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Abstract A peptide-mediated DNA delivery system for several plant species has been recently developed. This system 
uses ionic complexes of DNA and fusion peptides containing several domains, such as DNA-binding and cell-penetrating 
peptides. Although the peptide-DNA complexes are capable of penetrating into plant cells through the cell wall by 
mechanical pressure using a syringe, sample throughput is limited. Here, we describe a Centrifugation-Assisted Peptide-
mediated gene Transfer (CAPT) method for improving sample throughput with reproducible gene transfer efficiency. We 
optimized the parameters of CAPT for transient gene transfer efficiency by using Nicotiana tabacum cotyledons as a model 
plant material. The optimal parameters for centrifugation were 10,000×g for 60 s. Furthermore, we successfully transferred 
the peptide–DNA complex into rice cotyledons using the optimized CAPT method. Thus, the CAPT method is superior to 
the previous syringe-mediated infiltration method in terms of sample throughput in multiple plant species.

Key words: Centrifugation-Assisted Peptide-mediated gene Transfer (CAPT) method, peptide–DNA complex, rice, 
tobacco.

Since the mid-1990s, genetically modified (GM) crops 
have been widely used in commercial agriculture 
production (Raman 2017). For the production of GM 
crops, Agrobacterium- and biolistic-mediated methods 
for gene transfer to plant cells have been developed to 
produce the desired trait. Recently, we succeeded in 
the delivery of dsDNA, dsRNA, and protein using cell 
penetrating peptides (CPPs) fused with a polycation 
sequence as a gene carrier into plant cells (Lakshmanan 
et al. 2013, 2015; Ng et al. 2016; Numata et al. 2014). 
CPPs can serve as a cargo carrier for macromolecules 
across cellular membranes into cells (Numata 2015; 
Rádis-Baptista et al. 2017). Additionally, we succeeded in 
the selective delivery of plasmid DNA into chloroplasts 
or mitochondria using polycationic peptides with 
chloroplast or mitochondrial targeting signals (Chuah 
et al. 2015; Yoshizumi et al. 2018). Yoshizumi et al. 
developed a syringe-based vacuum system for efficient 
delivery of peptide–DNA complexes into plant cells 
(Yoshizumi et al. 2018). However, the drawbacks of this 
system include its low throughput and the dependence 
of gene transfer efficiency on the experimenter’s ability. 

Here, we developed a Centrifugation-Assisted Peptide-
mediated gene Transfer (CAPT) method for various 
high-throughput analyses, overcoming the drawbacks of 
the previous method.

We used tobacco (Nicotiana tabacum cv. Petit 
Havana SR1) and rice (Oryza sativa cv. Nipponbare) 
in this study. Sterilized seeds of tobacco were placed 
on germination (GEM) medium composed of one-
half Murashige–Skoog medium (Murashige and 
Skoog 1962) with 10 g L−1 sucrose and 2.5 g L−1 
Phytagel. For gene transfer efficiency, a (KH)9-
BP100 fusion peptide (Amino acid sequence: 
KHKHKHKHKHKHKHKHKHKKLFKKILKYL) 
(Lakshmanan et al. 2013, 2015) and a CaMV 35S 
promoter-NanoLuc Luciferase construct (pGWB-
Nluc) (England et al. 2016) were mixed by the method 
described previously (Yoshizumi et al. 2018). The 
detached cotyledons of 7-day-old seedlings were added 
to the peptide–DNA complex solutions and were 
centrifuged at various g-forces and times by a Tomy 
MX-307 centrifuge (Tomy Seiko Co., Tokyo, Japan). 
Cotyledons that were added to the complex solutions 
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without centrifugation were used as negative controls 
for all the experiments in the current study. After 
centrifugation, the explants were placed on GEM media. 
After 1 day, the explants were ground in Reporter Lysis 
5X Buffer (Promega, Wisconsin, USA) with a pestle. 
The homogenized solutions were centrifuged and 
luciferase activity of the supernatants was measured by 
luciferase activity using the Nano-Glo® Luciferase Assay 
System (Promega) using GloMax® 20/20 Luminometer 
(Promega). A total protein amount in each sample was 
quantified by Bradford assay (XL-Bradford KY-1040, 
Apro Science Inc, Tokushima, Japan). The luciferase 
activities were evaluated in the relative light units (RLU) 
per mg of proteins. In a syringe-based vacuum system, 
the detached cotyledons of 7-day-old tobacco seedlings 
were transformed using the method described previously 
(Yoshizumi et al. 2018). For shoot induction efficiency, 
the detached cotyledons of 7-day-old tobacco seedlings 
were placed on revised medium for organogenesis (shoot 
regeneration) of Nicotiana plumbaginifolia (RMOP) 
medium and transferred to fresh RMOP medium every 
2 weeks (Svab and Maliga 1993). After incubation for 4 
weeks, the efficiency was examined. In experiments with 
rice, the detached cotyledons of 8-day-old seedlings 
were used in the methods described above. All statistical 
analyses were performed based on a Kruskal–Wallis t-
test or Mann–Whitney U-test by EZR software (Kanda 
2013).

