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Abstract Plants grow under threats of environmental changes that could injure cellular viability and damage whole-
plant physiology. To defend themselves against such threats, plants induce protective responses, including the production 
of defense molecules. The red/purple pigment anthocyanin is synthesized upon leaf and fruit development as well as 
environmental stimuli such as excess light exposure. Therefore, the anthocyanin biosynthesis is considered as a model 
signaling pathway of the integration of developmental and environmental responses. This integration is tightly regulated 
by transcription factors, but the integrative mode of these signaling pathways has received little attention. In this study, 
using an Arabidopsis mutant with mutation in two ETHYLENE RESPONSE FACTOR (ERF) genes, AtERF4 and AtERF8, we 
investigated the regulatory signaling pathway that leads to the production of anthocyanin in response to light. We detected 
the accumulation of anthocyanin in detached leaves after incubation on water under light illumination and intact leaves 
after being transferred into the strong light condition, suggesting that the photoinhibition mediated the production of 
anthocyanin. Our results demonstrated that the erf mutant decreased the rate and extent of the production of anthocyanin in 
association with changes of the transcript levels of anthocyanin-biosynthetic genes. As these ERF genes are known regulators 
of leaf senescence—the final stage of leaf development—we provide an insight into the ERF-mediated integration of two 
regulatory pathways of the light response and developmental age.
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Plants respond to environmental changes and induce 
various protective responses to cope with harmful 
environmental conditions. Transcription factors (TFs) 
act as a hub of many regulatory pathways in response 
to such environmental changes and are capable of 
coordinating with the developmental program of plants 
(Kim et al. 2016; Nakashima et al. 2014). TFs usually 
contribute to the changes of the expression profile of 
their downstream genes.

Extensive studies have revealed that plant-specific 
ETHYLENE RESPONSE FACTOR (ERF) transcription 
factors both positively and negatively regulate gene 
expression for protection against environmental changes 
(Mizoi et al. 2012; Nakano et al. 2006). The class II ERFs 
comprise repressors of transcription and possess the 
motif for this repression (Fujimoto et al. 2000; Hiratsu 
et al. 2003; Ohta et al. 2000, 2001). Since the class II 
ERFs are responsive to many environmental inputs 
(Fujimoto et al. 2000; Kitajima et al. 2000; McGrath et al. 

2005; Nasir et al. 2005; Nishiuchi et al. 2004) as well as 
developmental cues (Kitajima et al. 2000; Koyama et al. 
2001), we predicted that the class II ERF would integrate 
stress and developmental signaling pathways.

We previously reported that the class II repressors, 
primarily NtERF3, AtERF4, and AtERF8, regulated 
the expression of leaf senescence-associated genes 
and stimulated the onset of leaf senescence—the final 
stage of leaf development (Koyama et al. 2013; Koyama 
2014). To further explore our previous findings, we first 
observed the distinctive responses to light in Arabidopsis 
thaliana (Arabidopsis plants) Columbia-0 and the aterf4 
aterf8 mutant (Koyama et al. 2013). The seeds of these 
genotypes were individually grown in a plastic pot filled 
with soil for 4 wk at 22°C under a light/dark cycle of 16 h 
at 50 to 75 µmol m−2 s−1/8 h in a plant growth chamber 
(CFH-415, TOMY).

In the light condition at 50 µmol m−2 s−1, intact leaves 
of wild type (WT) remained green, whereas the detached 
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leaves at the sixth position after incubation on water for 
four days changed color from green to purple (Figure 
1A). This contrasted a senescence response, as detached 
leaves change their color to yellow after incubation in 
dark. Since aterf4 aterf8 delayed the progression of leaf 
senescence (Koyama et al. 2013), we investigated whether 
detached leaves of the mutant might also delay responses 
to light. We assessed the phenotype of the detached 
leaves of aterf4 aterf8 after incubation on water under the 
control light condition. Our results demonstrated that 
detached aterf4 aterf8 leaves delayed the induction of 
pigmentation (Figure 1A).

