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Abstract Salinity stress limits plant growth and productivity. To cope with this limitation, the expression patterns of 
numerous genes are altered in response to salt stress; however, the regulatory mechanisms involved in these changes are 
unclear. In the present study, we investigated the regulation of the salinity stress response in the liverwort Marchantia 
polymorpha. The growth of M. polymorpha gemmalings was severely inhibited by NaCl, and RNA-sequencing and 
quantitative RT-PCR analyses revealed that the expression of several transcription factor gene families was induced by 
salinity stress. This work provides insight into the molecular mechanisms underlying the salinity stress response in M. 
polymorpha.
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Salinity stress limits plant growth by causing osmotic 
stress, ionic stress, and a series of secondary stresses, 
such as oxidative stress (You and Chan 2015). These 
stresses interfere with the absorption of mineral 
nutrients and water, resulting in cellular damage and 
growth retardation (Qadir et al. 2014). Many genes are 
differentially expressed in response to salinity stress, 
conferring a level of tolerance to the plants. In the 
model plant Arabidopsis thaliana, a number of salinity 
stress-responsive genes have been identified (Seki et al. 
2002), including those encoding transcription factors 
(TFs) in the bZIP, AP2/ERF, WRKY, NAC, bHLH, and 
MYB families, which are upregulated to promote the 
expression of groups of genes that confer salt tolerance 
(Golldack et al. 2011). However, the signalling network 
underlying the salinity response is unclear.

Liverworts occupy a basal position in the phylogeny 
of land plants, and are believed to be key species for 
addressing a wide variety of questions in plant biology 
(Bowman et al. 2017; Qiu et al. 2006). Marchantia 
polymorpha is a dioecious liverwort species, recently 
established as a model liverwort. Compared with 
the sequenced genomes of other land plants, the M. 
polymorpha genome lacks much of the redundancy in 
many regulatory genes. For example, A. thaliana has 

approximately 2000 TFs, whereas M. polymorpha has 
only 398 TF genes that classified into 47 families, which 
are all represented in the genomes of other land plants 
(Bowman et al. 2017). In the present study, we identified 
salinity stress-responsive TFs in M. polymorpha.

A male strain (Tak-1) of M. polymorpha was cultured 
on half-strength Gamborg’s B5 medium containing 1% 
agar (1/2 B5 solid medium), then asexually maintained 
in a culture room under continuous white light 
(approximately 70 µmol photons m−2 s−1; FL40SW, NEC 
Corporation), as described previously (Ogasawara et 
al. 2013). Immature thalli of two-week-old gemmalings 
obtained from approximately one-month-old thalli were 
used for all experiments.

To investigate the salinity tolerance of M. polymorpha, 
a growth test was performed. The gemmalings were 
grown on 1/2 B5 solid medium in the presence (50 mM 
or 250 mM) or absence (0 mM) of NaCl. Gemmaling 
growth was inhibited after two weeks of culture on the 
50 mM NaCl medium, and completely repressed on the 
250 mM NaCl medium (Figure 1A). To quantify the 
inhibitory effect of 50 mM NaCl, we measured the fresh 
and dry weights of the gemmalings, and found them to 
be approximately one-third less than those of the control 
gemmalings (Figure 1B, 1C). These results demonstrated 
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the sensitivity of M. polymorpha to salinity stress.
To identify the TFs responsible for the response to 

salinity stress, we next conducted an RNA-sequencing 
(RNA-Seq) analysis using gemmalings grown in the 
absence (0 mM) or presence (50 mM) of NaCl. Total 
RNA was extracted from two-week-old gemmalings 
using TRIZOL Reagent (Thermo Fisher Scientific), 
purified using an RNeasy Plant Mini Kit (Qiagen), and 
treated with DNase I (Qiagen) to prevent contamination 
with genomic DNA. The RNA was quantified using 
a NanoDrop ND1000 spectrophotometer (Thermo 
Fisher Scientific), and its integrity was evaluated 
by electrophoresis on a 2% agarose gel stained with 
ethidium bromide and quantified using an Agilent 
Technologies 2100 Bioanalyzer (Agilent Technologies). 
A 200 ng aliquot of RNA from each of three biological 
replicates was used for library preparation and RNA-Seq 
analysis.

