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Abstract Isoamylase (ISA) is a starch debranching enzyme that removes α-1,6-glucosidic linkages in α-polyglucans such as 
amylopectin. From previous studies, plant isoamylases have been shown to play a crucial role in amylopectin biosynthesis; 
however, little is known about their function in storage root tissues of plants such as cassava, yam and sweet potato. In this 
study, we isolated cDNA clones and characterized the cDNA nucleotide sequences of three genes (IbISA1, IbISA2, IbISA3) 
encoding isoamylase from sweet potato (Ipomoea batatas (L.) cv. White Star). Deduced amino acid sequences of the three 
isolated IbISAs have the specific regions that are highly conserved among the α-amylase family members. The product of 
IbISA2 is predicted to be enzymatically inactive, like other plant ISA2s, due to replacement of amino acid residues that 
are important for hydrolytic reaction. qRT-PCR analysis demonstrated that expression of IbISA2 was higher than that 
of the other two IbISAs (IbISA1 and IbISA3) in tuberous root at 109 days after planting, at which stage of tuberous root 
was at which stage tuberous roots were almost fully developed almost developed. This expression pattern observed in our 
experiments was different from that in other sink organs, such as seeds (endosperms), indicating that orchestration of 
ISA gene expression may depend on the differences in sink organ type between tuberous roots and seeds. The molecular 
characterization of three IbISA genes and their expression analysis in this study will contribute to further studies on starch 
biosynthesis in sweet potato, especially in storage root.
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Plant starches, which are synthesized by photosynthesis, 
consist of two major types of glucose homopolymers: 
amylose and amylopectin (Smith et al. 1997). Amylose 
is essentially a linear molecule in which glucosyl 
monomers are joined via α-1,4 linkages, whereas 
amylopectin has a much more complex organization, in 
which linear α-1,4-glucan chains are regularly branched 
via α-1,6-glucosidic linkages (Dian et al. 2005; James 
et al. 2003). Many of the enzymes involved in starch 
metabolism have been investigated: at least four enzyme 
families have been found to participate in amylopectin 
biosynthesis, that is ADP-glucose pyrophosphorylase 
(AGPase, EC 2.7.7.27), soluble starch synthase (SS, EC 
2.4.1.21), starch branching enzyme (SBE, EC 2.4.1.18), 
and starch debranching enzyme (DBE, EC 3.2.1.70), 
whereas amylose is synthesized by ADP-glucose 

pyrophosphorylase (AGPase) and granule-bound starch 
synthase (GBSS, EC 2.4.1.21) (Ball and Morell 2003; 
Hwang et al. 2005; Jeon et al. 2010; Myers et al. 2000; 
Nakamura 2002; Smith et al. 1997). Among the four 
enzyme families involved in amylopectin biosynthesis, 
DBEs are involved in the removal of α-1,6-glucosidic 
linkages. In plants, DBEs can be classified into two types: 
isoamylase (ISA, EC 3.2.1.68) and pullulanase (PUL, EC 
3.2.1.41 or limit dextrinase, EC 3.2.1.42) (Nakamura et 
al. 1996). Both ISA and PUL hydrolyze α-1,6-glucosidic 
linkages, but they differ in their substrate specificity: 
ISA catalyzes amylopectin, glycogen and phytoglycogen 
but scarcely attacks pullulan, whereas PUL can catalyze 
pullulan and amylopectin, but not glycogen and 
phytoglycogen (Nakamura et al. 1996). Furthermore, the 
ISA type enzymes can be divided into three isoforms, 
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designated ISA1, ISA2, and ISA3 (Hussain et al. 2003), 
whereas only one isoform of the PUL type is present 
(Dinges et al. 2003).

