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Abstract	 Japanese morning glory, Ipomoea nil, has several coloured flowers except yellow, because it can accumulate only 
trace amounts of carotenoids in the petal. To make the petal yellow with carotenoids, we introduced five carotenogenic genes 
(geranylgeranyl pyrophosphate synthase, phytoene synthase, lycopene β-cyclase and β-ring hydroxylase from Ipomoea obscura 
var. lutea and bacterial phytoene desaturase from Pantoea ananatis) to white-flowered I. nil cv. AK77 with a petal-specific 
promoter by Rhizobium (Agrobacterium)-mediated transformation method. We succeeded to produce transgenic plants 
overexpressing carotenogenic genes. In the petal of the transgenic plants, mRNA levels of the carotenogenic genes were 10 
to 1,000 times higher than those of non-transgenic control. The petal colour did not change visually; however, carotenoid 
concentration in the petal was increased up to about ten-fold relative to non-transgenic control. Moreover, the components 
of carotenoids in the petal were diversified, in particular, several β-carotene derivatives, such as zeaxanthin and neoxanthin, 
were newly synthesized. This is the first report, to our knowledge, of changing the component and increasing the amount of 
carotenoid in petals that lack ability to biosynthesize carotenoids.
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Introduction

The Japanese morning glory, Ipomoea nil (or Pharbitis 
nil), is one of the two traditional horticultural model 
plants selected for the National BioResource Project 
by the Agency for Medical Research and Development 
(AMED) in Japan (Yamazaki et al. 2010). In the 
eighth century, only one cultivar of I. nil had heard 
to be imported from China to Japan as a medicinal 
plant (Hoshino et al. 2016). The original cultivar bore 
pale blue flowers containing cyanidins: anthocyanin 
compounds. Thereafter, I. nil became one of the most 
important traditional garden plants representing summer 
flowers. In the seventeenth century, a lot of transposon 
mutagenesis caused the flower colour of I. nil to be varied 
e.g. red, pink, purple, brown, white (Hoshino et al. 2016). 
However, there were no bright yellow-flowered cultivars 
of I. nil. Although some cultivars contain a small amount 
of yellow pigments such as aurones (Saito et al. 1994), 
these acyanic flowers exhibit pale yellow. Another yellow 
pigment colouring flower petals is carotenoids, but I. 

nil accumulates only trace amounts of carotenoids in 
the petal. Contrary, there is a distant relative species 
that contains a high amount of carotenoids bearing 
a vivid yellow flower, Ipomoea obscura var. lutea 
(formally Ipomoea sp.). Previously, we reported that the 
transcription levels of carotenogenic genes in petals of I. 
nil were remarkably lower than those in I. obscura var. 
lutea (Yamamizo et al. 2010). Because crossbreeding of I. 
nil and I. obscura is unsuccessful, we decided to transfer 
carotenogenic genes of I. obscura var. lutea to I. nil by 
genetic transformation to produce yellow-flowered I. nil.

The carotenoid biosynthesis of higher plants consists 
of multistep reactions (Figure 1A); isoprene units’ 
polymerization, addition of conjugated double bonds and 
the conversion of cis- to trans-configuration, cyclization, 
hydroxylation, and/or epoxidation (Wise and Hoober 
2006). Almost all the genes encoding enzymes that 
catalyse the core reactions of carotenoid biosynthesis 
in plants have been identified (Wise and Hoober 2006). 
Based on these knowledge, a lot of metabolic engineering 
studies of carotenoid were conducted mainly in food 
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crops for improved nutrition, because carotenoids are 
precursors for vitamin A and have antioxidant function; 
for examples, canola, Brassica napus (Shewmaker et 
al. 1999); rice, Oryza sativa (Paine et al. 2005; Ye et al. 
2000); tomato, Solanum lycopersicum (Römer et al. 2000), 
maize, Zea mays (Zhu et al. 2008) and so on [reviews 
(Cazzonelli and Pogson 2010; Giuliano et al. 2008; 

