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Abstract The ARABIDOPSIS THALIANA ACTIVATION FACTOR 2 (ATAF2) protein has been demonstrated to be 
involved in various biological processes including biotic stress responses, photo morphogenesis, and auxin catabolism. 
However, the transcriptional function of ATAF2 currently remains elusive. Therefore, to further understand the molecular 
function of ATAF2, we evaluated the transcriptional activities of ATAF2 using a transient assay system in this study. We used 
an effector consisting of a GAL4-DNA binding domain (GAL4-BD) fused to ATAF2, and observed upregulated reporter 
gene expression, suggesting that ATAF2 potentially has transcriptional activation activity. ATAF2 has been shown to activate 
reporter gene expression under the control of the ORE1 promoter. By contrast, ATAF2 significantly repressed reporter gene 
expression driven by the NIT2 promoter. These data suggest that ATAF2 is a bifunctional transcription factor that can alter 
target gene expression depending on the promoter sequences.
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The NAM/ATAF/CUC (NAC) domain transcription 
factor family is a plant-specific transcription factor family 
involved in various biological processes such as seed 
germination, secondary cell wall formation, senescence, 
and biotic and abiotic stress responses (Christianson et 
al. 2009; Nakano et al. 2015; Nuruzzaman et al. 2013; 
Shao et al. 2015; Yamaguchi and Demura 2010). The 
N-terminal region of the NAC domain proteins is highly 
conserved and functions in dimer formation, nuclear 
localization, and DNA binding, whereas the C-terminal 
region is highly divergent and confers transcriptional 
activity (Jensen and Skriver 2014). Although most 
of the NAC domain transcription factors have been 
reported as transcriptional activators, some NAC domain 
transcription factors are known to act as transcriptional 
repressors, such as CALMODULIN BINDING NAC 
PROTEIN (CBNAC) and VND-INTERACTING2 
(VNI2) (Kim et al. 2007; Yamaguchi et al. 2010).

The ARABIDOPSIS THALIANA ACTIVATION 
FACTOR 2 (ATAF2) protein has been known to be 
involved in various biological processes including 
wounding and biotic stress responses, photo 
morphogenesis, brassinosteroid, and auxin catabolism 

(Delessert et al. 2005; Huh et al. 2012; Peng et al. 2015; 
Wang et al. 2009). Several candidates of the direct 
target genes of ATAF2 have been identified (Huh et al. 
2012; Peng et al. 2015; Wang et al. 2009). A previous 
study reported that ATAF2 represses the expression of 
a number of pathogenesis-related genes including PR1, 
PR2, and PDF1.2 (Delessert et al. 2005). In contrast, 
another study showed that ATAF2 activates PR1, PR2, 
and PDF1.2 expression (Wang and Culver 2012). Thus, 
the molecular function of ATAF2 as a transcription 
factor, currently remains elusive. Therefore, to 
characterize ATAF2 function in depth, we performed a 
dual luciferase assay.

First, to investigate whether ATAF2 has transcriptional 
activation activity, an effector was created by fusing 
ATAF2 to a GAL4-DNA-binding domain (GAL4-BD-
ATAF2) (Figure 1). ATAF2 cDNA was subcloned into 
the pENTR/D-TOPO vector (Thermo Fisher Scientific, 
https://www.thermofisher.com), and then integrated 
into pA35BDG, a GATEWAY destination vector, which 
contains the GAL4-BD driven by the cauliflower mosaic 
virus 35S promoter (CaMV35S) (Yamaguchi et al. 2015). 
The GATEWAY destination vector containing the multi-
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cloning site (MCS) fragment was used as a control 
(Yamaguchi et al. 2008). The nucleotide sequences of the 
MCS and primers used in this experiment are described 
in Supplementary Table S1. The plasmids containing 
firefly luciferase (luc) linked to GAL4 binding sites and 
Renilla reinformis luc under the control of the CaMV35S 
promoter were used as a reporter and reference 
construct, respectively (Ohta et al. 2000) (Figure 1A). 
The effector, reporter, and reference plasmids were used 
to transfect Arabidopsis protoplasts, which were obtained 

from 3- to 4-week-old leaves of plants that were grown 
under long-day conditions, via a PEG transformation 
method (Sakamoto et al. 2016). Luciferase activities 
were measured with the Dual-Luciferase Reporter Assay 
System (Promega, http://www.promega.com) using a 
Mithras LB940 Multimode Microplate Reader (Berthold, 
http://berthold.com). The GAL4-BD-fused VND7 and 
VNI2 were used as the controls for the transcriptional 
activator and repressor, respectively (Figure 1A). As 
reported previously, GAL4-BD-VND7 but not GAL4-