The importance of ISA for correct amylopectin 
biosynthesis has been suggested by several studies in 
maize (Beatty et al. 1999; James et al. 1995; Rahman et 
al. 1988), rice (Nakamura 1996; Nakamura et al. 1996; 
1997), barley (Burton et al. 2002), Arabidopsis (Delatte 
et al. 2005; Wattebled et al. 2005), potato (Hussain et al. 
2003) and Chlamydomonas (Ball et al. 1996; Mouille et al. 
1996). Current evidence suggests that plant ISA is active 
as a complex containing different isoforms (Dauvillée et 
al. 2001; Fujita et al. 1999; Hussain et al. 2003). In the 
synthesis of potato storage starch, StISA1 and StISA2 
are active as hetero-oligomers (Hussain et al. 2003). In 
Arabidopsis leaves, a source organ, AtISA1 and AtISA2 
are active as hetero-oligomers, as in potato tubers 
(Delatte et al. 2005; Wattebled et al. 2005). In other sink 
organs, endosperms of rice and maize, both ISA1/ISA2 
hetero-oligomer and ISA1 homo-oligomer were observed 
(Kubo et al. 2010; Utsumi and Nakamura 2006). When 
ISA1 and ISA2 form a hetero-oligomer, ISA1 has a direct 
catalytic role but the ISA2 subunit is likely to have a 
regulatory function because ISA2 is non-catalytic, due 
to substitutions of 6 out of 8 key amino acids within the 
active site (Hussain et al. 2003; Utsumi and Nakamura 
2006). There are four regions (designated Region I, II, 
III and IV) that are highly conserved in the α-amylase 
family (GH13 family), and some amino acids in these 
conserved regions play an important role in activity of 
the enzyme (Lawson et al. 1994; Strokopytov et al. 1996). 
In particular, histidine (His (H)) in Region I, II, and 
IV (position His-137, His-269, and His-361 of Bacillus 
sp. strain TS-23 α-amylase) are important for correct 
catalytic activity (Chang et al. 2003). In contrast, ISA3 
does not form a complex with ISA1 and ISA2, indicating 
that ISA3 functions as a monomer (Hishinuma et al. 
2004; Takashima et al. 2007). However, in contrast 
to these findings, Arabidopsis AtISA2 was found to 
be co-expressed with AtISA3 in the absence of AtISA1 
expression (Li et al. 2007).

In higher plants, there are specific sink organs, 
including seeds (endosperms), tuberous stems and 
tuberous roots. The expression of ISAs in relation to 
seed development has been investigated in several plant 
species, including rice, maize, barley, rye and amaranths 
(Kubo et al. 2010; Ohdan et al. 2005; Park et al. 2014; Sun 
et al. 1999; Zheng et al. 2013). However, in the case of 
tuberous root species, sweet potato (Convolvulaceae), 
cassava (Euphorbiaceae), and yam (Dioscoreaceae) 
(Scott et al. 2000), there are few reports of cloned and 
characterized ISAs (Beyene et al. 2010; Kim et al. 2005). 
Furthermore, the relationship between gene expression 
of ISAs and sink development is not well understood in 
tuberous root plants.

In the work reported here, we isolated the genes 
encoding IbISA1, IbISA2, and IbISA3 from one of the 
major tuberous root plant, sweet potato (Ipomoea batatas 
(L.)), and compared the amino acid sequences with 
those of other plant species with different types of sink 
(tubers and seed endosperms) and source (leaves). We 
concluded that IbISA2 does not have isoamylase enzyme 
activity, like ISA2 from other plant species. Furthermore, 
we determined the gene expression patterns of IbISAs 
by qRT-PCR, and examined their expression during 
tuberous root development. These three genes were 
spatiotemporally regulated in root (sink) and leaves 
(source) in sweet potato. Based on these results, we 
discuss the function of the three IbISAs in tuberous root 
hypertrophy.

Materials and methods

Plant Materials
Ipomoea batatas (L.), cultivar “White Star” plants were grown 
in the field. Mature leaves and storage roots were collected for 
cloning of genes for IbISAs. According to developmental stage, 
leaves and roots were also collected for qRT-PCR analysis.

Cloning and sequencing of genes encoding 
isoamylase-type starch debranching enzyme
Total RNAs were extracted from tuberous roots (ca. 2 g) using 
RNeasy Plant Mini Kit (Qiagen, Basel, Switzerland). From 
total RNAs, poly (A)+ RNAs were purified with Oligotex™-dT 
<Super> mRNA Purification Kit (TaKaRa Shuzo, Shiga, Japan) 
according to the manufacturer’s instructions. In order to isolate 
the full-length cDNA clones for genes encoding isoalmylase-
type starch debranching enzymes 1, 2, and 3 (IbISA1, IbISA2, 
and IbISA3), the RACE method was used. Briefly, first-strand 
cDNAs for 5′-RACE and 3′-RACE analyses were synthesized 
with SMARTer™ RACE cDNA amplification kit (Clontech, Palo 
Alto, CA, USA) according to the manufacturer’s instructions.