Nisar et al. 2015; Yuan et al. 2015)]. On the other hands, 
carotenoid metabolic engineering studies for floral 
colour modification were less conducted than ones for 
food crops. The studies on Lotus japonicus, Iris germanica 
and Chrysanthemum morifolium were notable examples 
of carotenoid metabolic engineering for floral colour 
modification (Jeknić et al. 2014; Ohmiya et al. 2006, 
2009; Suzuki et al. 2007). By overexpression of bacterial 
β-carotene ketolase gene CrtW in L. japonicus (Suzuki et 
al. 2007), the petal accumulated red ketocarotenoids and 
the colour changed from yellow to red. By overexpression 
of bacterial phytoene synthase gene crtB in Iris germanica 
(Jeknić et al. 2014), the petal accumulated red lycopene 
and the colour changed from yellow to pink-orange. 
In case of white petals of C. morifolium, carotenogenic 
genes are expressed at similar levels to yellow petals, 
suggesting that carotenoid biosynthesis takes place 
even in the white petals (Kishimoto and Ohmiya 2006). 
Subsequently, Ohmiya et al. (2006) found that a gene 
encoding carotenoid cleavage dioxygenase 4 (CCD4) is 
specifically expressed in white chrysanthemum petals 
and cleaves the synthesized carotenoids. Suppression 
of CCD4 expression by RNAi converted the petal 
colour from white to yellow (Ohmiya et al. 2006, 2009). 
These studies have been conducted in the petals that 
carotenogenic genes are substantially expressed. There 
was report about constitutive overexpression of multiple 
carotenogenic genes in the Lilium×formolongi which 
lacked yellow flower cultivars (Azadi et al. 2010). In the 
report, the carotenoid levels increased in the callus and 
leaves but there was no description about endogenous 
carotenogenic genes expressions and flower of transgenic 
plants (Azadi et al. 2010). Hence, as far as we know, there 
is no report about the manipulation of carotenoid level in 
petals that the expression levels of carotenogenic genes 
are extremely low.

In this study, to increase the accumulation of 
carotenoid in the petal of I. nil, four carotenogenic 
genes (geranylgeranyl pyrophosphate synthase: GGPS, 
accession number: AB499049; phytoene synthase: PSY, 
AB499050; lycopene β-cyclase: LCYB, AB499055 and 
β-ring hydroxylase: CHYB, AB499056) from I. obscura 
var. lutea and one [phytoene desaturase (crtI, accession 
number: D90087)] from bacteria, Pantoea ananatis 
(formally Erwinia uredovora), were introduced to I. nil 
with Agrobacterium-mediated transformation method 
(Figure 1B; Kikuchi et al. 2005). The former four genes 
are highly expressed in the flower of I. obscura var. lutea 
and encode enzymes that would catalyse carotenoid 
biosynthesis in the chromoplast (Yamamizo et al. 
2010). In higher plants, four enzymes are involved in 
the biosynthesis from phytoene to lycopene, however 
in the plant pathogen P. ananatis, it is catalysed by only 
one enzyme, crtI (Figure 1A; Misawa et al. 1990, 1994). 
The carotenoid biosynthesis pathway from isopentenyl 

