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Handmade leaf cutter for efficient and reliable ROS assay
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Abstract Reactive oxygen species generation is one of the most popular index of plant immune responses. Leaf disk assay 
has been commonly used for MAMP/elicitor-induced ROS analysis by many groups. However, the reproducibility of the 
leaf disk assay relies on the skills of the people engaged in the experiments and the experiment itself seems not suitable for 
some plant species, which had a tough leaf structure and lower penetration efficiency of MAMPs/elicitors. In this study, we 
prepared a handmade leaf cutter to cut out the leaf fragments with uniform size and slits. The use of such fragments obtained 
by the new leaf cutter as well as the increase of the number of leaf fragments for each experiment improved the reliability 
and reproducibility of the leaf disk assay. This cutter was also successfully applied to rice leaf disk assay, indicating the 
applicability to other plant spices.

Key words: defense response, elicitor, leaf disk, MAMP, ROS.

Plants have the ability to induce reactive oxygen 
species (ROS) in response to pathogen infection or 
elicitor treatment (Kadota et al. 2015; Qi et al. 2017). 
The biological function of this oxidative burst in plant 
immunity is still not fully understood and several 
possibilities have been discussed. For example, ROS 
could directly attack pathogens or act as a second 
messenger in immune signaling (Boller and Felix 2009; 
O’Brien et al. 2012). Apart from its intrinsic function, 
ROS generation associated with microbial infection/
elicitor treatment has been used as a popular index 
of plant defense response because ROS can be easily 
detected and quantified (Sang and Macho 2017).

To evaluate pathogen infection using ROS generation, 
infected leaves are stained with 3,3′-diaminobenzidine 
(DAB) to visualize ROS (Torres et al. 2005). Classically, 
these stained images are directly compared with the 
mock-treated leaves. In recent years, the levels of ROS 
accumulation in the DAB-stained leaves have been 
quantified using image analysis (Lee et al. 2017). On 
the other hand, ROS generation induced by elicitor 
or microbe-associated molecular pattern (MAMP) 
treatment can be easily detected and quantified by 
luminol chemiluminescence assay and has been widely 
used to evaluate the degree of defense response in plants 

(Albert et al. 2006; Desaki et al. 2006; Sang and Macho 
2017; Yamaguchi and Kawasaki 2017).

In Arabidopsis, leaf disk assay is a popular method 
to analyze MAMP-induced ROS generation, although 
seedling assay has also been reported (Albert et al. 2006; 
Sang and Macho 2017; Zhang et al. 2010). Typically, 
leaf disks are cut from rosette leaves and each one disk 
is floated on the medium, which contains luminol 
and MAMPs, in each well of 96-well plates (Sang and 
Macho 2017; Zhang et al. 2010). The 96-well plates can 
be directly set into a microplate reader and the amount 
of ROS is quantified. It is known that the addition of 
“slits” in the leaf fragments helps the responsiveness 
probably because of the increase of penetration 
of MAMPs/elicitors (e.g., Jian-Min Zhou, private 
communication). However, the reproducibility of such 
experiments largely relies on the skills of the people 
engaged in the experiments.

On the other hand, in rice, ROS generation has 
often been evaluated by using cultured cells, which 
are incubated in the medium containing appropriate 
MAMPs (Desaki et al. 2006). Aliquots of the medium 
can be taken at various time points and used for the 
luminol assay. The experimental error obtained by this 
method is usually small because of the homogeneity of 

Abbreviations: CERK1, chitin elicitor receptor kinase 1; DAB, 3,3′-diaminobenzidine; MAMP, microbe-associated molecular pattern; ROS, reactive 
oxygen species.
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cell density and population in the case of cultured cells. 
Although leaf disk assay has also been reported for rice, it 
is not very popular so far (Kouzai et al. 2014). The major 
difficulty in the use of rice leaves comes from their tough 
structure that makes penetration of MAMPs/elicitors less 
efficient compared to Arabidopsis. Preparation of leaf 
disks suitable for ROS assay in a reproducible manner is 
also a potential problem for rice.