The 5′-RACE and 3′-RACE fragments for IbISA1, IbISA2, 
and IbISA3 genes were amplified with first-strand cDNA 
as a template according to the manufacturer’s instruction for 
the SMARTer™ RACE cDNA amplification kit (Clontech). 
Specific primer sets of each gene were used, as shown in Table 
S1. The PCR products of the RACE reaction were cloned in 
pTA2 vector (TOYOBO, Osaka, Japan). Inserts in the plasmid 
vector were sequenced by the dideoxy chain-termination 
method by using a model 3130xl DNA sequencer (Applied 
Biosystems, Foster City, CA, USA) with BigDye Terminator 
Cycle Sequencing Ready Reaction Kit (Applied Biosystems). 
Sequence data were analyzed by DNASIS for Windows (Hitachi 
Software Engineering, Yokohama, Japan).

On the basis of partial sequence cloned by the RACE 
method, additional primer sets were also designated to amplify 
the full-length cDNA of each IbISA gene. The nucleotide 
sequences of specific primer sets for each IbISA gene are shown 
in Table S1. The cloning and determination of the nucleotide 
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sequence the PCR products were performed as described above.

Sequence analysis, sequence comparison and 
construction of phylogenetic trees
Sequence analysis was performed by using DNASIS for 
Windows (Hitachi Software Engineering) and BLAST 
program (http://ncbi.nlm.nih.gov/BLAST/; Altschul et al. 
1990). For the phylogenetic analysis, amino acid sequences of 
ISAs from several plant species were obtained from the NCBI 
database (http://www.ncbi.nlm.nih.gov). Phylogenetic trees 
were constructed by the neighbor joining (NJ) method using 
GENETYX ver.11 (Software Development Co., Japan; Saitou 
and Nei 1987). Bootstrap values were calculated from 1,000 
replications.

Quantitative real-time PCR
Total RNA and mRNA from leaves and tuberous roots 
were isolated as described above. Real-time PCR reactions 
were performed on a 7300 Real-time PCR system (Applied 
Biosystems, Foster City, CA, USA) with KOD SYBR® qPCR 
Mix (TOYOBO, Osaka, Japan), according to the manufacturer’s 
instructions. Primers sets used in qRT-PCR are also described 
in Table S1. IbCOX encoding cytochrome c oxidase subunit Vc 
and IbARF encoding ADP-ribosylation factor genes were used 
as reference genes.

Results

Isolation and characterization of IbISA1, IbISA2, 
and IbISA3 cDNA clones expressed in tuberous 
roots
cDNAs were reverse-transcribed from mRNA isolated 
from tuberous root of sweet potato, cultivar White 
Star. IbISA1, IbISA2, and IbISA3 sequences were then 
amplified from the cDNAs. To design primer sequences 
for amplification of IbISAs, the partial and/or full-length 
amino acid sequences of ISA1, ISA2, and ISA3 from 
several plant species (Arabidopsis thaliana: accession no. 
AEC09752, AEE27558, AEE82713, Zea mays: accession 
no. ACG43008, AAB97167, AAA91298, AAO17048, 
AAO17049, Oryza sativa: accession no. NP_001062271, 
BAA29041, ACY56088, ACY56099, BAC75533, Solanum 
tuberosum: accession no. AAN15317, AAN15318, 
AAN15319, Hordeum vulgare: accession no. AAM46866, 
Triticum aestivum: accession no. CAC82925, CAC41016, 
Pisum sativum: accession no. AAZ81835, AAZ81836, 
AAZ81837, Phaseolus vulgaris: accession no. BAF52941, 
BAF52943, BAF52942, Medicago truncatula: accession 
no. XP_003630623, XP_003602838, Aegilops tauschii: 
accession no. AAP44579, Secale cereale: accession 
no. ACM41701, and Ipomoea batatas: accession no. 
AAY84833) were obtained from public databases. 
These sequences were classified into three clusters 
(corresponding to ISA1, ISA2, and ISA3) by the neighbor 
joining method with GENETYX (data not shown).