Figure  1.  Schematic of the carotenoid biosynthesis pathway in plants 
and the vector construct used in the present study. A: Carotenoid 
biosynthesis pathway. Bold arrows indicate the introduced transgenes 
in this study. IPP: isopentenyl pyrophosphate; IPI: IPP isomerase; 
GGPP: geranylgeranyl pyrophosphate; GGPS: GGPP synthase; 
PSY: phytoene synthase; PDS: phytoene desaturase; Z-ISO: 15-cis-ξ-
CRTISO; ZDS: ξ-carotene desaturase; CRTISO: carotenoid isomerase; 
crtI: phytoene dehydrogenase from plant pathogen (P. ananatis); 
LCYE: lycopene ε-cyclase; LCYB: lycopene β-cyclase; CHYE: ε-ring 
hydroxylase; CHYB: β-ring hydroxylase, ZEP: zeaxanthin epoxidase; 
VDE: violaxanthin deepoxidase; NSY: neoxanthin synthase. B: T-DNA 
region of the construct (GPcLC). RB: right border, NPTII: neomycin 
phosphotransferase II, pF3H [p]: promoter of flavanone 3-hydroxylase 
of Chrysanthemum morifolium (petal specific promoter); ADH: 5′UTR 
region of alcohol dehydrogenase (translational enhancer); HSPt [t]: 
terminator of heat shock protein; tp: transit peptide; NOSt: terminator of 
nopaline synthase; LB: left border.
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pyrophosphate (IPP) to zeaxanthin would be catalysed by 
the translational products of the five genes (hereinafter 
called ‘GPcLC’ from five initials of transgenes; Figure 
1A, B). The previous study reported that constitutive 
overexpression of PSY in tomato caused gibberellin 
less and showed a dwarf phenotype because the 
biosynthesis pathway of carotenoid shares geranylgeranyl 
pyrophosphate (GGPP) with that of gibberellin (Fray 
et al. 1995). To prevent the detrimental effect, a tissue-
specific promoter is essential for metabolic engineering 
of carotenoid. In addition, because master regulator 
(or transcription factor) of carotenoid biosynthesis is 
still unknown, un-expectable regulation would occur 
when using carotenogenic promoter. Therefore we used 
petal-specific flavanone 3-hydroxylase promoter from 
C. morifolium (pCmF3H; Noda et al. 2013). To modify 
petal colour of I. nil, we made a GPcLC overexpression 
construct under the control of petal-specific pCmF3H 
and introduced it to the white-flowered I. nil. Here we 
report the comparison of carotenoid composition and 
carotenogenic gene expression between transgenic and 
non-transgenic plants.

Materials and methods

Plant materials and growth conditions
The seed of I. nil cv. AK77 (obtained from the NBRP “Morning 
glory”) was used for the experiments. The seedlings were grown 
on vermiculite fertilized with 1,000-fold diluted Hyponex 
6-10-5 solution (Hyponex Japan, Tokyo, Japan) once a week 
under continuous light (60 µmol m−2 s−1, FL40SW lamps; NEC 
Lighting Ltd., Tokyo, Japan) at 25°C for two weeks. Those plants 
were transferred under short-day conditions (8 h light: 16 h 
dark) at 25°C. For transformation, immature embryos of I. nil 
cv. AK77 were collected two weeks after flower opening (Ono 
et al. 2000).

Vector construction
The backbone of the binary vector was pBI121 (Jefferson 
et al. 1987). The fragments of the expression constructs were 
synthesized using overlapping PCR (Higuchi et al. 1988). Five-
prime untranslated region of alcohol dehydrogenase (ADH) 
from Nicotiana tabacum (Matsui et al. 2015; Satoh et al. 2004) 
were added to all transgenes for translational enhancer. The 
sequence of the transit peptide: tp from Rubisco subunit of 
Pisum sativum (Misawa et al. 1993; Schreier et al. 1985) was 
also added to bacterial crtI for plastid localization. The PCR 
products were digested with XbaI and SalI, and then ligated 
to pMCE entry vector [modified pSPORT2 vector (Invitrogen, 
Thermo Fisher Scientific, Waltham, MA, USA) with pF3H and 
NOSt] individually. The DNA fragments were cut with AscI and 
StuI to release the pF3H::ADH::(Trans gene)::NOSt expression 
boxes, and then inserted into the multiple cloning sites of 
pBI121 (Jefferson et al. 1987) one fragment each. The vector 
was verified by DNA sequencing.