To resolve such potential problems and establish more 
reliable leaf disk assay, we prepared a special leaf cutter 
that enabled the stable ROS assay both in Arabidopsis 
and rice. This leaf cutter enabled to cut out the leaf 
fragments with uniform size and slits both in Arabidopsis 
and rice.

The cutter was made from the commercial art knife 

blades (Figure 1A, https://www.artstuff.net/Olfa-AK4-
Art-Knife_p_519.html) that were then combined 
together by welding (Figure 1A, prepared by Bio Tools 
Inc.; http://www.biotools.jp/index.html). At first, thirteen 
blades were arranged as described below and combined 
by welding. Then the combined blades were fixed 
vertically onto another blade, again by welding (Figure 
1A). Those combined blades other than the central and 
two side blades were arranged to leave 0.8 mm spaces 
between the top/vertically fixed blades. These spaces are 
important to maintain the integrity of the leaf fragments 
when they are cut out from the leaves (Figure 1B).

To cut out leaf fragments from the rosette leaves 
of Arabidopsis plants, the leaves were firstly cut with a 
knife to form a straight edge as shown in Figure 1B. The 

Figure 1. Structure of the leaf cutter and the images of cutting leaves. (A) Structure of the leaf cutter. (B) Scheme for the preparation of Arabidopsis 
and rice leaf fragments.
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leaf cutter was set on the leaf so that the position of the 
“top” blade was adjusted to 3 mm from the straight edge 
(Figure 1B). By doing so, the cutter generated two leaf 
fragments of 3×3.3 mm per one cut. As the thickness 

of the blade was 0.55 mm, the leaf fragment had 5 slits 
at intervals of 0.5–0.6 mm (Figure 1B). Four to eight 
leaf fragments could be obtained from one rosette leaf, 
avoiding the central vein.

For ROS assay, five leaf fragments were floated on the 
200 µl of MGRL medium containing 1% sucrose in each 
well of a 24-well plate (Albert et al. 2006; Naito et al. 
1994). After kept overnight in the dark, the medium was 
replaced with the flesh medium and the leaf fragments 
were preincubated for 2 h on a rotary shaker at 300 
rpm. After the addition of 40 µM N-acetylchitoheptaose 
(GN7) or 100 nM flg22, each 10 µl of the medium was 
taken and transferred to 96-well plate at various time 
points and used for luminol assay. While the wild type 
plants showed a typical GN7- or flg22-induced ROS 
generation, the cerk1-2 mutants, which lack the receptor-
like kinase essential for chitin responses, lost the chitin-
induced ROS generation (Figure 2A). These data were 
reproducible and well corresponded with our previous 
results obtained by seedling assay (Miya et al. 2007). The 
use of new leaf cutter enabled to generate leaf fragments 
with the reproducible size and shape efficiently, and thus 
resulted in the data with minimal SD/SE.

In the case of rice, the middle portion of the fourth 
leaf, ranging from 5 to 7.5 cm from the tip, was used to 
cut out the fragments (Figure 1B). As the leaf edge of this 
area was mostly linear, the leaf cutter was set on the leaf 
without forming a linear edge with the knife. By using 
the leaf cutter, six leaf fragments could be obtained per 
leaf (Figure 1B). Six leaf fragments were pre-incubated 
overnight with 200 µl modified-N6D medium in each 
well of a 24-well plate (Kuchitsu et al. 1997), then 
the medium was replaced with the fresh medium as 
described for Arabidopsis leaf fragments. One nM GN7 
was added to the medium and each 10 µl of the medium 
was taken at various time points and used for luminol 
assay. As shown in Figure 2B, the wild type rice plants 
showed a typical GN7-induced ROS generation but the 
oscerk1 mutants did not (Kouzai et al. 2014). Compared 
to Arabidopsis, leaf disk ROS assay has not been so 
popular in rice, partly because of the tough structure 
of rice leaves that seems to form a barrier for the 
penetration of MAMPs. The use of leaf cutter reported 
here could be applicable to other plant species that have 
similar problems.

In conclusion, the use of new leaf cutter is useful 
for efficient and reliable leaf disk ROS assays in both 
Arabidopsis and rice. The use of multiple leaf fragments 
in each well also improved the sensitivity and stability of 
the assay.
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