To determine the conserved amino acid sequences of 
ISA1, ISA2, and ISA3, deduced amino acid sequences 
were aligned. In a BLAST search (Alschul et al. 1990) 
using each ISA conserved consensus sequence as a query 
in public databases, ISA1, ISA2, and ISA3 genes from I. 
batatas were identified as follows. In the case of IbISA1, 
a gene termed Ibisa1 (DQ074643) had previously been 
isolated from sweet potato, using a different cultivar, 
Kokei 14, from that used in the present study (Kim et al. 
2005). Furthermore, in the transcriptome analysis data 
deposition (Tao et al. 2012), TSA (transcriptome shotgun 
assembly) for IbISA2 (accession number, JP111226) and 
IbISA3 (accession number, JP104934) were identified. 
A phylogenetic tree was constructed using these three I. 
batatas genes identified in databases and other ISA genes 
from several plant species. These three I. batatas genes 
were classified into the corresponding ISA1, ISA2, and 
ISA3 clusters, indicating that they are predicted to be 
functional genes. In the present study, from conserved 
sequences in three I. batatas ISA genes, degenerate 
primer sets (Table S1) were designed and used in PCR 
to obtain partial cDNA clones of IbISAs (IbISA1, IbISA2, 
and IbISA3) by 5′-RACE and 3′-RACE methods.

The nucleotide sequences of amplified fragments were 
determined and compared to ISA genes isolated from 
other plant species. This confirmed that the fragments 
amplified by 5′-RACE and 3′-RACE contained the 
partial sequence of IbISA1, IbISA2, and IbISA3 genes 
(data not shown). Based on the nucleotide sequence 
from the 5′-RACE and 3′-RACE experiments, full-length 
cDNA clones for IbISA1, IbISA2, and IbISA3 genes were 
amplified with primer sets as shown in Table S1. For 
each gene, the complete nucleotide sequences of eight 
independent clones were determined. Interestingly, for 
each gene, IbISA1, IbISA2, and IbISA3, the independent 
clone sequences were identical. The full-length cDNAs of 
IbISA1, IbISA2 and IbISA3 were 2,524 bp, 2,880 bp, and 
2,919 bp long, respectively. The nucleotide sequence data 
for IbISA1, IbISA2 and IbISA3 genes have been deposited 
in the DDBJ, EMBL, and GenBank databases with 
accession numbers LC052789, LC052790, and LC052791, 
respectively.

In order to discover whether these clones code for 
isoamylase enzymes, amino acid sequences deduced 
from the IbISA1, IbISA2 and IbISA3 cDNA clones 
were analyzed. The deduced amino acid sequences 
of the IbISAs cDNA clones suggested that they encode 
polypeptides of 799, 865 and 768 amino acid residues, 
respectively. These deduced amino acid sequences 
were then aligned to ISAs from other plant species. 
IbISA1, IbISA2 and IbISA3 isolated from sweet potato 
in this experiment formed clusters with ISA1, ISA2 and 
ISA3 from other species, respectively (Figure 1A). The 
deduced amino acid sequence of IbISA1 showed 95.1% 
similarity to Ibisa1 (accession no. AAY84833), 81.3% 
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identity with StISA1 (accession no. AAN15317), 70.2% 
identity with AtISA1 (accession no. AEC09752) and 
67.2% identity with ZmISA1 (accession no. EU970890) 
in the European Molecular Biology Open Software Suite 
(EMBOSS; Rice et al. 2000). The deduced amino acid 
sequence of IbISA2 showed 62.4% similarity with StISA2 
(accession no. AAN15318), 52.1% identity with AtISA2 
(accession no. AEE27558) and 43.6% identity with 
ZmISA2 (accession no. AAO17048). The deduced amino 
acid sequence of IbISA3 showed 74.7% similarity with 
StISA3 (accession no. AAN15319).

Alignment of the amino acid sequences of the three 
IbISAs revealed that they have four conserved regions 
(Region I to IV), as present in other α-amylase family 
(GH13 family) starch hydrolytic enzymes (Beatty 
et al. 1999; James et al. 1995; Jespersen et al. 1993). In 
particular, within these four conserved regions, eight 
amino acid residues are highly conserved in all active 
members of the α-amylase family (Hussain and Martin 
2009; Hussain et al. 2003). In comparison with other 
deduced amino acid sequences of ISAs, these eight amino 
acid residues were conserved in IbISA1 and IbISA3, as 
in other ISA1s and ISA3s, indicating that IbISA1 and 
IbISA3 are predicted to be active α-amylase enzymes. 
However, in the case of IbISA2, as in other plant ISA2, 
six of the eight conserved residues were replaced by 
different amino acid residues compared to the conserved 

residues in ISA1 and ISA3 (Figure 1B; dark gray 
shading). As shown in Figure 1B, in Region I, Val (V) 
and His (H), indicated by (*), were conserved in ISA2s, 
as in ISA1s and ISA3s. Other two sites in Region I and III 
indicated by (+) retained functionally similar amino acid 
residues, Asp (D) and Glu (E), in IbISA1 and IbISA3 but 
not in IbISA2, indicating that these four amino acids are 
sufficient for α-amylase enzyme activity. In contrast, at 
the other four positions, amino acid residues conserved 
in ISA1s and ISA3s were replaced in ISA2s by amino 
acids with different properties (Figure 1B). In particular, 
the replacement of His (H) by Asn (N) in Region IV 
is predicted to result in loss of function in hydrolytic 
enzymes, such as S-RNase (Royo et al. 1994).