To measure the relative anthocyanin content, the 
sixth leaves of four-week-old Arabidopsis plants were 
extracted by methanol containing HCl (1% v/v) at 
4°C. The relative anthocyanin content was determined 
using spectrophotometric analysis and was normalized 
by the fresh weight of leaves (Laby et al. 2000). As 

expected, the detached WT leaves increased the content 
of anthocyanin in response to light, but the detached 
aterf4 aterf8 leaves exhibited a delayed production of 
anthocyanin (Figure 1B). As detached leaves floated on 
water usually suffer from a photoinhibition response 
(Kato et al. 2002; Nishiyama et al. 2006), it is possible 
that the photoinhibition mediated the production of 
anthocyanin.

Our gene expression analysis demonstrated the 
rapid and moderate increase in the levels of AtERF4 
and AtERF8 transcripts, respectively (Figure 1C). To 
prepare RT-PCR samples, total RNA was prepared from 
Arabidopsis leaves detached at the sixth position using 
an RNAeasy Plant Mini Kit (Qiagen) and was reverse-
transcribed with poly-dT primers (Invitrogen) using 
SuperScript II (Life Technologies). Aliquots of the 
complementary DNAs were amplified using the iQ CYBR 
Green PCR Supermix (Bio-Rad) with a real-time PCR 

Figure 1. Light responses in detached WT and aterf4 terf8 leaves during incubation under the moderate light illumination. (A) Photographs of 
the detached WT and aterf4 terf8 leaves after incubation of indicated days. Bars=1 cm. (B) Measurement of the relative anthocyanin content in 
the detached WT and aterf4 aterf8 leaves. The values are presented as arbitrary units and error bars indicate standard deviation of seven biological 
replicates. Asterisks represent significant differences compared with the WT values by a Student’s t-test (**p<0.01). (C) The transcript levels of 
AtERF4 and AtERF8 in the detached WT leaves after incubation of the indicated number of days. Error bars indicate standard deviation of four 
biological replicates. Asterisks represent significant differences compared with the values at Day 0 by a Student’s t-test (*p<0.05, **p<0.01). (D) The 
transcript levels of DFR, LDOX and PAP1 in the detached leaves of WT and aterf4 aterf8 after incubation of the indicated number of days. Error bars 
indicate standard deviation of four biological replicates. Asterisks represent significant differences compared with the WT values by a Student’s t-test 
(*p<0.05, **p<0.01).
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system (CFX96, Bio-Rad) and the appropriate primer 
sets for AtERF4 (GGT GCA TGT TGC GAC GAA GAT 
and CTC CAT CCC ACC TTC GAA ATC A) and 
AtERF8 (CGT AAG ATC CCG CTT GTG CAT and 
CCA CAC GTC GTC ATC TTT GGA). The transcript 
levels were determined using standard curves derived 
from a reference sample and were normalized to the 
UBIQUITIN1 level, amplified using the set of primers 
(TGA GCC TTC CTT GAT GAT GCT and GCA CTT  
GCG GCA AAT CAT CT). The values of the WT at the 
initiating time of the incubation were set as 1.

We also demonstrated that the detached WT leaves 
under the control light condition markedly increased the 
levels of transcripts of anthocyanin biosynthetic enzyme 
genes, DIHYDROFLAVONOL 4-REDUCTASE (DFR) and 
LEUCOANTHOCYANIDIN DIOXYGENASE (LDOX), 
and their transcriptional activator gene PRODUCTION 
OF ANTHOCYANIN PIGMENT1 (PAP1), as revealed 
by our RT-PCR analysis using the primer sets for DFR 
(CGT GGC AAC ACC CAT GGA TTT and CTT CGT  
ACG GTC TTT GCC TTA ACA), LDOX (TGG CCT AAG  
ACA CCA AGT GAT TAC and ACC GAC AGA GAG  

Figure 2. ESP/ESR gene acts downstream of AtERF4 and AtERF8 but 
is independent on the light-mediated accumulation of anthocyanin. (A) 
The transcript level of the ESP/ESR gene in the detached WT leaves and 
aterf4 aterf8 after incubation of the indicated number of days. Error 
bars indicate standard deviation of four biological replicates. Asterisks 
represent significant differences compared with the WT values by a 
Student’s t-test (**p<0.01). (B) Photographs of the detached WT and 
esp/esr leaves after incubation of indicated days. Bars=1 cm.