Plant transformation
Previously described Agrobacterium-mediated transformation 
using an immature embryo-derived secondary embryo 
was performed (Kikuchi et al. 2005). For transformation, 
Rhizobium radiobacter (formally Agrobacterium tumefaciens) 
strain LBA4404 harbouring a ternary plasmid for virG 
N54D (Van Der Fits et al. 2000) was used for raising 
transformation efficiency. As the transgenic plants directly 
germinated from kanamycin-resistant secondary embryos, 
we described these plants as the T1 generation. The validity 
of transformation was confirmed by PCR using total 
DNA extracted from young leaves and primers for NPTII 
(Forward: 5′ GAG GCT ATT CGG CTA TGA CT 3′, Reverse: 
5′ TCC CGC TCA GAA GAA CTC GT 3′). Total DNA was 
extracted from the young leaves of plants using a previously 
described method (Edwards et al. 1991). PCRs were performed 
with GoTaq® Green Master Mix (Promega, Madison, WI, USA) 
on a thermal cycler, with initial denaturation at 95°C for 2 min 
followed by 30 cycles at 95°C for 30 s, 55°C for 30 s and 72°C for 
1 min and a subsequent extension step at 72°C for 5 min. The 
progeny of the transformation plants (T2 and T3 generation) 
were also confirmed by the same DNA extraction and PCR 
condition using NPTII primers.

Quantitative real-time PCR (RT-qPCR) and reverse 
transcriptional PCR analysis
Total RNAs were isolated from petals of fully opened flowers 
by using the Get pure RNA Kit (Dojindo, Kumamoto, Japan). 
Then, cDNAs were synthesized from total RNA (1.0 µg) by 
the use of the SuperScriptIII First-Strand Synthesis System 
(Invitrogen) with oligo (dT)20.

Transcript levels of GGPS, PSY, LCYB, and CHYB were 
analysed via RT-qPCR with Power SYBR™ Green PCR Master 
Mix (Applied Biosystems, Thermo Fisher Scientific) and 
Applied Biosystems 7900HT Fast Real Time PCR System 
(Applied Biosystems), according to the manufacturers’ 
instructions. Each reaction (final volume, 10 µl) consisted of 5 µl 
2x Power SYBR™ Green PCR Master Mix, 0.4 µM each of the 
forward and reverse primers, and 0.1 µl of the cDNA template 
(corresponding to 1 ng of total RNA). The reaction mixtures 
were heated to 95°C for 10 min, followed by 40 cycles at 95°C 
for 15 s and 60°C for 1 min. A melting curve was generated 
for each sample at the end of each run to ensure the purity of 
the amplified products. The transcript levels were calculated 
according to the ΔΔCt method using the Ubiquitin and Actin 
gene for reference (Bustin et al. 2009; Livak and Schmittgen 
2001). The primer sets were designed as which could amplify 
both transgenes and internal genes (Supplemental Table 
S1). The Student’s t-test was used for the statistical analysis. 
The results are presented as the standardized mean of three 
independent experiments with the SE.

Transcript levels of bacterial crtI transgene were analysed 
using reverse transcription PCR (semi-quantitative RT-PCR) 
with BIOTAQ™ (Bioline Reagents Ltd., London, UK). Reactions 
were carried out on a Takara PCR thermal cycler Dice (Takara 
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Bio Inc., Shiga, Japan), starting denaturation at 95°C for 2 min 
followed by 25 cycles at 95°C for 30 s, 55°C for 30 s and 72°C 
for 30 s and a subsequent extension step at 72°C for 5 min. 
The Ubiquitin gene was used as an internal standard. The PCR 
products were separated on 1.5% agarose gels and then stained 
with ethidium bromide solution.