We investigated the effect of centrifugation time 
on transient gene transfer efficiency by measuring 
NanoLuc Luciferase (Nluc) reporter activity in tobacco 
cotyledons. The gene transfer efficiencies by treatments 
for 60 s (p=0.0147) and 180 s (p=0.0070) at 10,000×g 
were higher than that of control (Figure 1). Treatment 
for 30 s showed no significant difference in gene transfer 

efficiency from treatment for 60 s and 180 s (Figure 
1). We also examined the effect of centrifugal force on 
transient gene transfer efficiency. We found that the 
efficiency at 3,000×g (p=0.0141), 10,000×g (p=0.0104) 
and 20,000×g (p=0.0032) for 60 s were significantly 
higher than the negative control (Figure 2). The efficiency 
at 20,000×g was relatively lower than that at 10,000×g, 
implying that 20,000×g treatment might induce cellular 
damages of the cotyledons. Therefore, we concluded 
that the optimal conditions for the CAPT method 
were 10,000×g for 60 s, which were then used in the 
experiments described below.

To assess the advantages of CAPT, we compared the 
gene transfer efficiency of the optimized CAPT method 
with the syringe-based vacuum system in tobacco. We 
found that the efficiency of CAPT was approximately 150 

Figure 1. Effect of centrifugation time on gene transfer in tobacco. 
The cotyledons of 7-day-old seedlings were transformed with a DNA–
peptide complex harboring a luciferase construct using different 
centrifugation times (30, 60 and 180 s) at 10,000×g. Non-centrifugal 
treatment was used as a negative control. Relative light units (RLU) 
indicates the luciferase activity. The bars represent the mean±SE 
(n=19). Asterisks indicate significant differences between the control 
and treated explants (*: p<0.05, **: p<0.01) by Kruskal–Wallis t-test.

Figure 2. Effect of centrifugal force on gene transfer in tobacco. The 
cotyledons of 7-day-old seedlings were transformed with a DNA–
peptide complex harboring a luciferase construct using different 
centrifugal forces (3,000, 10,000 and 20,000×g) for 60 s. Non-
centrifugal treatment was used as a negative control. The bars represent 
the mean±SE (n=19). Asterisks indicate significant differences 
between the control and treated explants (*: p<0.05, **: p<0.01) by 
Kruskal–Wallis t-test.

Figure 3. CAPT increases the efficiency of gene transfer over the 
syringe-based vacuum system in tobacco. For CAPT, the cotyledon 
segments of 7-day-old seedlings were transformed with a DNA–peptide 
complex harboring a luciferase construct by centrifugation at 10,000×g 
for 60 s. The syringe-based vacuum system was performed as described 
previously (Yoshizumi et al. 2018). The bars represent the means±SE 
(n=23). Asterisks indicate significant differences between the control 
and treated explants (*: p<0.05, **: p<0.01) by Kruskal–Wallis t-test.
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RLU mg−1 protein on average, which was significantly 
higher in comparison to the control (p=0.0037) and 
the results by syringe-based vacuum system (p=0.0283) 
(Figure 3). The efficiency of the syringe-based vacuum 
system ranged widely from approximately 2 to 4800 RLU 
mg−1 protein (Figure 3).

In addition to efficient gene transfer, plant 
regeneration is essential for efficient genetic 
transformation (Anami et al. 2013). Therefore, we 
analyzed the effect of CAPT on shoot regeneration 
efficiency in tobacco. The shoot regeneration efficiency 
of the optimized CAPT method was similar to those of 
the control and syringe-based vacuum system (Table 1), 
indicating that CAPT is suitable for plant transformation 
in terms of gene transfer efficiency, reproducibility and 
regeneration efficiency.

Moreover, to analyze the capability of CAPT for gene 
transfer in monocots, the gene transfer efficiency of 
CAPT was evaluated in rice cotyledons. We found that 
Nluc activity of the samples treated by centrifugation at 
10,000×g for 60 s was higher than that of control (Figure 
4). Therefore, CAPT could be useful for gene transfer 
to monocotyledonous as well as dicotyledonous plant 
species.

In this study, we optimized and developed the CAPT 
method for peptide-mediated gene transfer (Figures 
1, 2) for various high-throughput analyses. Previous 
studies developed an infiltration–centrifugation method 

to isolate apoplastic fluid (Klement 1965; O’Leary 
et al. 2014). In this method, the appropriate buffers 
were infiltrated into the apoplastic air spaces with 
decompression and depressurization by infiltration–
centrifugation. In addition, transient gene transfer of 
centrifuged banana suspension cells with Agrobacterium 
showed a 3- to 4-fold increase compared with non-
centrifuged cells (Khanna et al. 2004). The improved 
efficiency may result from more Agrobacterium 
colonization on the plant cell surface. Based on these 
previous studies with Agrobacterium, CAPT might 
accelerate the infiltration of the solution, including the 
peptide–DNA complex, through the cellular barriers, 
resulting in high accumulation of the peptide–DNA 
complex in plant cells.

However, high-pressure treatment has been 
reported to cause cell damage to several plant species 
(Rajashekar and Lafta 1996), and cell damage affects 
shoot regeneration efficiency (Rasco-Gaunt et al. 1999). 
Our optimized CAPT method did not affect shoot 
regeneration efficiency in tobacco (Table 1). Additionally, 
the gene transfer efficiency of CAPT was more consistent 
than the syringe-based vacuum system (Figure 3). 
Moreover, CAPT worked to introduce the peptide-DNA 
complex into rice cells (Figure 4). Considering previous 
reports on the peptide-mediated gene transfer of dsRNA 
and protein (Ng et al. 2016; Numata et al. 2014), CAPT 
may improve sample throughput for efficient peptide-
mediated transfer of various biological cargos in addition 
to DNA.
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