Figure 3. Responses of intact WT and aterf4 terf8 plants after being transferred to the strong light condition. (A) Photographs of the rosettes (left) 
and the intact leaves (right) of WT and aterf4 terf8 at two days after being transferred to the strong light condition. Bars=1 cm. (B) Measurement of 
the relative anthocyanin content in the intact WT and aterf4 aterf8 leaves. The sixth leaves were harvested at 0 or 2 day after being transferred to the 
strong light condition. The values are presented as arbitrary units, and error bars indicate standard deviation of 12 biological replicates. Asterisks 
represent significant differences compared with the WT values by a Student’s t-test (**p<0.01). (C) The transcript levels of DFR, LDOX, and PAP1 in 
the intact leaves of WT and aterf4 aterf8 plants at indicated time points after being transferred to the strong light condition. A detailed description is 
presented in the legend of Figure 1D.
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AGC CTT GAA) and PAP1 (GGT GCT TGG ACT  
ACT GAA GAA GAT and ACC GGT TTA GCC CAG  
CTC TTA), respectively (Figure 1D). In contrast, the 
rate and extent of their light-inducible expression 
significantly decreased in the aterf4 aterf8 leaves (Figure 
1D). These results demonstrated that the aterf4 aterf8 
mutations reduced the light-responsive anthocyanin 
biosynthesis.

We previously reported that AtERF4 and 
AtERF8 directly target EPITHIOSPECIFIER 
PROTEIN/EPITHIOSPECIFYING SENESCENCE 
REGULATOR (ESP/ESR) gene for the progression 
of leaf senescence (Koyama et al. 2013). Our 
RT-PCR analysis, using the primer pair for 
ESP/ESR (GTG AGG TAT GGC CTG ATC TC and 
TCC AAC GCA TAT CCC TCA TTG GA), showed that 
detached aterf4 aterf8 leaves exhibited a remarkable 
increase in ESP/ESR transcripts throughout the 
incubation under light illumination (Figure 2A). This 
demonstrated that the aterf4 aterf8 mutation released 
the repression of ESP/ESR gene. In contrast, the esp/esr 
mutant (SALK_055029C; Miao and Zentgraf 2007) 
accumulated purple pigments to a similar extent as WT 
(Figure 2B). These results suggested that the delayed 
accumulation of anthocyanin in aterf4 aterf8 mutants 
was independent from the function of the ESP/ESR gene.

Since a strong light condition stimulates the 
photoinhibition of plants (Nishiyama et al. 2006), 
we analyzed the phenotypes of intact WT and aterf4 
aterf8 plants under the strong light condition at 
300 µmol m−2 s−1 after the 4-wk growth period under the 
light condition at 50 to 75 µmol m−2 s−1. The intact WT 
leaves quickly changed color from green to purple after 
being transferred into the strong light condition and, 
thus, increased their anthocyanin content. In contrast, 
the intact aterf4 aterf8 leaves exhibited moderate color 
change and accumulation of anthocyanin (Figure 3A, 
3B). Furthermore, our RT-PCR analysis revealed that 
the rates of the strong light induction of anthocyanin-
biosynthetic enzyme genes LDOX, DFR, and PAP1 had 
decreased in the intact aterf4 aterf8 leaves (Figure 3C). 
The PAP1 transcript was increased prior to the induction 
of LDOX and DFR transcripts, suggesting the PAP1 TF-
mediated activation of LDOX and DFR genes.

An important finding of this study is that AtERF4 and 
AtERF8 regulate the anthocyanin biosynthesis in light 
responses. As AtERF4 and AtERF8 act as transcriptional 
repressors, it is possible that that these ERFs repress the 
expression of a negative regulator of the anthocyanin 
biosynthesis. This negative regulator acts independently 
on the ESP/ESR gene and, thus, other genes downstream 
from AtERF4 and AtERF8 could mediate a signal 
from the light stress to the induction of anthocyanin 
biosynthesis. Our results also demonstrate that the levels 
of AtERF4 and AtERF8 transcripts are differentially 

increased under light stress. In addition, the activities 
of the class II ERF repressors are controlled in the 
mRNA and protein levels as observed in other signaling 
pathways (Koyama et al. 2003; Koyama et al. 2013; Lyons 
et al. 2013). Future research will illustrate the temporal 
and flexible modulation of the AtERF4 and AtERF8 
activities, which operate under continuous stressful 
conditions during leaf development.
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