Libraries for RNA-Seq analysis were constructed 
using a SureSelect Strand-Specific RNA Library Prep Kit 
(Agilent Technologies), according to the manufacturer’s 
instructions. Normalized and pooled libraries were sent 

to the sequencing facility at Utsunomiya University, 
Japan, for cluster generation on a MiSeq Sequencer 
(Illumina), and sequenced following the protocol of the 
Illumina MiSeq Reagent Kits v3 (2×76 cycles, paired-
end reads). Three replicates of the samples grown on 
0 mM and 50 mM NaCl were sequenced. The resulting 
RNA-Seq reads are available from the DDBJ Sequence 
Read Archive (DRA) under the accession number of 
DRA004674. After sequencing, the raw reads were 
processed using cutadapt version 1.8.1 to remove the 
adaptor sequences, the low-quality sequences (< QV30), 
and reads shorter than 50 bp. More than 1.9 million clean 
reads for each library were generated from the RNA-
Seq (Supplementary Table S1). Of these, 90.0–93.1% 
of the sequences from the plants grown on 0 mM NaCl 
and 90.0–92.0% of sequences from plants grown on 
50 mM NaCl could be mapped to the M. polymorpha 
genome (JGI Ver. 3.1; Bowman et al. 2017) using HISAT 
software (Kim et al. 2015) (Supplementary Table S1). 
StringTie was then used to assemble the aligned reads 
into transcripts and estimate their abundance (Pertea 
et al. 2015), and a differential expression analysis was 
performed using the ballgown R package (Frazee et al. 
2015).

We identified genes that were differentially expressed 
between plants grown in the 0 mM and 50 mM NaCl 
media (Supplementary Table S2). A total of 662 
significant differentially expressed genes (DEGs) with a 
false discovery rate (FDR)<0.05 were identified (gene 
names, log fold changes (logFC), and p-values for the 
up- and downregulated DEGs in each treatment are 
listed in Supplementary Table S3). The distributions of 
the DEGs were further analysed using the edgeR package 
and visualized as an MA plot (log ratio versus abundance 
plot) (Supplementary Figure S1). Among the 662 DEGs, 
302 were upregulated in plants under salinity stress, 
while 360 were downregulated.

The DEGs were annotated by querying their consensus 
sequences against the Swiss Institute of Bioinformatics 
(Swiss-Prot) database (Bairoch and Boeckmann 1991) 
using BLASTx (E-value cut-off was set at 1e–5 to isolate 
the maximum number of similar genes) (Supplementary 
Table S3). These genes were further annotated with Gene 
Ontology (GO) terms using InterProScan and the GO 
database and informatics resource (Harris et al. 2004). 
More detailed TF family annotations were obtained from 
the Plant Transcription Factor Database (Plant TFDB) 
(Jin et al. 2014).

After the annotation and classification of the DEGs, we 
performed a GO enrichment analysis by the previously 
described method (Kim and Volsky 2005). The result 
showed that two GO terms were upregulated and seven 
were downregulated in plants grown in 50 mM NaCl. 
The most enriched GO terms were “peroxidase activity” 
(GO: 0004601) in the molecular functions category 

Figure 1. Effect of NaCl on Marchantia polymorpha growth. 
Gemmalings were grown for two weeks on half-strength Gamborg’s B5 
medium containing 1% agar (½ B5 solid medium) and either 0 mM 
(control), 50 mM, or 250 mM NaCl. (A) Photographs of representative 
gemmalings under the three salinity conditions. Scale bar=1 cm. (B) 
Fresh and (C) dry weights of gemmalings in the presence (+NaCl, 
50 mM) and absence (−NaCl, 0 mM) of NaCl. Data are means±SD 
for four individual experiments (n=4) using independently grown 
gemmalings. Significant differences were determined by the t-test. 
* p<0.05.
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and “response to oxidative stress” (GO: 0006979) in 
biological processes, but no cellular component GO 
terms were enriched (Supplementary Figure S2). 
Moreover, “heme binding” (GO: 0020037), “inorganic 
phosphate transmembrane transporter activity” (GO: 
0005315), “transporter activity” (GO: 0005215), “cation 
binding” (GO: 0043169), “phosphate ion transport” (GO: 
0006817), “oxidation-reduction process” (GO: 0055114), 
and “DNA replication” (GO: 0006260) were all found 
to be significantly enriched in the salt-stress DEGs. 
As aquaporin (included in the “transporter activity” 
group) and alpha-amylase (included in the “cation 
binding” group) were previously reported to be salinity 
stress-responsive genes (Boursiac et al. 2005; Yokotani 
et al. 2009), the presence of these GO terms in our 
DEGs confirmed that the salinity stress response in M. 
polymorpha is similar to those in angiosperms.