Spatiotemporal expression of IbISA1, IbISA2, and 
IbISA3 genes in sweet potato
In order to determine whether IbISA1, IbISA2, and 
IbISA3 are regulated spatiotemporally in sweet potato, 
qRT-PCR was performed. To relate the spatiotemporal 
expression pattern of the three IbISA genes to plant 
development, we observed the morphology of roots. 
Until about 50 days after planting (DAP), no change in 
gross root morphology was observed (data not shown). 
At about 60 DAP, adventitious roots were present but 
the distinction between potential storage roots and 
normal roots was unclear. The average fresh weight 

Figure 1. Phylogenetic tree of ISAs based on deduced amino acid sequences and sequence alignment of ISAs in four conserved regions.  
(A) Phylogenetic tree of ISAs based on deduced amino acid sequences. The tree was constructed using the neighbor-joining method (Saitou and 
Nei 1987). Scale bar represents evolutionary distance. Bootstrap values were calculated from 1,000 replications. The deduced amino acid sequences 
of sweet potato IbISAs protein (in box) were derived in this study (IbISA1, accession LC052789; IbISA2, accession LC052790; IbISA3, accession 
LC052791). Accession numbers for genes encoding ISAs of other plant spices are: Arabidopsis thaliana AtISA1, AEC09752; AtISA2, AEE27558; 
AtISA3, AEE82713; potato (Solanum tuberosum) StISA1, AAN15317; StISA2, AAN15318; StISA3, AAN15319; maize (Zea mays) ZmISA1, EU970890; 
ZmISA2, AAO17048; ZmISA3, AAO17049; rice (Oryza sativa) OsISA1, BAC75533; OsISA2, AAT93894; OsISA3, XP_450961; pea (Pisum sativum) 
PsISA1, AAZ81835; PsISA2, AAZ81836; PsISA3, AAZ81837; common bean (Phaseolus vulgaris) PvISA1, BAF52941; PvISA2, BAF52942; PvISA3, 
BAF52943; sweet potato (Ipomoea batatas) IbISA1, AAY84833; wheat (Triticum aestivum) TaISA3, AEV92948; cassava (Manihot esculenta) MaISA3, 
ADD10143. (B) Multiple sequence alignment of ISAs in four conserved regions. Amino acid sequences in Regions I to IV are highly conserved in the 
α-amylase family. In particular, eight amino acid residues (shaded dark gray) are highly conserved in all active members of the α-amylases, ISA1 and 
ISA3. Region IV of ISA2s shows replaced residues from H (His) to N (Asn).
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of roots was 37 g at 60 DAP (Figure S1B). At 75 to 80 
DAP, hypertrophy of roots was observed but there were 
individual differences within a plant of root size. The 
average fresh weight of roots was 133 g (Figure S1B). 
At 95 to 100 DAP, rapid growth of tuberous roots was 
observed and the average fresh weight of roots was 315 g 
(Figure S1B). At 110 DAP, larger tuberous roots were 
present and the average fresh weight of roots was 659 g 
(Figure S1B). Therefore, we collected leaves (source) 
and tuberous roots (sink) for qRT-PCR analysis at 
approximately 10 days intervals from 48 DAP (that is at 
48, 57, 67, 78, 90, 99 and 109 DAP).

Next, the optimum set of reference genes for qRT-
PCR was determined. Generally, genes encoding 
β-actin (ACT) and/or α-tublin (TUB) are used as 
reference genes (Osaka et al. 2013), but there are no 
ideal references genes able to fulfill all experimental 
requirements, and so the selection of optimum reference 
genes is essential (Bustin et al. 2009; Park et al. 2012). 
In the case of sweet potato, according to variety and/
or environmental conditions, expression of reference 
genes differed (Park et al. 2012). Thus, for this study, 
to determine suitable reference genes in the variety 
White Star, under non-stress condition, seven genes 
encoding β-actin (ACT), α-tubulin (TUB), cytochrome 
c oxidase subunit Vc (COX), ubiquitin extension protein 
(UBI), ADP-ribosylation factor (ARF), phospholipase 
D1α (PLD), and histone (H2B) were surveyed for gene 
expression stability in qRT-PCR. From this survey, COX 
and ARF genes were found to be expressed at constant 

