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Isolation of gametes from Brachypodium distachyon
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Abstract	 Isolated gametes from maize, rice, Arabidopsis, wheat and tobacco have been used for investigations for 
mechanisms in reproductive or developmental processes, such as gamete differentiation, gamete fusion, and early zygotic 
development. In addition, the isolated gametes from maize and rice can also be applied for in vitro fertilization to analyze 
postfertilization events. In the last decade, Brachypodium distachyon (Brachypodium) has emerged as an effective model for 
wheat, since wheat with its hexaploid nature shows some analytical difficulties. In this study, to take advantages of this new 
model monocot plant for investigations using isolated gametes, procedures for the isolation of Brachypodium gametes were 
established as the first step. Ovaries were first harvested from mature and unpollinated Brachypodium flowers. Thereafter, a 
transverse incision was placed at the bottom region of the ovary, resulting in direct access to the embryo sac, and egg cells, 
which were released from the dissected ovaries, were isolated. For sperm cell isolation, when pollen grains were immersed in 
mannitol solution, sperm cells were successfully released from pollen grains.
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Fertilization and subsequent events in angiosperms, 
such as embryogenesis and endosperm development, 
occur in the embryo sac deeply embedded in ovular 
tissue (Guignard 1899; Nawaschin 1898; Raghavan 2003; 
Russell 1992). Since investigations into the molecular 
mechanisms of fertilization and embryogenesis have 
been impeded by the difficulties in directly researching 
the biology of the embedded female gametophyte, zygote 
and early embryo, studies for these mechanisms have 
been conducted predominantly through analyses of 
Arabidopsis mutants or transformants coupled with live 
imaging (reviewed in Berger 2011; Denninger et al. 2014; 
Hamamura et al. 2012, 2014;  Maruyama et al. 2015). 
Alternatively, direct analyses using isolated gametes or 
zygotes are possible, because procedures for isolating 
viable gametes/zygotes have been established in a wide 
range of plant species, including monocotyledonous 
and dicotyledonous plants (reviewed in Kranz 1999 
and in Okamoto 2011; Yang et al. 2014). The use of 
gametes, zygotes or embryos isolated from flowers of 
maize, wheat, rice, Arabidopsis and tobacco has enabled 
researchers to successfully identify genes expressed 
specifically or preferentially in male gametes, female 
gametes, or early embryos (Abiko et al. 2013b; Anderson 
et al. 2013; Borges et al. 2008; Márton et al. 2005; Ning et 
al. 2006; Ohnishi et al. 2011; Russell et al. 2012; Sprunck 
et al. 2005; Steffen et al. 2007; Wang et al. 2010; Wuest et 
al. 2010; Yang et al. 2006), since it has been supposed that 
genes expressing specifically/preferentially in gametes or 

early embryos function in reproductive or developmental 
processes such as gamete differentiation, gamete 
fusion, and early zygotic development. In addition to 
transcriptome-based analyses, single-cell-type proteomic 
approaches have widely been employed to determine 
the functions of specific cells (Dai and Chen 2012), and, 
recently, proteins expressing in rice gametes were globally 
identified (Abiko et al. 2013a).

Isolated gametes have also been used with an in 
vitro fertilization (IVF) system to observe and analyze 
fertilization and postfertilization processes (reviewed 
in Wang et al. 2006). Kranz and Lörz (1993) first 
developed a complete IVF system using maize gametes 
and electrical fusion, and, to take advantage of the 
abundant resources stemming from rice research, a 
rice IVF system was also established by Uchiumi et al. 
(2007). By the use of these IVF systems, post-fertilization 
events, such as karyogamy (Faure et al. 1993; Ohnishi 
et al. 2014), egg activation and zygotic development 
(Kranz et al. 1995; Nakajima et al. 2010; Sato et al. 2010), 
paternal chromatin decondensation in zygote nucleus 
(Scholten et al. 2002), the microtubular architecture in 
egg cells and zygotes (Hoshino et al. 2004), fertilization-
induced/suppressed gene expression (Okamoto et al. 
2005), epigenetic resetting in early embryos (Jahnke and 
Scholten 2009), have been successfully observed and 
investigated.

Among three major agricultural cereal crops, an 
IVF system has so far been established in maize and 
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rice (Kranz and Lörz, 1993; Uchiumi et al. 2007). In 
the case of wheat, although methods of isolation of egg 
cells, zygotes, and early embryos have been established 
(Kovacs et al. 1994; Kumlehn et al. 1999; Sprunck et al. 
2005), a complete IVF system with wheat gametes has 
not yet been established. Wheat has the largest genome 
among the three major agricultural cereals, and the 
hexaploid nature of the wheat bread genome, consisting 
of the A, B and D genomes with high sequence similarity, 
causes problems in functional redundancy when wheat 
is used as an experimental material (Bhalla 2006; Fu et 
al. 2007). In the last decade, Brachypodium distachyon 
(Brachypodium) has emerged as an effective model 
for monocot species (Brkljacic et al. 2011; Opanowicz 
et al. 2008). Brachypodium has a small stature, short 
generation time, small genome, the ability to self-
pollinate, and is easily grown under simple conditions 
(Draper et al. 2001). In addition, Brachypodium has been 
chosen as a model for wheat because it has a more recent 
common ancestor with wheat than rice or sorghum 
(Bortiri et al. 2008; International Brachypodium 
Initiative 2010; Wolny et al. 2011). Therefore, in the 
present study, we describe a protocol for the isolation 
of egg cells and sperm cells from unpollinated flowers 
of Brachypodium as initial step for establishing 
Brachypodium IVF system.