Carotenoid extraction and HPLC analysis
Carotenoids were extracted from petals of fully opened flowers 
and were analysed by HPLC, according to previously described 
method (Kishimoto et al. 2007) with slight modification. An 
acetone extract of frozen petals (0.5 g) was partitioned between 
diethyl ether and aqueous NaCl. The organic layer was washed 
with 5.0 mM Tris–HCl (pH 8.0), and the residue was saponified 
with equivalent 10% KOH–MeOH for 1 h at room temperature. 
The saponified matter was then extracted with diethyl ether and 
washed with water. The organic layer was dried and dissolved 
in 125 µl MeOH and subjected to HPLC analyses. The non-
saponified carotenoid extract was prepared with the same 
method except saponification step. Each carotenoid extract 
was analyzed by HPLC with a Jasco MD-915 photodiode array 
detector (Jasco, Tokyo, Japan) under the following conditions: 
column, YMC Carotenoid (250 mm×4.6 mm i.d., 5 µm; YMC, 
Kyoto, Japan); solvent A, methanol (MeOH)/methyl tert-butyl 
ether (MTBE)/H2O=95 : 1 : 4 (v/v/v); solvent B, MeOH/MTBE/
H2O=25 : 71 : 4; gradient, 0/100, 12/100, 96/0 (min/% A); flow 
rate, 1.0 ml ·min−1; column temperature, 35°C; UV/visible 
monitoring range, 200–600 nm. To identify carotenoids, the 
following carotenoid standards have been used: violaxanthin, 
neoxanthin (DHI lab products, Hørsholm, Denmark), lutein, 
β-carotene (Sigma-Aldrich, St. Louis, MO, USA), zeaxanthin 
and β-cryptoxanthin (Extrasynthese, Genay, France). The total 
content of carotenoids was estimated from the absorbance 
at absorption maxima using the E1% value of lutein (2550) 
(Britton 1995), which was defined as the theoretical absorbance 
of a 1% solution in a cell of 1 cm pathlength. The content of 
each carotenoid was calculated according to the total peak 
area of HPLC chromatograms at a wavelength of 450 nm, 
using program ChromNAV ver. 2 (Jasco). Measurements were 
performed in triplicate.

Results

Transgenic lines
More than ten lines of transgenic plants were 
produced from independent transformation events by 
Agrobacterium-mediated transformation method. All 
transgenic plants grew normally and had fertility. No 
morphological differences between transgenic and non-
transgenic (NT) plants were visually distinguished, even 
in the colour of the opened flower (Figure 2A). The T3 
generations of the homozygous individuals of three lines 
(#1–2, #5–9 and #13–11) with highest expression of PSY 
mRNA in the petals of opened fully flowers were selected 
for further study.

Analysis of carotenogenic gene expression in 
transgenic plants
Standard curves for PCR efficiency of each endogenous 
gene and transgene were independently examined. 
Because the PCR efficiency in all amplicons of each 
genes showed almost same value (Supplemental Table 
S1), we calculated expression levels without distinction 
of endogenous gene and transgene. The expressions of 
GGPS, PSY, LCYB, and CHYB in the petals of fully 
opened flowers after normalization using Ubiquitin and 
Actin as the reference gene were almost similar (Figure 
2B and Supplemental Figure S1). Both The expression 
levels in the petals of fully opened flowers of the three 
lines were significantly increased in transgenic GPcLC 
plants. The expression levels of all the genes tested were 
about 10 to 1,000 times higher than those of NT (Figure 
2B). Bacterial crtI was also highly expressed in the petal 
of the three transgenic lines but was not present in the 
NT control (Figure 2C).