levels, and their expression levels were stable in different 
organs, growth stages, and sampling times (data not 
shown). Thus, COX and ARF were selected as reference 
genes in this experiment. In addition to primer sets for 
these two reference genes, three sets of specific primers, 
discriminating the three genes (IbISA1, IbISA2, and 
IbISA3) were designed, as shown in Table S1. Expression 
levels of each IbISAs, shown in Figures 2 and S1, were 
designated as relative values compared to expression 
levels of ARF and COX designated at 100.

From examination of gene expression patterns in 
tuberous roots (sink), expression levels of the three ISA 
genes were constant until 99 DAP (Figure 2A). However, 
at 109 DAP, the IbISA2 expression level was significantly 
up-regulated to more than 2-fold and approximately 2.5-
fold compared to that of IbISA1 and IbISA3, respectively 
(Figure 2A). In the leaves (source), the IbISA3 expression 
pattern was relatively constant at all seven stages (Figure 
2B). The expression pattern of IbISA1 and IbISA2 in 
leaves was similar until 99 DAP, followed by a higher 
level of IbISA2 expression at 109 DAP, the mature stage 
(Figure 2B). From a comparison between tuberous root 
development (indicated by DAP) and the expression 
of IbISA, the increase in tuberous root development 
correlated with the expression pattern of IbISA2, but not 
of IbISA1 and IbISA3 (Figure S1A). Thus, at least in the 
morphologically mature tuberous roots, the expression 
of the IbISA2 appears to be related to the accumulation 
of starch; that is, morphological maturation and gene 
function of IbISAs are linked during tuberous root 

Figure 2. Spatiotemporal expression of ISAs in sweet potato root and leaf. (A) Relative transcript abundances in wild-type tuberous root.  
(B) Relative transcript abundances in wild-type leaves. (A and B) Results are mean±SE of four biological replicates. When absent, the error bars are 
smaller than the symbols.



356 Molecular analysis of IbISA genes in sweet potato

Copyright © 2016 The Japanese Society for Plant Cell and Molecular Biology

development in I. batatas. In contrasts, the expression 
patterns of ISAs in seeds, another type of sink (Kubo et 
al. 2010; Ohdan et al. 2005; Park et al. 2014; Sun et al. 
1999; Zheng et al. 2013), was different from our data in 
sweet potato, as discussed below.

Discussion

Molecular characterization of isoamylase genes in 
sweet potato
The genes encoding three isoforms of ISA in plants 
have been isolated and characterized in various plant 
species, including rice, maize and potato, which store 
starch in seeds and stems (Fujita et al. 1999; Hussain et 
al. 2003). However, few studies have focused on tuberous 
root plants, such as cassava, sweet potato, and yam, 
which store their starch in roots (Beyene et al. 2010; 
Kim et al. 2005). In this study, we isolated three genes 
encoding IbISA1, IbISA2, and IbISA3 from one of the 
tuberous root plants, sweet potato (Ipomoea batatas 
(L.)). Isolation of Ibisa1 (DQ074643) has been reported 
in a previous study, which used a different cultivar, 
Kokei 14 (Kim et al. 2005); however, the current study 
is the first to report cloning of genes encoding all three 
types of ISA from sweet potato. The sequence diversity 
(4.9%) between the two ISA1 genes from different 
cultivars (IbISA1 and Ibisa1) could be due to the self-
incompatibility trait in sweet potato (Martin 1965). In 
addition to this characteristics, the three IbISA genes 
were more similar to corresponding ISA genes of other 
dicotyledonous plants (Solanum tuberosum, Arabidopsis 
thaliana, Phaseolus vulgaris, Pisum sativum and Manihot 
esculenta) than those of monocotyledonous plants (Zea 
mays and Oryza sativa) in the phylogenetic tree (Figure 
1A), suggesting the ISA gene speciation occurred after 
diversification of dicotyledonous and monocotyledonous 
plants, as found in other functional genes (Nakayama et 
al. 2010). Furthermore, within dicotyledonous plants, 
the nucleotide sequences of ISAs of sweet potato have 
higher similarity to those of potato and cassava ISAs than 
those of other plant species. This high sequence similarity 
among these species may be related to the formation of 
starch storage organs.