Seeds of Brachypodium distachyon accession Bd21 
were obtained from the RIKEN BioResource Center 
(Tsukuba, Japan). The seeds were first stratified at 4°C 
for 3 d on moist paper and were germinated in a growth 
chamber at 25°C under a 16 h/8 h light/dark cycle for 
3–7 d. The germinated Brachypodium seedlings were 
then transferred to soil and grown in a growth chamber 
at 25°C under a 20 h/4 h light/dark cycle. Ovaries were 
harvested from unpollinated mature Brachypodium 
flowers (Figure 1A, Supplementary Figure 1), and 
transferred in plastic dishes (ϕ 3.5 cm) containing 2 ml 
of mannitol solution adjusted to 370 mOsmol kg−1 H2O, 
which corresponds to about 6% mannitol solution. To 
observe Brachypodium egg cell embeddd in embryo sac, 
ovules were isolated from the ovaries in the mannitol 
solution using sharp forceps and a 30G short needle 
syringe (BD, USA) under a stereoscopic microscope, and 
observed with an inverted microscope (BX-71, Olympus, 
Japan). In each ovule, an embryo sac was observed 
(Figure 1B), and a putative egg cell was clearly visible in 
an embryo sac (Figure 1C), suggesting that the mature 
ovaries are suitable materials for egg cell isolation.

Next, to isolate the egg cells, ovaries in mannitol 
solution (370 mOsmol kg−1 H2O) were first cut 
transversely with a razor blade at the bottom region 
(Figure 1A, dotted white line). By gently pushing the 
basal portion of the lower part of the ovary with a glass 
needle, a putative egg cell was released from the cut end 
of the dissected ovary (Figure 1D), since the transverse 

incision of the ovary provided direct access to the 
embryo sac. Synergy was hardly released from the the 
cut end of the dissected ovary. The cells released from 
the dissected ovaries were transferred into a 1 µl droplet 
of mannitol solution (370 mOsmol kg−1 H2O) overlaid 
with mineral oil on a coverslip according to Okamoto 
(2011), and observed with the inverted microscope. 
The isolated putative egg cells showed a granular-
structured cytoplasm and a developed nucleolus (Figure 
1E), being consistent with cellular characteristics of egg 
cells isolated from rice (Uchiumi et al. 2006) and maize 
(Kranz et al. 1991; Kranz and Lörz 1993). In addition, 
vacuoles, ranging in size from 3–10 µm, existed at the 
peripheral region of the cells (Figure 1E), and these 
peripheral localization of vacuoles has been reported 
in isolated egg cells of rice (Uchiumi et al. 2007), maize 
(Faure et al. 1992) and wheat (Kovacs et al. 1994). These 
cytological characteristics observed in the isolated cells 
suggest that the cells released from cut Brachypodium 
ovaries are egg cells.

Distribution of mitochondria in the putative 
Brachypodium egg cell was observed, since it has 
been reported that mitochondria and starch granules 
are abundantly localized in the granular-structured 
cytoplasm (Diboll 1968; Faure et al. 1992, 1993; 
Uchiumi et al. 2006, 2007). To stain mitochondria, the 
putative Brachypodium egg cells were transferred into 
2 µl droplets of mannitol solution (370 mOsmol kg−1 
H2O) containing 2 µg/ml MitoTracker Red CMXRos 
(Molecular Probes, USA) for 40 min at room temperature 
in darkness. The stained cells were transferred into 
fresh mannitol droplets twice for washing, and then 
observed with a BX-71 inverted fluorescence microscope 
(Olympus) with 520–550-nm excitation and >580-nm 
emission wavelengths (U-MWIG mirror unit; Olympus). 
Fluorescent signal from the mitochondrial probe 
was densely detected around the nucleus (Figure 1F), 
corresponding to the granular-structured cytoplasm. In 
contrast, when protoplasts prepared from cultured cells 
were stained with MitoTracker fluorescent indicator, 
signals of small foci were uniformly detected in cells 
(Figure 1G) as described by Uchiumi et al. (2006). The 
size of mitochondria in putative Brachypodium egg 
cells appeared to be larger than those in cultured cells, 
and such large size characters of mitochondria are also 
known in egg cells of geranium, maize and rice (Faure 
et al. 1992; Kuroiwa and Kuroiwa 1992; Uchiumi et al. 
2006). These observations suggest that the cells isolated 
from Brachypodium ovaries are reliably identified as 
egg cells. The size of Brachypodium egg cells is about 
30–35 µm in diameter, which is smaller than that in egg 
cells of rice (40–50 µm in 370 mOsmol kg−1 H2O), maize 
(60–77 µm in 650 mOsmol kg−1 H2O), wheat (50–70 µm 
in 620 mOsmol kg−1 H2O) (Kovacs et al. 1994; Kranz et 
al 1991; Uchiumi et al. 2007). In the present study, egg 
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cells could be obtained, and, using the protocol, 15–30  
egg cells could be isolated by an experimenter in a day.