HPLC analysis of carotenoids
HPLC chromatograms of the carotenoid extracts 
obtained from the petals of fully opened flowers of the 
three transgenic lines differ from that obtained from 
NT. Representative chromatograms of saponified and 
non-saponified carotenoid extract of NT and transgenic 
line #1–2 are shown in Figure 3A and Supplemental 
Figure S2, respectively. These analyses allowed us to 
identification of carotenoid composition and existence 
of esterified carotenoids, respectively (Yamamizo et al. 
2010). In the petal of NT, only trace amounts of lutein 
and violaxanthin were detected and the other carotenoid 
components were below the detection limit (Table 1). 
On the other hand, zeaxanthin and neoxanthin were 
detected in the petals of three transgenic lines. Moreover, 
β-cryptoxanthin and β-carotene were also detected in the 
two transgenic lines (#1–2 and #13–11). These carotenoid 
components are β-carotene derivatives (Figure 1A right 
side) which biosynthetic pathway is supposed to be 
enhanced by the transgenes. Total carotenoids in the 
petals of fully opened flowers of the three lines were 
significantly increased (Figure 3B). Especially, carotenoid 
levels in #1–2 and #13–11 were about ten times higher 
than that in NT. Although we could not observe visually 
yellowish petals, novel I. nil flowers that contain various 
carotenoids were established. The HPLC chromatogram 
of the non-saponified carotenoid extract was almost 
the same as that of the saponified extract, indicating 
that carotenoids contained in the petals of opened 
fully flowers of transgenic plants were not esterified 
(Supplemental Figure S2).

Discussion

In the present study, we succeeded to produce 
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Figure  2.  Carotenogenic genes expression levels in the transgenic plants. A: Appearance of GPcLC and non-transgenic (NT) flowers. B: Relative 
expression levels of the botanical transgenes in opened flower of the transgenic GPcLC and NT plants detected by RT-qPCR analyses (white bars and a 
black bar, respectively). The primer sets used for the analysis were designed as which could amplify both transgenes and internal genes. The expression 
levels were normalized against mRNA levels of Ubiquitin. Student’s t-test was used to determine statistical significance. Asterisks indicate significant 
difference (** p<0.01, *** p<0.001) to NT. Error bars indicate standard error (SE, n=3). C: Expression levels of the bacterial crtI genes in opened 
flower of the transgenic GPcLC plants detected by Semi-quantitative reverse transcriptional PCR analysis. The constitutively expressed gene for the 
Ubiquitin in I. nil was used as an internal control.

Figure  3.  HPLC chromatograms and total carotenoid concentration of flowers of non-transgenic (NT) and transgenic GPcLC plant. A: HPLC 
elution profiles of saponified carotenoids extracted from petals of opened flower. Upper: NT; lower: GPcLC #1–2. V: violaxanthin; u: un-identified 
carotenoid; N: neoxanthin; L: lutein; Z: zeaxanthin; βc: β-cryptoxanthin; β: β-carotene. B: Total carotenoid contents in open flower of the NT and 
GPcLC, as determined by HPLC analysis after saponification. All experiments were biologically repeated three times. Student’s t-test was used to 
determine statistical significance. Asterisks indicate significant difference (* p<0.05, ** p<0.01, *** p<0.001) to NT. Error bars indicate standard 
error (SE, n=3).
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transgenic plants overexpressing carotenogenic genes. 
In the petals of fully opened flowers of the transgenic 
plants, transcription levels of all the transgenes were 
increased. The carotenoid compositions in the petal of 
the transgenic plants were dramatically changed. The 
lutein (α-carotene derivative; Figure 1A left side) and 
the violaxanthin (β-carotene derivative, Figure 1A right 
side) were increased as compared with NT. Moreover, 
zeaxanthin and β-cryptoxanthin (β-carotene derivatives) 
were newly detected. The possible explanation for the 
result is that high expression of GGPS, PSY, and crtI 
enhanced the activity of the whole biosynthetic pathway, 
and both α- and β-carotene derivatives were increased. 
Moreover, overexpression of LCYB and CHYB enhanced 
activity of biosynthetic pathway, in particular β-carotene 
derivative branch. These two genes encode the enzymes 
that catalyze β-ring cyclization and hydroxylation, 
respectively, so β-carotene derivatives would be 
specifically produced.