The Plant TFDB revealed five differentially expressed 
TFs under the salinity stress condition, four of which 
were upregulated (Table 1, Supplementary Table S4). The 
differentially expressed TFs were members of the MYB, 
bHLH, B3, and bZIP families (Table 1), and their gene 
symbols were obtained from the M. polymorpha genome 
database (MarpolBase: http://marchantia.info/). To 
validate reliability of the expression profiles obtained by 
RNA-Seq analysis, we performed quantitative RT-PCR 
(qRT-PCR) with a LightCycler® 96 System (Roche) and 
FastStart Universal SYBR Green Master (Rox) (Roche). 
Total RNA for qRT-PCR was extracted from two-week-
old gemmalings, and the first-strand cDNAs were 
synthesized using PrimeScript™ RT Master Mix (Perfect 
Real Time) (Takara Bio). Primers for qRT-PCR were 
designed using Primer3plus (http://www.bioinformatics.
nl/cgi-bin/primer3plus/primer3plus.cgi). The primer 
sequences are shown in Supplementary Table S5. 
MpEF1α mRNA was used as an internal standard in all 
experiments. When qRT-PCR was performed, expression 
patterns of the three TF genes (MpABI3A, MpABI5B and 
MpR2R3-MYB17) were similar with the results of RNA-
Seq analysis (Figure 2). However, the qRT-PCR results of 
the other two TF genes (MpBHLH2 and MpRR-MYB1) 
were inconsistent with the results of RNA-Seq (Table 
1 and Figure 2). In the RNA-Seq data, FDR values of 
MpBHLH2 and MpRR-MYB1 genes (0.0365 and 0.0405, 

respectively) were higher than those of MpABI3A, 
MpABI5B and MpR2R3-MYB17 genes (0.0054, 0.0161, 
and 0.0115, respectively) (Table 1). Our cut-off criteria 
(FDR <0.05) to identify significantly DEGs might not 
be adaptable in our RNA-Seq data. Nevertheless, the 
identified M. polymorpha TF families involved in salinity 
stress were similar to the TF families previously reported 
to be involved in the salinity stress response and salinity 
tolerance in other plant species (Lippold et al. 2009; 
Richardt et al. 2010; Sohn et al. 2006; Uno et al. 2000; 
Yanhui et al. 2006). Given that the liverworts are related 
to all other land plants (Qiu et al. 2006), the TFs in M. 
polymorpha may reflect the ancestral TFs involved in the 

Table 1. Salinity stress-responsive TF genes in Marchantia polymorpha from RNA-seq data.

Gene ID Gene symbola LogFC FDR TF familyb
Best hit in 

Arabidopsis 
thalianab

e-valueb Common nameb

Mapoly0028s0062 MpBHLH2 4.24 0.0365 bHLH AT4G09820.1 4e−14 AtTT8, BHLH42, EN32, F17A8.170, TT8
Mapoly0072s0050 MpABI5B 1.57 0.0161 bZIP AT1G45249.1 4e−32 ABF2, AREB1, AtABF2, ATAREB1, BZIP36, T2P3
Mapoly0086s0035 MpABI3A 1.37 0.0054 B3 AT3G24650.1 3e−37 ABI3, MSD24.2, SIS10
Mapoly0096s0058 MpR2R3-MYB17 1.12 0.0115 MYB AT5G15310.1 2e−81 ATMIXTA, ATMYB16, F8M21_200, MYB16
Mapoly0001s0480 MpRR-MYB1 −4.86 0.0405 MYB AT3G52250.1 9e−39 Not annotated
aMarpolBase (http://marchantia.info/). bPlantTFDB (http://planttfdb.cbi.pku.edu.cn/).

Figure 2. Validation of TF genes’ expression in response to NaCl 
by quantitative RT-PCR. Gemmalings were grown for two weeks 
on half-strength Gamborg’s B5 medium containing 1% agar (1/2 B5 
solid medium) presence (+NaCl, 50 mM) or absence (−NaCl, 0 mM) 
of NaCl. Quantitative RT-PCR was performed using total RNAs 
from 2-weeks-old gemmalings as templates with specific primers 
for the TFs and MpEF1α genes. The equal loading of each amplified 
cDNA was determined by amount of MpEF1α PCR product as a 
control. Data are means±SD for three individual experiments (n=3) 
using independently grown gemmalings. Significant differences were 
determined by the t-test. * p<0.05.
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salinity-stress response and salinity tolerance in the land 
plants.

In the present study, we showed that the TF families 
mediating the salinity stress response in M. polymorpha 
are similar to those reported in other plant species. Given 
that M. polymorpha contains conserved TF families, 
only with fewer members and therefore a lower level of 
redundancy than those found in other plants. The TF-
mediated signalling pathways for the salinity-stress 
response in this liverwort may represent the minimal 
network model required in all land plants. Further 
knockout and overexpression experiments are required 
to elucidate the detailed functions of the salinity-
stress responsive TFs in M. polymorpha. The genetic 
modification techniques established for M. polymorpha, 
including transformation and genome editing (e.g., 
Ishizaki et al. 2008; Sugano et al. 2014; Tsuboyama and 
Kodama 2014), will enable these experiments to be 
performed in the near future.
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