Figure 1. ATAF2 has transcriptional activation activity. (A) 
Schematic diagrams of the constructs used in the dual luciferase 
transient assay. The reporter construct contained the firefly luciferase 
reporter gene under the control of five repeats of the upstream 
activation sequence of GAL4 (5× GAL4 UAS) fused to a minimal 
CaMV35S promoter (min pro). The effector constructs contained 
GAL4-BD bound to an empty multiple cloning site (GAL4-BD-MCS) 
or to coding sequences corresponding to full-length VND7, VNI2, and 
ATAF2 driven by the CaMV35S promoter (35Spro). (B) Results of the 
transient transfection assay. Firefly luciferase activities were normalized 
by Renilla luciferase activities. Error bars indicate SD (n=4). Asterisks 
indicate statistically significant differences (Welch’s t-test with 
Bonferroni–Holm correction, ** p<0.01) compared to the GAL4-BD-
MCS vector control.

Figure 2. ATAF2-SRDX acts as a transcriptional repressor. (A) 
Schematic diagrams of the constructs used in the dual luciferase 
transient assay. The reporter construct contains the 5× GAL4/UAS 
and the minimal promoter sequence upstream of the firefly luciferase 
reporter gene, with the enhancer region of the CaMV35S promoter 
(35Spro). (B) Results of the transient transfection assay. Firefly 
luciferase activities were normalized to Renilla luciferase activities. 
Error bars indicate SD (n=3 or 4). Asterisks indicate statistically 
significant differences (Welch’s t-test with Bonferroni–Holm correction, 
* p<0.05) compared to the vector control, GAL4-BD-MCS.
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BD-VNI2 upregulated the firefly luciferase activity 
(Yamaguchi et al. 2008, 2010) (Figure 1B). When GAL4-
BD-ATAF2 was used as the effector, the luciferase activity 
was significantly increased compared to that of the 
control (Figure 1B), suggesting that ATAF2 potentially 
has transcriptional activation activity.

The SRDX motif has been demonstrated to be a 
strong transcriptional repression motif modified from 
the repression domain of SUPRMAN (SUP; Hiratsu et 
al. 2003). When this motif is fused to transcriptional 
activators, the chimeric transcription factors become 
dominant repressors (Hiratsu et al. 2003). To further 
examine the transcriptional activity of ATAF2, ATAF2 
cDNA was fused to SRDX motif (ATAF2-SRDX), 
amplified by using a specific primer set (Table S1) 
and subcloned into pA35BDG (Figure 2A). We used a 
reporter construct containing luc under the control of the 
CaMV35S promoter with GAL4 binding sites to increase 
the basal luciferase activity (Mitsuda et al. 2005) (Figure 
2A). As shown in Figure 2B, although GAL4-BD-ATAF2 
upregulated luciferase activity, GAL4-BD-ATAF2-SRDX 
strongly downregulated the reporter activity, suggesting 
that ATAF2 acts as a repressor instead of a transcriptional 
activator when fused with SRDX.

As described above, several direct target gene 
candidates of ATAF2 were isolated (Delessert et al. 2005; 
Garapati et al. 2015; Huh et al. 2012; Peng et al. 2015; 
Wang et al. 2009). To examine how ATAF2 regulates the 
expression of the direct target genes, a dual luciferase 
assay was carried out using the reporter constructs 
expressing the firefly luc under the control of various 
promoter regions of the direct target genes (Figure 3). 
The entry vectors harboring the coding sequence of 
ATAF2 and ATAF2-SRDX were integrated into pA35G, 
a Gateway destination vector, which contains the 
CaMV35S promoter (Endo et al. 2015) (Figure 3A). The 
promoter fragments were subcloned into the pENTR/
D-TOPO vector and then integrated into the pAGL 
Gateway destination vector containing the firefly luc 
(Endo et al. 2015) (Figure 3A).

ORESARA1 (ORE1) has been demonstrated to be a key 
regulator of senescence (Rauf et al. 2013), and has been 
reported as a direct target of ATAF1, which is closely 
related to ATAF2 (Garapati et al. 2015). The reporter gene 
expression driven by the ORE1 promoter was significantly 
upregulated by ATAF2 but not by ATAF2-SRDX (Figure 
3B), indicating that ATAF2 activates ORE1 expression. 
It has been reported that the overexpression of ATAF2 
exhibited a leaf-yellowing phenotype (Delessert et al. 
2005; Huh et al. 2012). Previous work has reported that, 
ORE1 overexpression accelerated leaf senescence (Qiu 
et al. 2015). These data together with our transient assay 
results suggest that ATAF2 is involved in leaf senescence 
via the regulation of ORE1 expression (Figure 4).