In general, PSY is a rate-limiting enzyme of carotenoid 
biosynthesis in higher plant (Wise and Hoober 2006). 
For example, in marigold, Tagetes erecta, different 
levels of lutein accumulation cause differences in 
petal colour, from pale-yellow to dark orange. The 
previous study found that the lutein content correlates 
well with the transcript level of PSY and 1-deoxy-D-
xylulose 5-phosphate synthase (Moehs et al. 2001). It 
has also been demonstrated that PSY catalyses the rate-
limiting step in the carotenoid pathway of ripening 
tomato fruit (Fraser et al. 1994; Giuliano et al. 1993). In 
addition, previous study showed that CHYB is mainly 
responsible for the regulation of chromoplast-specific 
carotenoid accumulation in petals of tomato (Galpaz et 
al. 2006), because the CHYB catalyses the addition of 
hydroxyl residues required for carotenoid esterification 
and esterification is an important event in carotenoid 
accumulation in the chromoplast. Therefore, we expected 
that overexpressing the genes encoding key enzymes 
of carotenogenesis would increase the carotenoid 
levels sufficient for yellow pigmentation. However, the 
carotenoid levels in the petal of the GPcLC transgenic 
plants were increased up to about 1 µg g−1, which was 
not sufficient to make petals yellow visually. Carotenoid 
level of the petal of the fully opened flower of I. obscura 
var. lutea is about 100 µg g−1 (Yamamizo et al. 2010), so 
hundred-fold of carotenoid accumulation would be 

needed to make petal colour visually yellow. The previous 
studies on carotenoid metabolic engineering in crops 
reported that simple overexpressing the biosynthesis 
genes could increase carotenoid amount in the tissue 
which is almost carotenoid-free. Overexpressing only 
bacterial PSY, crtB, in the seeds of B. napus made 50-
fold increase in carotenoids (Shewmaker et al. 1999) 
and overexpressing PSY and crtI in endosperm of O. 
sativa made total carotenoids up to 37 µg g−1 (Paine et 
al. 2005). In contrast to these previous studies (Paine et 
al. 2005; Shewmaker et al. 1999), in the petal of I. nil, 
only overexpressing the carotenogenic genes could not 
increase the level of carotenoids high enough to express 
yellow colour. In our case, three possible reasons were 
postulated; esterification would not occur, carotenoids 
would be degraded, or the petal of I. nil would not work 
as a sink organ of carotenoid.

The esterified carotenoids are the dominant chemical 
form for storage of this compounds within chromoplasts. 
In the petal of I. obscura var. lutea, β-carotene, 
β-cryptoxanthin, and zeaxanthin occupy about 85%. 
Among them, xanthophylls such as β-cryptoxanthin and 
zeaxanthin existed in the esterified form (Yamamizo et 
al. 2010). However, in our case, carotenoids contained 
in the petals of transgenic plants were not esterified and 
existed in the free form. Absence of esterification activity 
would be the reason why total amount of carotenoid 
was not high enough to express yellow colour in spite 
of carotenogenic genes were overexpressed. Promoting 
esterification activity by, for example, overexpressing 
the Pale yellow petal 1 which encodes the enzyme that 
esterifies carotenoids (Ariizumi et al. 2014) would 
increase the carotenoid accumulation.

Carotenoid degradation are caused by the action of 
carotenoid cleavage dioxygenases 4 (CCD4) in petals 
of some higher plants (Ahrazem et al. 2016; Ohmiya 
2009). In Brassica species, transposon mutagenesis of 
a BnaCCD4, one of the orthologue of CCD4, converts 
petal colour from white to yellow (Zhang et al. 2015). 
The cultivars of C. morifolium have white or yellow 
coloured petals, which rely on existence of CmCCD4a 
(Ohmiya et al. 2006). In I. nil, substantial amount of 
InCCD4 are also expressed in the petal (Yamamizo et 
al. 2010), so it would cleave carotenoids. Suppressing 
the InCCD4 would increase carotenoid accumulation. 
However, in the previous study of C. morifolium, to 