From the sequence alignment of ISAs from sweet 
potato and other species (Figure 1B), deduced amino 
acid sequences of the three IbISA genes isolated in this 
study contain four highly conserved regions (Region I 
to IV), which are classified into the α-amylase enzyme 
family, as reported for other ISAs from several plants 
(Jespersen et al. 1993; James et al. 1995; Beatty et al. 
1999). In the case of IbISA2, six of eight residues thought 
to be important for α-amylase activity were replaced by 
other amino acid residues (Figure 1B; gray shading), 
indicating that IbISA2 has no catalytic function, as 
proposed for ISA2s from other plant species (Hussain 

et al. 2003; Utsumi and Nakamura 2006).  In particular, 
histidine residue (His) is important for the hydrolysis 
reaction catalyzed by several enzymes (Chang et al. 2003; 
Royo et al. 1994). When His was replaced by another 
amino acid residue, hydrolytic enzyme activity was lost 
in S-RNase (Royo et al. 1994) and α-amylase (Chang et 
al. 2003). In the enzymatically active ISA1 and ISA3, two 
His residues within Regions I and IV were conserved. In 
contrast, ISA2 had only one conserved histidine residue 
in Region I, but in Region IV, His was replaced by 
another residue (Figure 1B; Region IV box), suggesting 
that His in Region IV may be particularly important for 
hydrolysis of α-1,6-glucosidic linkages.

Spatiotemporal expression of IbISA genes during 
tuberous root development
In a previous report, the expression pattern of sweet 
potato ISA1 gene was observed up to 60 DAP (Kim et 
al. 2005). However, tuber development continues after 60 
DAP and expression of all three ISAs in sweet potato are 
expected to play an important role in tuber maturation 
and starch storage after 60 DAP. The tuberous roots of 
sweet potato are harvested at around 90 DAP (Woolfe 
1992), and the harvesting period varies from 90 to 120 
DAP in different cultivars (Ravi et al. 2009). In the case 
of cultivar White Star used in this experiment, the dry 
weight of tuberous roots is maximum at about 105 to 
119 DAP (La Bonte et al. 2000), and therefore at 109 
DAP morphogenesis of roots would have reached the 
hypertrophy stage. In addition, the weight of the storage 
root was found to increase according to the accumulation 
of photosynthetic products such as starch (Wilson 1982), 
and the dry weight of sweet potato correlates with starch 
content of tuberous root at different plant development 
stages (Li and Liao 1983). As described by Noda et al. 
(1992), the percentage of amylose content against to 
dry weight does not increase according to growth of 
sweet potato tuberous root. In our experiment, the 
expression of IbISA2 gene was correlated to tuberous 
root development, indicating that the content of amylose 
and amylopectin should be precisely regulated by ISA2 
and related genes in tuberous root development. From 
our gene expression data and the above information 
on root development, IbISA2 expression was highest in 
roots at the hypertrophy stage (around 109 DAP), and 
therefore IbISA2 is expected to function in amylopectin 
biosynthesis in the sink (roots) of sweet potato with 
tuberous roots.

The IbISA2 expression pattern in sweet potato was 
different from that of ISAs found in rice, rye, barley, 
maize, and amaranths (Kubo et al. 2010; Ohdan et al. 
2005; Park et al. 2014; Sun et al. 1999; Zheng et al. 2013). 
In rice, both ISA2 and ISA3 were expressed at a very low 
level, and ISA1 had the highest expression around the 
middle stage of seed developmental, indicating that in 
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the case of seeds as a sink, ISA1 is the main ISA active 
in amylopectin biosynthesis (Kubo et al. 2010). Thus the 
expression pattern of ISAs might be related to the pattern 
of the sink development. In the case of tuberous roots, 
sink size would be greater as roots develop. However, in 
the case of seeds (endosperms) of Poaceae, sink size is 
restricted by that of the lemma and palea. This difference 
in development patterns of sinks between seeds and 
tuberous roots may contribute to the different expression 
patterns of ISAs. In any case, orchestration of expression 
of the three ISAs genes, in both seeds and tuberous roots, 
is expected to be important for sink organ development.