ATAF2 binds to the promoter region of NITRILASE2 

(NIT2) encoding a nitrilase that converts indole-3-
acetonitrile (IAN) to indole-3-acetic acid (IAA), an auxin 
(Huh et al. 2012). When the NIT2 promoter containing 
the binding site (CAA ATNNNATT G, -148 to -136) 
(Huh et al. 2012) was used as a reporter, both ATAF2 
and ATAF2-SRDX significantly downregulated luciferase 
activity (Figure 3B). These data strongly suggest that 
ATAF2 represses NIT2 expression. However, it was 
previously shown that ATAF2 acts as a transcriptional 
activator for NIT2 (Huh et al. 2012). As described 
above, previous reports have shown that overexpression 
of ATAF2 activated or repressed the expression of the 

Figure 3. ATAF2 has bifunctional activities. (A) Schematic diagrams 
of the constructs. The reporter constructs contain the promoter of 
ORE1, NIT2, or BAS1 with the firefly luciferase reporter gene. The 
effector constructs contain the MCS, ATAF2, or ATAF2-SRDX driven 
by the CaMV35S promoter. (B) Results of the transient transfection 
assay. Firefly luciferase activities were normalized by Renilla luciferase 
activities. Error bars indicate SD (n=4). Asterisks indicate statistically 
significant differences (Welch’s t-test with Bonferroni–Holm correction, 
** p<0.01; * p<0.05) compared to the vector control.
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pathogenesis-related genes (Delessert et al. 2005; Wang 
et al. 2009). It is possible that ATAF2 upregulates and 
downregulates the expression of some target genes 
including NIT2 in response to environmental conditions.

Peng et al. (2015) showed that ATAF2 binds promoter 
regions of BAS1 and SOB7, encoding brassinosteroid-
inactivating enzymes, to suppress their expression. Thus, 
we also used the BAS1 promoter containing the binding 
sites (AAA AAT CT, -1021 to -1014, AAA ATA TCT, 
-717 to -709) (Peng et al. 2015) as a reporter (Figure 
3A). When ATAF2 was used as an effector, no significant 
change was observed when compared with the use of the 
control effector (Figure 3B). By contrast, interestingly, 
the reporter expression was significantly upregulated by 
the ATAF2-SRDX effector (Figure 3B). If ATAF2 could 
directly upregulate or downregulate BAS1, the expression 
level of the reporter gene would be significantly 
decreased by ATAF2-SRDX. Thus, this result suggests a 
transcriptional cascade for BAS1 expression (Figure 4). 
Similarly, a previous report demonstrated that TCP3, a 
member of TEOSINETE BRANCHED1, CYCLOIDEA, 
and PCF (TCP) family, upregulates the expression of 
miR164, which negatively regulates CUC genes (Baker 
et al. 2005; Laufs et al. 2004; Mallory et al. 2004). 
The overexpression of TCP3-SRDX induces ectopic 
expression of the CUC genes (Koyama et al. 2007). As 
in the case of TCP3, ATAF2 may activate unknown 
transcriptional factors or microRNAs that repress BAS1 
(Figure 4). Although ATAF2 binds to the BAS1 promoter 
(Peng et al. 2015), the direct regulation of ATAF2 for 
BAS1 expression may not largely contribute to the entire 
regulation of BAS1 expression.

In this study, we demonstrated that ATAF2 has both 
transcriptional activation activity and repression activity 
under the same condition (Figure 3). WUSCHEL 
(WUS), an Arabidopsis thaliana homeodomain 
transcriptional factor, has been characterized as a 
bifunctional transcription factor (Ikeda et al. 2009). 
ATAF1, one of the closest homologs of ATAF2, promotes 
senescence via the direct activation of ORE1 expression 
and direct repression of GLK1 expression (Garapati et 

al. 2015). The NAC domain transcription factors have 
been demonstrated to form homo- and/or heterodimer 
complexes (Tran et al. 2007; Xu et al. 2013; Yamaguchi et 
al. 2008). Thus, ATAF2 may have bifunctional activities 
by forming heterodimer complexes with different 
partners depending on the promoter context. In addition, 
it is likely that ATAF2 forms different protein complexes 
with other transcription factors, and has different 
transcriptional activities for some target genes, such as 
NIT2, BAS1, and the pathogen-related genes, in response 
to endogenous or exogenous statuses. Further studies 
need to be carried out to unveil the biological functions 
of ATAF2, such as isolation of the interacting factors, 
examination of the relationship between the binding 
sequences and transcriptional activities of ATAF2, and 
identification of the unknown factors that are activated 
by ATAF and repress BAS1.
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