Table  1.  Concentrations of carotenoid compounds in the petals

Violaxanthin Un-identified Neoxanthin Lutein Zeaxanthin β-cryptoxanthin β-carotene

NT 0.028±.003 0.015±.002 ND 0.042±.007 ND ND ND
GPcLC #1–2 0.188±.032 0.091±.005 0.108±.011 0.109±.007 0.306±.040 0.020±.004 0.022±.008

#5–9 0.110±.025 0.041±.011 0.032±.011 0.073±.004 0.051±.010 ND ND
#13–11 0.216±.033 0.107±.002 0.075±.005 0.212±.005 0.154±.004 0.007±.004 0.020±.005

Values are expressed as µg g−1 FW; ND, not detectable; FW, fresh weight. Each value represents the mean result from triplicate±SE
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suppress the CmCCD4a expression, a single CmCCD4a 
RNAi construct were introduced, but the carotenoid 
amount in the petal of the transformant was below the 
detection limit (Ohmiya et al. 2009). Introducing two 
separate CmCCD4a RNAi constructs made petal colour 
from white to yellow, and its carotenoid amount was 
increased up to 102 µg g−1 but was still much less than 
that of yellow-flowered cultivars (Kishimoto et al. 2007; 
Ohmiya et al. 2009). The completely knocking out the 
CmCCD4 expression might make the yellow petal colour 
much deeper. Also in I. nil, completely knocking out the 
InCCD4 with the targeted mutagenesis might lead to the 
yellow petal.

In yellowish tissues of higher plants, such as flowers 
and fruits, carotenoid is stored in the chromoplast. 
The edible tissues of crops, such as endosperms and/
or tubers, are full filled with amyloplasts which are 
one of the plastid forms that store starch (Solymosi 
and Keresztes 2012). Because plastids can convert each 
other, amyloplast to chromoplast conversion would 
naturally occur in amyloplast-rich tissues. Hence the 
simple overexpression of the carotenogenic genes in 
the seeds of B. napus and endosperm of O. sativa can 
increase the carotenoids accumulation (Paine et al. 2005; 
Shewmaker et al. 1999). On the other hand, in the petal 
of I nil, over-expressions of carotenogenic genes could 
not cause plastid to chromoplast conversion in floral 
tissue, unlike amyloplast to chromoplast conversion in 
crops. Otherwise the plastids might be absent in the 
petal. Induction of the chromoplast differentiation 
would increase carotenoids sufficient to express yellow 
colour. Although little is known about the mechanisms 
of chromoplast differentiation, some factors that affect 
the event have been reported. One of the factor is Orange 
(Or) which is firstly isolated in mutant of cauliflower, 
Brassica oleracea var. Botrytis (Crisp et al. 1975; Li et al. 
2006; Lu et al. 2006) and recent studies showed that Or 
is post-translational stabilizer of PSY (Park et al. 2016; 
Zhou et al. 2015). Overexpression of Or would cause 
potential of chromoplast differentiation and facilitate 
more accumulation of carotenoids.

Recent studies reported that high-quality genome 
sequence (Hoshino et al. 2016) and the success of 
targeted mutagenesis by CRISPR/Cas9 system (Watanabe 
et al. 2017) in I. nil. These information and technology 
would enable advanced carotenoid metabolic engineering 
so more progressive studies using I. nil will be conducted. 
If carotenoid accumulation will be enabled in a petal 
of I. nil, the range of colour variation of the flower will 
get almost no limitation with crossbreeding with other 
anthocyanin pigmented flowers, because varied colours 
of anthocyanin-pigmented flowers of I. nil were already 
produced in the seventeenth century. It would be the 
fusion of a modern genetic engineering technology and 
a past developing traditional breeding technique, in other 

words, the connection between innovation and tradition.
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