hydroxy-3 EC:1.17.7.1; EC:1.17.1.2                |
|                  |                    | c5100_g1_i1                  | 6.042    | 5.399   | 5.19    | 1512 | 10 | 1.03E-167      | 74.20%  | 2 C:chloroplast; -                                      |
| Chlorogenic acid | НОТ                | c17064 g1 i1                 | 12.025   | 93.739  | 33.364  | 2015 | 10 | 0              | 93.10%  | 2 F:shikimate O-EC:2.3.1.133                            |
| Cinorogenic acid | CYP98A35 / C3H1    | c24241 g1 i1                 | 2.741    | 83.928  | 29.392  | 957  | 10 | 8.28E-154      | 95.10%  | 4 F:heme binding; EC:1.14.13.36                         |
|                  | C11 /0/133 / C3111 | c24241_g1_i1<br>c24241_g2_i1 | 4.951    | 116.257 | 53.833  | 998  | 10 | 1.22E-164      | 93.60%  | 13 F:identical prote EC:1.14.13.36; EC:1.14.13.21       |
|                  |                    | c26370 g1 i1                 | 36.703   | 235.141 | 117.507 | 1890 | 10 | 0              | 89.60%  | 11 F:5-O-(4-coumaEC:1.14.13.36                          |
|                  |                    | C203/0_g1_11                 | 30.703   | 233.141 | 117.307 | 1070 | 10 | U              | 67.00/0 | 11 1.5-0-(4-counal C.1.14.15.50                         |

|                   | Quinate-HCT                                                                                                                                                                                  | c23775_g2_i1 | 0       | 7.485   | 0.16    | 906  | 10 | 4.57E-66  | 68.10%  | 1 F:transferase activity, transferring acyl groups other than amino-acyl groups |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------|---------|------|----|-----------|---------|---------------------------------------------------------------------------------|
|                   |                                                                                                                                                                                              | c23775_g1_i1 | 0       | 10.278  | 0.719   | 507  | 10 | 5.74E-31  | 62.00%  | 1 F:transferase a-                                                              |
|                   | c22655_gl_il c15374_gl_i2 c7976_gl_il c15374_gl_i2 c7976_gl_il c15374_gl_ii c30394_g3_il c23181_gl_il CCOAOMT1 Caffeoyl-CoA c20243_gl_i2 c25259_gl_i3 c25259_gl_i1 c39211_gl_il c41891_gl_il |              | 0       | 0.81    | 1.547   | 339  | 10 | 2.48E-26  | 73.60%  | 3 P:biosynthetic -                                                              |
|                   |                                                                                                                                                                                              |              | 0.212   | 8.295   | 5.359   | 1693 | 10 | 6.53E-142 | 61.50%  | 1 F:N-acyltransf(EC:2.3.1                                                       |
|                   |                                                                                                                                                                                              |              | 1.245   | 12.988  | 8.004   | 1706 | 10 | 2.57E-90  | 73.20%  | 2 F:N-acyltransf(EC:2.3.1                                                       |
|                   |                                                                                                                                                                                              |              | 0       | 28      | 19.801  | 1713 | 10 | 8.22E-142 | 61.50%  | 1 F:N-acyltransf(EC:2.3.1                                                       |
|                   |                                                                                                                                                                                              |              | 0       | 56.416  | 21.268  | 1728 | 10 | 0         | 71.10%  | 1 F:transferase a-                                                              |
|                   |                                                                                                                                                                                              |              | 0       | 259.051 | 110.002 | 1640 | 10 | 0         | 74.90%  | 1 F:transferase activity, transferring acyl groups other than amino-acyl groups |
|                   |                                                                                                                                                                                              |              | 0.212   | 0.914   | 2.266   | 690  | 10 | 4.54E-90  | 80.40%  | 14 P:seed develop EC:2.1.1; EC:2.1.1.104                                        |
|                   |                                                                                                                                                                                              |              | 0.782   | 2.834   | 5.419   | 294  | 10 | 3.26E-43  | 82.20%  | 3 F:caffeoyl-Co/EC:2.1.1.104                                                    |
|                   |                                                                                                                                                                                              |              | 1.264   | 5.274   | 6.787   | 875  | 10 | 4.32E-121 | 86.80%  | 3 F:caffeoyl-Co/EC:2.1.1.104                                                    |
|                   |                                                                                                                                                                                              |              | 6.553   | 209.705 | 175.682 | 1120 | 10 | 9.84E-97  | 76.40%  | 3 C:cytosol; P:mEC:2.1.1                                                        |
|                   |                                                                                                                                                                                              |              | 100.266 | 516.949 | 156.67  | 1183 | 10 | 1.52E-159 | 95.60%  | 4 F:caffeoyl-Co/EC:2.1.1.104                                                    |
| c32955_g1_i       |                                                                                                                                                                                              | c32955_g1_i2 | 2.857   | 1.256   | 1.377   | 1833 | 10 | 3.54E-91  | 94.70%  | 5 F:caffeoyl-Co/EC:2.1.1; EC:2.1.1.104                                          |
| Housekeeping gene | Beta tubulin                                                                                                                                                                                 | c29474_g4_i1 | 501.311 | 239.979 | 231.611 | 1958 | 10 | 0         | 96.00%  | 13 C:vacuolar me -                                                              |
|                   | Ubiquitin                                                                                                                                                                                    | c32470_g2_i1 | 28.365  | 1.692   | 1.507   | 583  | 10 | 1.18E-25  | 99.40%  | 4 C:plasma membi EC:6.3.2.19                                                    |
|                   |                                                                                                                                                                                              | c32470_g2_i4 | 18.694  | 1.848   | 1.896   | 726  | 10 | 6.77E-71  | 100.00% | 4 C:plasma membi EC:6.3.2.19                                                    |
|                   |                                                                                                                                                                                              | c31827_g1_i1 | 20.673  | 11.015  | 11.966  | 1618 | 10 | 5.19E-96  | 98.30%  | 2 F:acid-amino aci-                                                             |
|                   |                                                                                                                                                                                              | c13011_g1_i1 | 96.975  | 45.078  | 48.973  | 627  | 10 | 6.14E-52  | 96.60%  | 5 F:protein tag; P:-                                                            |
|                   |                                                                                                                                                                                              | c32470_g2_i3 | 102.447 | 60.641  | 64.103  | 854  | 10 | 2.05E-106 | 99.50%  | 4 C:plasma membiEC:6.3.2.19                                                     |

\_ '