Anthers harvested from unpollinated mature flowers 
(Figure 1A, Supplementary Figure 1) were transferred 
to plastic dishes (ϕ 3.5 cm) filled with 3 ml of 0.1 M 
sodium phosphate buffer (pH 7.0), containing 0.25 µg/
ml 4′,6-diamidino-2-phenylindole (DAPI), 1 mM EDTA 
and 0.1% Triton X-100, to observe maturation status of 
pollen grains in the anthers. The anthers were broken 
with forceps to free the pollen grains, and the released 
pollen grains were incubated for 1 h at room temperature 
under darkness. Then, the pollen grains were observed 
with 360–370 nm excitation and 420–460 nm emission 
wavelengths (U-MNUA2 mirror unit; Olympus). In 
a pollen grain, one vegetative and two sperm nuclei 
were obviously detected (Figure 2A), suggesting that 
Brachypodium pollen grains were tricellular-type grains, 

and that these pollen gains are suitable for isolation of 
sperm cells.

Soaking the pollen grains in a suitable osmotic 
solution generally results in burst of the grains and in 
releasing their contents, including sperm cells, into 
the solution (Kranz et al. 1991; Theunis et al. 1991). 
Therefore, an osmotic approach to isolate sperm cells 
from the Brachypodium pollen grains was employed. 
When the pollen grains were immersed in mannitol 
solution with the osmolality of 370 mOsmol kg−1 H2O, 
the grains burst and their contents, including sperm cells, 
were released from a possible pollen tube pore of the 
grain after 5–10 min of immersion (Figure 2B). In many 
cases, a set of two cells was observed (Figure 2B), and 
these two putative sperm cells appeared to be released 
from a pollen grain. This releasing pattern of sperm cells 
is consistent with the Brachypodium pollen grains being 
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Figure  1.  Isolation of Brachypodium egg cells from unpollinated ovaries. (A) A mature ovary with anthers harvested from an unpollinated 
Brachypodium flower. The dotted white line indicates the incision line on the ovary for egg isolation in panel D. (B) An ovule dissected from an 
unpollinated ovary. Possible embryo sac is enclosed with white line. (C) An egg cell in the embryo sac. An arrowhead indicates the putative egg cell. 
(D) An egg cell released from the basal portion of the dissected Brachypodium ovary. An arrowhead indicates the released egg cell. (E) An isolated 
Brachypodium egg cell. White- and black-colored arrowheads indicate the nucleus and nucleolus, respectively. Asterisks indicate typical vacuoles. 
(F) Mitochondrial labeling of an isolated Brachypodium egg cell with MitoTracker Red. Left and right panels are fluorescent and bright-field images, 
respectively. (G) Mitochondrial labeling of a protoplast prepared from cultured rice cells. Left and right panels are fluorescent and bright-field images, 
respectively. Scale bars=1 mm in A, 200 µm in B, 100 µm in C and D, and 30 µm in E–G.
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tricellular-type. The size of Brachypodium sperm cells is 
about 7–9 µm in diameter. Using the isolation procedure, 
30–50 sperm cells can be obtained by one experimenter 
per hour.

Finally, we tested whether the procedure for 
electrofusion-based IVF with rice gametes is available for 
the electro-fusion of Brachypodium gametes. According 
to Uchiumi et al. (2007) and Okamoto (2011), IVF was 
conducted using 42 pairs of isolated egg and sperm cells. 
However, gamete fusion was observed in only one pair of 
gametes, and the remaining 41 pairs of gametes showed 
no fusion. In addition, a resultant fused gamete, possibly 
a zygote, did not divide even if the fused gamete was 
further cultured in N6Z liquid medium, which is used 
for zygote culture in barley (Kumlehn et al. 1999) and in 
rice (Uchiumi et al. 2007), for 2 d. The fused production 
finally degenerated. We are currently attempting to 
ascertain the optimal conditions for Brachypodium IVF 
system and for culturing the zygotes produced by IVF. 
In the present study, we developed a reliable isolation 
procedure for obtaining Brachypodium gametes, 
although optimization of parameters for electro-fusion 
of gametes is essential to establish Brachypodium in vitro 
fertilization system.
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Supplementary Figure 1.  Unpollinated and pollinated Brachypodium ovaries. 
Unpollinated ovaries at immature and mature stages were presented. Bars = 1 mm.	