As described above, IbISA2 is expected to be non-
functional as an enzyme from the predicted amino 
acid sequence but showed a high level of expression at 
the mature stage of tuberous root development. This 
higher expression of non-enzymatically active ISA2 and 
low expression of enzymatically active ISA1 resembles 
the expression of cell-cell recognition genes, SLG and 
SRK, of the self-incompatibility system in Brassica 
species (Watanabe et al. 2012). The S-domain of SRK, 
the receptor for the pollen ligand SP11, is highly similar 
to SLG, and SRK interacts with SP11 but SLG does 
not. SLG expression is over 10 times higher than SRK. 
Interestingly, SLG is required for a full manifestation of 
the self-incompatibility response (Takasaki et al. 2000). 
Thus, like the SLG function in self-incompatibility in 
Brassica species, the actual function of ISA2 may be 
discovered by different approaches in future.

In conclusion, from our data and from other plant 
species, the three ISA genes appear to be regulated 
spatiotemporally in sinks (endosperms, tubers, or roots) 
and sources (leaves) for amylopectin biosynthesis in 
different plant species. From the present study, higher 
expression of IbISA2 may play an important role in 
amylopectin biosynthesis during root hypertrophy in 
sweet potato. Furthermore, orchestration of ISAs gene 
expression was different the different sink organs, that 
is seeds and tuberous roots, indicating that ISAs may 
contribute to the differences in quality and quantity of 
amylopectin in seeds and tuberous roots.
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Supplementary Table S1.  Primer sequences used in this study 　	

Purpose Name of primer Primer sequences (5' → 3') 

IbISA1 specific 5'RACE  (degenerate primer) Ibsu15Ra GGGCTTCCACAAAGGCATTCAGCAA 

　	 Ibsu15Rb AAACCCTCCCTCCTGGCCACAATTCC 

IbISA1 specific 3'RACE Ibsu13Fa TGCATGTTGATGGCTTCCGCTTTGA 

Ibsu13Fan1 TGCTTCCATCCTGACGAGAGTAGCAGGTG 

IbISA2 specific 5'RACE Ibisa25Ra AGGAGGCCCACATAAGTGCCCAGGTGA 

　	 Ibisa25Rb ATCCCATTIGCGTGGACTTICTTGACCAT 

IbISA2 specific 3'RACE Ibisa23Fa ATGGCTCTTTGCCGTTTGTGGGCTATG 

Ibisa23Fan1 TGCAAGGGGGCCACTGCTGAGAAGAC 

IbISA3 specific 5'RACE IbISA35Ra GGGGAGCATCAAGTGGAGTGCCATCTG 

　	 Ibisa35Ran1 CAAACCGAAACCCATCCACGTGATACTC 

IbISA3 specific 3'RACE IbISA33Fa CAAAGGAGGCCAAATCCACGAGACCA 

Ibisa33Fan1 ATGCAAGTGCTGGTGGGGGACCCGT 

IbISA1 full length sequence Ibsu1-full-5F GCTCAAATCGGAAATGGAGTTGATTCA 

　	 Ibsu1-full-3R GGTAAAACACACTCCTTTTCATGGTCA 

IbISA2 full length sequence Ibisa2-full-5F GGCGCAGTCTCAAGTTCAATGCGGATT 

Ibisa2-full-3Rb AATGATTGAACTGCAAAGCTTTTTATTAAA 

IbISA3 full length sequence Ibisa3-full-5F CAGTTTCAGATTCCCTACACGAAAATA 

　	 Ibisa3-full-3R AAAACTAATTTTGCCCATAAATATGCAG 

IbISA1 qRT-PCR IbISA1RT_F ATGGCCATACTCCAGGGATG 

IbISA1RT_R ACCGATAACCACCTCGTTCC 

IbISA2 qRT-PCR IbISA2RT_F AGGGGTAATGGCTCTCTCAGC 

　	 IbISA2RT_R TAGGACCTTCCTCCCCACAGT 

IbISA3 qRT-PCR IbISA3RT_F TATCACGTGGATGGGTTTCG 

IbISA3RT_R CCACAATCCCATGGTTCTGA 

COX qRT-PCR IbCOXRT_F * ACTGGAACAGCCAG 

　	 IbCOXRT_R * ATGCAATCTTCCATGGGTTC 

ARF qRT-PCR IbARFRT_F * CTTTGCCAAGAAGGAGATGC 

　	 IbARFRT_R AATCTTGTCCTGGCCACCAA 

* Primer sequences information obtained from Park et al. 2012	



Supplementary Figure S1. Relationship between morphological change of tuberous roots and 
the expression level of IbISAs.  (A) Transcripts level of IbISAs and fresh weight of tuberous 
roots.  (B) Morphological change of tuberous roots at 62, 76, 95, 112 days after planting. 
Bar= 10 cm.  
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